
BCA-09

Vardhaman Mahaveer Open University, Kota

Introduction to DBMS

Course Development Committee

Chairman

Prof. (Dr.) Naresh Dadhich

Vice-Chancellor

Vardhaman Mahaveer Open University, Kota

Co-ordinator/Convener and Members

Convener

Dr. Anuradha Sharma

Assistant Professor,

Department of Botany, Vardhaman Mahaveer Open University, Kota

Members :

1. Prof. (Dr.) D.S.Chauhan 3. Prof. (Dr.) A.K.Nagawat

Department of Mathematics University of Rajasthan, Jaipur

University of Rajasthan, Jaipur

2. Prof. (Dr.) M.C.Govil 4. Dr. (Mrs) Madhavi Sinha

Goverment Mahila Engineering College, Birla Institute of Technology & Science,

Ajmer Jaipur

5. Dr. Rajeev Srivatava

LBS College, Jaipur

Editing and Course Writing

Editor

Dr. Vaibhav Gupta

Department of Computer Science

Lachoo Memorial College of Science & Technology, Jodhpur

Unit Writers Unit No.

1. Dr. Suresh Kumar Sharma (1,2) 5. Dr. Basant Agarwal (9,10)

Department of Computer Science Department of Computer Science

Central University of Rajasthan, Jaipur Central University of Rajasthan, Jaipur

2. Dr. Anju Sharma (3, 4) 6. Mrs. Poonam Pahuja (11,12,13)

Department of Computer Science Department of Computer Science

Birla Institute of Technology & Science, SRD Modi College,

Jaipur Kota

3. Dr. (Mrs.) Seema Gaur (5,6) 7. Dr. Nishtha Keswani (14, 15)

Department of Computer Science Department of Computer Science

Birla Institute of Technology & Science, Jaipur Central University of Rajasthan, Jaipur

4. Mrs. Poonam Keswani (7,8)

Senior Software Consultant

Mapple Technologies, Jaipur

Academic and Administrative Management

Prof. (Dr.) Naresh Dadhich Prof. B.K. Sharma Mr. Yogendra Goyal

 Vice-Chancellor Director (Academic) Incharge
Vardhaman Mahveer Open University, Vardhaman Mahveer Open University, Material Production and

 Kota Kota Distribution Department

Course Material Production

Mr. Yogendra Goyal

Assistant Production Officer
Vardhaman Mahaveer Open University, Kota

BCA-09

 Vardhaman Mahaveer Open University, Kota

Introduction to DBMS

Unit No. Units Page No.

 1. Introduction to Database Management System 1-10

 2. Basic Concept of DBMS 11-18

 3. Database Models 19-27

 4. The Entity Relationship Model 28-47

 5. Relational Model 48-70

 6. RDBMS 71-88

 7. Normalization 89-99

 8. Introduction to Popular RDBMS Packages 100-109

 9. Introduction to SQL 110-127

 10. More on SQL 128-141

 11. Queries and Subqueries 142-159

 12. Transaction Processing 160-182

 13. Concurrency Control 183-194

14. Emerging Trends in Database Management System I 195-204

15. Emerging Trends in Database Management System II 205-215

Preface

We feel great in brining out this book “Introduction to DBMS”, which meets

the requirement of students of BCA Part-II. This book is written entirely according to

the syllabus of Vardhaman Mahaveer Open University, Kota.

Importance of data is well known. Using facilities of computers large databases

are easily handled. The database concepts, technology and architectures have been

developed in the last few decades and a course in database management has become

established as a required course in both undergraduate and graduate level. This is an

important aspect and it should be, considering the central position of the database in

the field of computer science and computer applications. A computer professional

should be able to understand fundamentals of the database to be successful in the

field.

This book provides basic concepts of databases dealing with the complete

syllabus. It offers a balanced view of concepts and details with reference to current

technology. Database architectures, their design and manipulation that are required to

make effective use of database are explained.

1

Unit - 1 : Introduction to Database Management System

Structure of the Unit

1.0 Objective

1.1 Introduction

1.2 Data

1.3 Field

1.4 Record

1.5 Data Base

1.6 Database Management System

1.7 Elements of Database Management Systems

1.8 Database Schema

1.9 Table

1.10 Columns

1.11 Rows

1.12 Data Types

1.13 Keys

1.13.1 Primary Keys

1.13.2 Foreign Keys

1.14 Relationships

1.15 Database Management System Vs File Management System

1.16 Database Management Systems

1.17 Advantages of DBMS

1.18 Features commonly offered by Database Management Systems Include

1.19 Features of DBMS

1.20 Summary

1.21 Self-Assessment Questions

1.0 Objective

At the end of this unit, we should be able to -

• Describe data, field, record and database management system

• Compare database and file oriented approach

• Describe various features of database

• Describe the need and function of the database

• Describe the concept of different keys

1.1 Introduction

Data and its storage may be considered to be the heart of any information system. Data has to be

up-to-date, accurate, accessible in the required form and available to one or perhaps many users at the

same time.

2

For data to be a value it must be presented in a form that supports the various operational,

financial, managerial, decision-making, administrative and clerical activities within an organization.

To meet these objectives data needs to be stored efficiently that means we wish to avoid lengthy

access times and with minimal duplication that means we wish to aovid lengthy update times and the

possibility of inconsistency and inaccuracy. For the data stored by a given organization to have any value

at all its integrity (consistency and accuracy) must always be assured.

In this unit we consider what is database and DBMS, different needs and functions of database

and concepts related to relational database management system.

1.2 Data

Data are the raw facts or figures which are processed to get the information.

1.3 Field

A space allocated for a particular item of information. A tax form, for example, contains a number

of fields: one for your name, one for your Social Security number, one for your income, and so on. In

database systems, fields are the

smallest units of information you can access. In spreadsheets, fields are called cells

1.4 Record

In database management systems, a complete set of information. Records are composed of fields,

each of which contains one item of information. A set of records constitutes a file. For example, a

personnel file might contain records that have three fields: a name field, an address field, and a phone

number field.

1.5 Data Base

A collection of data stored in a standardized format, designed to be processed, shared by different

users. A database may have single table or multiple tables. The data in a database are organized in rows

and columns

A collection of information organized in such a way that a computer program can quickly select

desired pieces of data. You can think of a database as an electronic filing system.

1.6 Database Management System (DBMS)

It is software that defines a database, stores the data and supports a query language, produces

reports,and creates data entry forms.

It is a software package with computer programs that control the creation, maintenance, and the

use of a database. It allows organizations to conveniently develop databases for various applications by

database administrators (DBAs) and other specialists.

It allows a computer to perform database functions of storing, retrieving, adding, deleting and

modifying data.

It allows different user application programs to concurrently access the same database which is an

integrated collection of data records, files, and other database objects.

It provides facilities for controlling data access, enforcing data integrity, managing concurrency

control, recovering the database after failures and restoring it from backup files, as well as maintaining

database security.

Some DBMS software are MS-Access, Oracle, FoxPro, IBM DB2 , MS ACCESS, MYSQL,

SYBASE etc.

3

1.7 Elements of Database Management Systems

The essential elements that are found with just about every example of DBMS currently on the

market are

• Schema objects

• Indexes

• Tables

• Fields and columns

• Records and rows

• Keys

• Relationships

• Data types

1.8 Database Schema

A schema is a group of related objects in a database. Within a schema, objects that are related

have relationships to one another. It is overall design of the database. There is one owner of a schema, who

has access to manipulate the structure of any object in the schema. A schema does not represent a person,

although the schema is associated with a user account that resides in the database.

The three models associated with a schema are as follows:

• The conceptual model, also called the logical model, is the basic database model, which deals with

organizational structures that are used to define database structures such as tables and constraints.

• The internal model, also called the physical model, deals with the physical storage of the database,

as well as access to the data, such as through data storage in tables and the use of indexes to expedite data

access. The internal model separates the physical requirements of the hardware and the operating system

from the data model.

• The external model, or application interface, deals with methods through which users may access

the schema, such as through the use of a data input form. The external model allows relationships to be

created between the user application and the data model. Figure 1 depicts a schema in a relational

database.

Figure 1 : Collection of objects that comprise a database schema.

4

1.9 Table

A table is the primary unit of physical storage for data in a database. The table is the most funda-

mental element found in a database schema. Columns and rows are associated with tables When a user

accesses the database, a table is usually referenced for the desired data. Multiple tables might comprise a

database, therefore a relationship might exist between tables. Because tables store data, a table requires

physical storage on the host computer for the database.

Figure 2 : Database Tables and their Relationships

1.10 Columns

A column, or field, is a specific category of information that exists in a table. A column is to a table

what an attribute is to an entity. In other words, when a business model is converted into a database model,

entities become tables and attributes become columns. A column represents one related part of a table and

is the smallest logical structure of storage in a database. Each column in a table is assigned a data type. The

assigned data type determines what type of values that can populate a column. When visualizing a table, a

column is a vertical structure in the table that contains values for every row of data associated with a

particular column. All of the data in a table associated with a field is called a column.

Figure 3 : Columns in a Database Table

5

1.11 Rows

A row of data is the collection of all the columns in a table associated with a single occurrence. A

row of data is a single record in a table. For example, if there are 25,000 book titles with which a

bookstore deals, there will be 25,000 records, or rows of data, in the book titles table once the table is

populated. The number of rows within the table will obviously change as books' titles are added and

removed.

Figure 4 : Row of data in a database table

1.12 Data Types

A data type determines the type of data that can be stored in a database column.

Although many data types are available, three of the most commonly used data types are

• Alphanumeric

• Numeric

• Date and time

Alphanumeric data types are used to store characters, numbers, special characters, or nearly any

combination. If a numeric value is stored in an alphanumeric field, the value is treated as a character, not a

number. In other words, you should not attempt to perform arithmetic functions on numeric values stored

in alphanumeric fields. Numeric data types are used to store only numeric values.

Date and time data types are used to store date and time values, which widely vary depending on

the relational database management system (RDBMS) being used.

1.13 Keys

The integrity of the information stored in a database is controlled by keys. A key is a column value

in a table that is used to either uniquely identify a row of data in a table, or establish a relationship with

another table. A key is normally correlated with one column in table, although it might be associated with

multiple columns. There are two types of keys: primary and foreign.

1.13.1 Primary Keys

A primary key is the combination of one or more column values in a table that make a row of data

unique within the table. Primary keys are typically used to join related tables. Even if a table has no child

table, a primary key can be used to disallow the entry of duplicate records into a table. For example, an

employee's social security number is sometimes considered a primary key candidate because all SSNs are

unique.

1.13.2 Foreign Keys

A foreign key is the combination of one or more column values in a table that reference a primary key in

another table. Foreign keys are defined in child tables. A foreign key ensures that a parent record has been

created before a child record. Conversely, a foreign key also ensures that the child record is deleted

before the parent record.

6

Figure 5 : Referential Integrity, or Parent/Child Relationships.

1.14 Relationship

DBMS relationships depend on the set-up and use of the DBMS. A relationship exists between

two database tables when one table has a foreign key that references the primary key of another table.

Types of Database Relationships

There are three different types of database relationships, each named according to the number of

table rows that may be involved in the relationship. Each of these three relationship types exists between

two tables.

• One-to-one relationships occur when each entry in the first table has one, and only one, counter-

part in the second table. One-to-one relationships are rarely used because it is often more efficient to

simply put all of the information in a single table.

one record in a table is related to one record in a related table; creates equally dependent tables

Ex. one student has only one PSU ID

• One-to-many relationships are the most common type of database relationship. They occur when

each record in the first table corresponds to one or more records in the second table but each record in the

second table corresponds to only one record in the first table. For example, the relationship between a

Teachers table and a Students table in an elementary school database would likely be a one-to-many

relationship, because each student has only one teacher, but each teacher may have multiple students.

• Many-to-many relationships occur when each record in the first table corresponds to one or more

records in the second table and each record in the second table corresponds to one or more records in the

first table. For example, one student can be enrolled in many courses and each course can have many

students enrolled

1.15 Database Management System Vs File Management System

A Database Management System (DMS) is a combination of computer software, hardware, and

information designed to electronically manipulate data via computer processing. Two types of database

management systems are DBMS's and FMS's. In simple terms, a File Management System (FMS) is a

Database Management System that allows access to single files or tables at a time. FMS's

accommodate flat files that have no relation to other files. The FMS was the predecessor for the

Database Management System (DBMS), which allows access to multiple files or tables at a time.

Auto_id Name Email Biography

Authors

reference primary key

Book_id

1

2

Title Auth_id Cost Category Descrip

1

2

7

 File Management Systems

 Advantages Disadvantages

 Simpler to use Typically does not support multi-user access

 Less expensive· Limited to smaller databases

 Fits the needs of many small businesses

 and home users Limited functionality (i.e. no support for complicated

transactions, recovery, etc.)

 Popular FMS's are packaged along with the operating systems of personal computers (i.e. Microsoft

Cardfile and Microsoft Works) Decentralization of data Good for database solutions for hand held de-

vices such as Palm Pilot Redundancy and Integrity issues Typically, File Management Systems provide the

following advantages and disadvantages:

The goals of a File Management System can be summarized as:

• Data Management. An FMS should provide data management services to the application.

• Generality with respect to storage devices. The FMS data abstractions and access methods should

remain unchanged irrespective of the devices involved in data storage.

• Validity. An FMS should guarantee that at any given moment the stored data reflect the operations

performed on them.

• Protection. Illegal or potentially dangerous operations on the data should be controlled by the FMS.

• Concurrency. In multiprogramming systems, concurrent access to the data should be allowed with

minimal differences.

• Performance. Compromise data access speed and data transfer rate with functionality.

From the point of view of an end user (or application) an FMS typically provides the following functionalities:

• File creation, modification and deletion.

• Ownership of files and access control on the basis of ownership permissions.

• Facilities to structure data within files (predefined record formats, etc).

• Facilities for maintaining data redundancies against technical failure (back-ups, disk mirroring, etc.).

• Logical identification and structuring of the data, via file names and hierarchical directory structures.

1.16 Database Management Systems

Database Management Systems provide the following advantages and disadvantages:

 Advantages Disadvantages

 Greater flexibility Difficult to learn

 Good for larger databases Packaged separately from the operating system (i.e. Oracle,

 Microsoft Access, Lotus/IBM Approach, Borland Paradox,

 Claris FileMaker Pro)

 Greater processing power Slower processing speeds

 Fits the needs of many medium to Requires skilled administrators

 large-sized organizations

 Storage for all relevant data Expensive

 Provides user views relevant to tasks

 performed

8

 Ensures data integrity by managing

 transactions (ACID test = atomicity,

 consistency, isolation, durability)

 Supports simultaneous access

 Enforces design criteria in relation to

 data format and structure

 Provides backup and recovery controls

 Advanced security

The goals of a Database Management System can be summarized as follows:

• Data storage, retrieval, and update (while hiding the internal physical implementation details)

• A user-accessible catalog

• Transaction support

• Concurrency control services (multi-user update functionality)

• Recovery services (damaged database must be returned to a consistent state)

• Authorization services (security)

• Support for data communication Integrity services (i.e. constraints)

• Services to promote data independence

• Utility services (i.e. importing, monitoring, performance, record deletion, etc.)

The components to facilitate the goals of a DBMS may include the following:

• Query processor

• Data Manipulation Language preprocessor

• Database manager (software components to include authorization control, command processor,

integrity checker, query optimizer, transaction manager, scheduler, recovery manager, and buffer manager)

• Data Definition Language compiler

• File manager

• Catalogue Manager

1.17 Advantages of DBMS

• The data independence and efficient access of data.

• It reduces application development time

• It provides data integrity and security

• Easy in data administration or data management

• Provides concurrent access, recovers the data from the crashesCentralized control

Disadvantages of DBMS:

• Problem Associate with centralizedCost of software, hardware and migration.

• Complexity of backup and recovery.

9

1.18 Features Commonly Offered by Database Management Systems Include

Query ability

Querying is the process of requesting attribute information from various perspectives and combinations of

factors. Example: "How many 2-door cars in Texas are green?" A database query language and report

writer allow users to interactively interrogate the database, analyze its data and update it according to the

users privileges on data.

Backup and replication

Copies of attributes need to be made regularly in case primary disks or other equipment fails. A periodic

copy of attributes may also be created for a distant organization that cannot readily access the original.

DBMS usually provide utilities to facilitate the process of extracting and disseminating attribute sets. When

data is replicated between database servers, so that the information remains consistent throughout the

database system and users cannot tell or even know which server in the DBMS they are using, the system

is said to exhibit replication transparency.

Rule enforcement

Often one wants to apply rules to attributes so that the attributes are clean and reliable. For example, we

may have a rule that says each car can have only one engine associated with it (identified by Engine

Number). If somebody tries to associate a second engine with a given car, we want the DBMS to deny

such a request and display an error message. However, with changes in the model specification such as, in

this example, hybrid gas-electric cars, rules may need to change. Ideally such rules should be able to be

added and removed as needed without significant data layout redesign.

Security

For security reasons, it is desirable to limit who can see or change specific attributes or groups of

attributes. This may be managed directly on an individual basis, or by the assignment of individuals and

privileges to groups, or (in the most elaborate models) through the assignment of individuals and groups to

roles which are then granted entitlements.

Computation

Common computations requested on attributes are counting, summing, averaging, sorting, grouping,

cross-referencing, and so on. Rather than have each computer application implement these from scratch,

they can rely on the DBMS to supply such calculations.

Change and access logging

This describes who accessed which attributes, what was changed, and when it was changed. Logging

services allow this by keeping a record of access occurrences and changes.

Automated optimization

For frequently occurring usage patterns or requests, some DBMS can adjust themselves to improve the

speed of those interactions. In some cases the DBMS will merely provide tools to monitor performance,

allowing a human expert to make the necessary adjustments after reviewing the statistics collected.

1.19 Features of DBMS A Typical DBMS has the Following Features

• Provides a way to structure data as records, tables, or objects

• Accepts data input from operators and stores that data for later retrieval

• Provides query languages for searching, sorting, reporting, and other "decision support" activities

that help users correlate and make sense of collected data

• Provides multiuser access to data, along with security features that prevent some users from

viewing and/or changing certain types of information

• Provides data integrity features that prevent more than one user from accessing and changing the

same information simultaneously

10

• Provides a data dictionary (metadata) that describes the structure of the database, related files,

and record information

1.20 Summary

A database is an organized collection of data and the records, which is stored in a system, usually a

computer. The organization of data is achieved by structuring it according to the model of the database.

A DBMS can take any one of the several approaches to manage data. Each approach constitutes a

database model. A data model is a collection of descriptions of data structures and their contained fields,

together with the operations or functions that manipulate them. A data model is a comprehensive scheme

for describng how data is to be represented for manipulation by humans or computer programs.

DBA stands for database administrator, he is a person who is responsible for the features of a databse

like databse recovery, integrity, availability, security and so on. DBA has to check these features in order

to maintain the database.

A key is a field or combination of fields used to identify a record. When a key uniquely identifies a record

it is referred to as the primary key.

1.21 Self-Assessment Questions

1. What do you understand by DBMS? Explain.

2. How file management system is different from DBMS? Explain.

3. List the advantages of DBMS.

4. What is Key? How primary key is different from foreign key?

5. Explain the concept of relationship with the help of an example.

´ ´ ´

11

Unit - 2 : Basic concepts of DBMS

Structure of the Unit

2.0 Objective

2.1 Introduction

2.2 Purpose of Database Management System

2.3 Functions of DBMS

2.4 The Service Provided by the DBMS Includes

2.5 DBA, Database Designers, End Users & Application Programmers

2.5.1 Database Administrator (DBA)

2.5.2 Database Designers

2.5.3 End Users

2.5.3.1 Casual End Users

2.5.3.2 NativeEnd Users

2.5.3.3 Standalone end Users/On-line End Users

2.5.4 Application Programmers

2.6 DBMS-Architecture and Data Independence

2.7 Data Independence

2.7.1 Physical Independence

2.7.2 Logical Independence

2.8 Database Schema

2.9 Database Instance

2.10 Data-Definition Language

2.11 Data-Manipulation Language

2.12 Summary

2.13 Self-Assessment Questions

2.0 Objective

At the end of this unit, we should be abel to -

• Describe functions of database management system

• Describe the role of DBA, End users and application programmes

• Describe data independence

• Describe database schema and instance

• Describe DDL and DML commands

2.1 Introduction

A database management system (DBMS) is a software system that integrates data in storage and

provides easy access to them. The data themselves are placed on disk in a database, which can be thought

of as an integrated collection of related files. Although not all databases are organized identically, many of

them are composed of files, records and fields. For instance, the product file contains five records one

each for skis, boots, poles, bindings, and wax. Finally each record consists of distinct types of data called

12

fileds. The product file stores four fileds for each record product name, product number, supplier, and

price.

Database management softaware enables queries and reports to be prepared by extracting infor-

mation from one file at a time, and, as we will shortly see, from several interrelated files concurrently.

Database management system (DBMS) is a software product designed to integrate data and provide easy

access to them. Database is an integrated collection of related data files and database management system

is a computer programe for database management that links data in related files through common fileds.

Database management system stores data in relevant form and give easy access to them. The data placed

on disk themselves.

2.2 Purpose of Database Management System

The DBMS (Database Management System) is preferred ever the conventional file processing

system due to the following advantages:

1. Controlling Data Redundancy - In the conventional file processing system, every user group

maintains its own files for handling its data files. This may lead to:

• Duplication of same data in different files.

• Wastage of storage space, since duplicated data is stored.

• Errors may be generated due to updation of the same data in different files.

• Time in entering data again and again is wasted.

• Computer Resources are needlessly used.

• It is very difficult to combine information.

2. Elimination of Inconsistency - In the file processing system information is duplicated throughout

the system. So changes made in one file may be necessary be carried over to another file. This may lead to

inconsistent data. So we need to remove this duplication of data in multiple file to eliminate inconsistency.

For example: - Let us consider an example of student's result system. Suppose that in STU-

DENT file it is indicated that Roll no= 10 has opted for 'Computer'course but in RESULT file it is indicated

that 'Roll No. =l 0' has opted for 'Accounts' course. Thus, in this case the two entries for z particular

student don't agree with each other. Thus, database is said to be in an inconsistent state. Sc to eliminate this

conflicting information we need to centralize the database. On centralizing the data base the duplication will

be controlled and hence inconsistency will be removed.

Data inconsistency are often encountered in every day life Consider an another example, w have

all come across situations when a new address is communicated to an organization that we deal it (Eg -

Telecom, Gas Company, Bank). We find that some of the communications from that organization are

received at a new address while other continued to be mailed to the old address. So combining all the data

in database would involve reduction in redundancy as well as inconsistency so it is likely to reduce the

costs for collection storage and updating of Data.

Let us again consider the example of Result system. Suppose that a student having Roll no -201

changes his course from 'Computer' to 'Arts'. The change is made in the SUBJECT file but not in RESULT'S

file. This may lead to inconsistency of the data. So we need to centralize the database so that changes once

made are reflected to all the tables where a particulars field is stored. Thus the update is brought

automatically and is known as propagating updates.

3. Better service to the users - A DBMS is often used to provide better services to the users. In

conventional system, availability of information is often poor, since it normally difficult to obtain information

that the existing systems were not designed for. Once several conventional systems are combined to form

one centralized database, the availability of information and its updateness is likely to improve since the

13

data can now be shared and DBMS makes it easy to respond to anticipated information requests.

Centralizing the data in the database also means that user can obtain new and combined information easily

that would have been impossible to obtain otherwise. Also use of DBMS should allow users that don't

know programming to interact with the data more easily, unlike file processing system where the

programmer may need to write new programs to meet every new demand.

4. Flexibility of the System is Improved - Since changes are often necessary to the contents of

the data stored in any system, these changes are made more easily in a centralized database than in a

conventional system. Applications programs need not to be changed on changing the data in the database.

5. Integrity can be improved - Since data of the organization using database approach is

centralized and would be used by a number of users at a time. It is essential to enforce

integrity-constraints.

In the conventional systems because the data is duplicated in multiple files so updating or changes may

sometimes lead to entry of incorrect data in some files where it exists.

For example : - The example of result system that we have already discussed. Since multiple files are to

maintained, as sometimes you may enter a value for course which may not exist. Suppose course can have

values (Computer, Accounts, Economics, and Arts) but we enter a value 'Hindi' for it, so this may lead to

an inconsistent data, so lack of Integrity.

Even if we centralized the database it may still contain incorrect data. For example: -

• Salary of full time employ may be entered as Rs. 500 rather than Rs. 5000.

• A student may be shown to have borrowed books but has no enrollment.

• A list of employee numbers for a given department may include a number of non existent employees.

These problems can be avoided by defining the validation procedures whenever any update operation is

attempted.

6. Standards can be enforced - Since all access to the database must be through DBMS, so

standards are easier to enforce. Standards may relate to the naming of data, format of data, structure of the

data etc. Standardizing stored data formats is usually desirable for the purpose of data interchange or

migration between systems.

7. Security can be improved - In conventional systems, applications are developed in an adhoc/

temporary manner. Often different system of an organization would access different components of the

operational data, in such an environment enforcing security can be quiet difficult. Setting up of a database

makes it easier to enforce security restrictions since data is now centralized. It is easier to control who has

access to what parts of the database. Different checks can be established for each type of access (retrieve,

modify, delete etc.) to each piece of information in the database.

Consider an Example of banking in which the employee at different levels may be given access to different

types of data in the database. A clerk may be given the authority to know only the names of all the

customers who have a loan in bank but not the details of each loan the customer may have. It can be

accomplished by giving the privileges to each employee.

8. Organization's requirement can be identified - All organizations have sections and

departments and each of these units often consider the work of their unit as the most important and

therefore consider their need as the most important. Once a database has been setup with centralized

control, it will be necessary to identify organization's requirement and to balance the needs of the competating

units. So it may become necessary to ignore some requests for information if they conflict with higher priority

need of the organization.

It is the responsibility of the DBA (Database Administrator) to structure the database system to

provide the overall service that is best for an organization.

For example: - A DBA must choose best file Structure and access method to give fast response

14

for the high critical applications as compared to less critical applications.

9. Overall cost of developing and maintaining systems is lower - It is much easier to respond to

unanticipated requests when data is centralized in a database than when it is stored in a conventional file

system. Although the initial cost of setting up of a database can be large, one normal expects the overall

cost of setting up of a database, developing and maintaining application programs to be far lower than for

similar service using conventional systems, Since the productivity of programmers can be higher in using

non-procedural languages that have been developed with DBMS than using procedural languages.

10. Data Model must be developed - Perhaps the most important advantage of setting up of

database system is the requirement that an overall data model for an organization be build. In conventional

systems, it is more likely that files will be designed as per need of particular applications demand. The

overall view is often not considered. Building an overall view of an organization's data is usual cost effective in

the long terms.

11. Provides backup and Recovery - Centralizing a database provides the schemes such as

recovery and backups from the failures including disk crash, power failures, software errors which may

help the database to recover from the inconsistent state to the state that existed prior to the occurrence of

the failure, though methods are very complex.

2.3 Functions of DBMS

1. DBMS free the programmers from the need to worry about the organization and location of the

data i.e. it shields the users from complex hardware level details.

2. DBMS can organize process and present data elements from the database. This capability

enables decision makers to search and query database contents in order to extract answers that are not

available in regular Reports.

3. Programming is speeded up because programmer can concentrate on logic of the application.

4. It includes special user friendly query languages which are easy to understand by non

programming users of the system.

The various common examples of DBMS are Oracle, Access, SQL Server, Sybase, FoxPro, Dbase etc.

2.4 The Service Provided by the DBMS Includes

1. Authorization services like log on to the DBMS, start the database, stop the Database etc.

2. Transaction supports like Recovery, Rollback etc,

3. Import and Export of Data.

4. Maintaining data dictionary

5. User's Monitoring

2.5 DBA, Database Designers, End Users & Application Programmers

2.5.1 Database Administrator (DBA)

The DBA is a person or a group of persons who is responsible for the management of the data-

base. The DBA is responsible for authorizing access to the database by grant and revoke permissions to

the users, for coordinating and monitoring its use, managing backups and repairing damage due to hard-

ware and/or software failures and for acquiring hardware and software resources as needed. In case

of small organization the role of DBA is performed by a single person and in case of large organizations

there is a group of DBA's who share responsibilities.

2.5.2 Database Designers

They are responsible for identifying the data to be stored in the database and for choosing appro-

15

priate structure to represent and store the data. It is the responsibility of database designers to communi-

cate with all prospective of the database users in order to understand their requirements so that they can

create a design that meets their requirements.

2.5.3 End Users

End Users are the people who interact with the database through applications or utilities. The

various categories of end users are:

2.5.3.1 Casual End Users : These Users occasionally access the database but may need different

information each time. They use sophisticated database Query language to specify their requests. For

example: High level Managers who access the data weekly or biweekly.

2.5.3.2 NativeEnd Users : These users frequently query and update the database using standard types

of Queries. The operations that can be performed by this class of users are very limited and effect precise

portion of the database.

For example: - Reservation clerks for airlines/hotels check availability for given request and make

reservations. Also, persons using Automated Teller Machines (ATM's) fall under this category as he has

access to limited portion of the database.

2.5.3.3 Standalone end Users/On-line End Users : Those end Users who interact with the database

directly via on-line terminal or indirectly through Menu or graphics based Interfaces.

For example: - User of a text package, library management software that store variety of library data such

as issue and return of books for fine purposes.

2.5.4 Application Programmers

Application Programmers are responsible for writing application programs that use the database.

These programs could be written in General Purpose Programming languages such as Visual Basic, Devel-

oper, C, FORTRAN, COBOL etc. to manipulate the database. These application programs operate on

the data to perform various operations such as retaining information, creating new information, deleting or

changing existing information.

• DBMS engine accepts logical requests from various other DBMS subsystems, converts them into

physical equivalents, and actually accesses the database and data dictionary as they exist on a storage

device.

• Data definition subsystem helps the user create and maintain the data dictionary and define the

structure of the files in a database.

• Data manipulation subsystem helps the user to add, change, and delete information in a database

and query it for valuable information. Software tools within the data manipulation subsystem are most often

the primary interface between user and the information contained in a database. It allows the user to

specify its logical information requirements.

• Application generation subsystem contains facilities to help users develop transaction-intensive

applications. It usually requires that the user perform a detailed series of tasks to process a transaction. It

facilitates easy-to-use data entry screens, programming languages, and interfaces.

• Data administration subsystem helps users manage the overall database environment by providing

facilities for backup and recovery, security management, query optimization, concurrency control, and

change management.

16

2.6 DBMS-Architecture and Data Independence

Database management systems are complex softwares which were often developed and optimised

over years. From the view of the user, however, most of them have a quite similar basic architecture.

Three-Schemes Architecture

Knowing about the conceptual and the derived logical scheme (discussed in unit Database Mod-

els, Schemes and Instances this unit explains two additional schemes - the external scheme and the internal

scheme - which help to understand the DBMS architecture.

External Scheme:

An external data scheme describes the information about the user view of specific users (single

users and user groups) and the specific methods and constraints connected with this information. (Trans-

lated) (ZEHNDER 1998)

Internal Scheme:

The internal data scheme describes the content of the data and the required service functionality

which is used for the operation of the DBMS. (Translated) (ZEHNDER 1998)

Therefore, the internal scheme describes the data from a view very close to the computer or

system in general. It completes the logical scheme with data technical aspects like storage methods or help

functions for more efficiency.

Figure 2.1 : Three-Schemes Architecture

The right hand side of the representation above is also called the three-schemes architecture:

internal, logical and external scheme.

While the internal scheme describes the physical grouping of the data and the use of the storage

space, the logical scheme (derived from the conceptual scheme) describes the basic construction of

the data structure. The external scheme of a specific application, generally, only highlights that part of the

logical scheme which is relevant for its application. Therefore, a database has exactly one internal and one

logical scheme but may have several external schemes for several applications using this database.

The aim of the three-schemes architecture is the separation of the user applications from the

physical database, the stored data. Physically the data is only existent on the internal level while other

forms of representation are calculated or derived respectively if needed. The DBMS has the task to realise

this representation between each of these levels.

17

2.7 Data Independence

With knowledge about the three-schemes architecture the term data independence can be

explained as followed: Each higher level of the data architecture is immune to changes of the next lower

level of the architecture.

2.7.1 Physical Independence

Therefore, the logical scheme may stay unchanged even though the storage space or type of some

data is changed for reasons of optimisation or reorganisation.

2.7.2 Logical Independence

Also the external scheme may stay unchanged for most changes of the logical scheme. This is

especially desirable as in this case the application software does not need to be modified or newly

translated.

2.8 Database Schema

Definition : Overall design of data base. Schema contains 'No of records + Type of data + No of

attributes'

1. External level or Sub schema

2. logical schema

3. Physical schema

2.9 Database Instance

The term instance is typically used to describe a complete database environment, including the

RDBMS software, table structure, stored procedures and other functionality. It is most commonly used

when administrators describe multiple instances of the same database.

The information stored in database at the particular movement is called instance.

Also Known As: environment

Examples: An organization with an employees database might have three different instances: production

(used to contain live data), pre-production (used to test new functionality prior to release into production)

and development (used by database developers to create new functionality).

There are two different types of languages to make database system. They are 1. To specify the

database schema, and 2.to express database queries and updates.

2.10 Data-Definition Language

A database schema is specified by a set of definitions expressed by special language

called a data-definition language (DDL). The result of compilation of DDL statements is a set of tables

that is stored in a special file called Data dictionary or data directory.

A data dictionary is a file that contains metadata that is, data about data. This file is consulted

before actual data are read or modified in the database system. The storage structure and access methods

used by the database system are specified by a set of definitions in a special type of DDL called a data

storage and definition language.

2.11 Data-Manipulation Language

The levels of abstraction apply not only to the definition or structuring of data, but also the

manipulation of data. By data manipulation, it means

• The retrieval of information stored in the database

• The insertion of new information into the database

• The deletion of information from the database

18

• The modification of information stored in the database

A data-manipulation language (DML) is a language that enables user to access or manipulate data as

organized by the appropriate data model. They are basically two types.

• Procedural DMLs require a user to specify what data are needed and how to get those data

• Nonprocedural DMLs require a user to specify what data are needed without specifying how to

get those data

Non procedural DMLs are usually easier to learn and use than are procedural DMLs. A query

is a statement requesting the retrieval of information. The portion of a DML that involves information

retrieval is called a query language.

2.12 Summary

A database management system (DBMS) is a software system that integrates data in storage

and provides easy access to them. The data themselves are placed on disk in a database, which can be

thought of as an integrated collection of related files. Although not all databases are organized identically,

many of them are composed of files, records and fields.

2.13 Self-Assessment Questions

1. Explain the different function of DBMS.

2. Explain the role of DBA.

3. Explain the role of different users of DBMS.

4. What is Data Independence? Explain.

5. Explain the concept of DDL and DML commands in DBMS.

´ ´ ´

BCA-09

Vardhaman Mahaveer Open University, Kota

Introduction to DBMS

Course Development Committee

Chairman

Prof. (Dr.) Naresh Dadhich

Vice-Chancellor

Vardhaman Mahaveer Open University, Kota

Co-ordinator/Convener and Members

Convener

Dr. Anuradha Sharma

Assistant Professor,

Department of Botany, Vardhaman Mahaveer Open University, Kota

Members :

1. Prof. (Dr.) D.S.Chauhan 3. Prof. (Dr.) A.K.Nagawat

Department of Mathematics University of Rajasthan, Jaipur

University of Rajasthan, Jaipur

2. Prof. (Dr.) M.C.Govil 4. Dr. (Mrs) Madhavi Sinha

Goverment Mahila Engineering College, Birla Institute of Technology & Science,

Ajmer Jaipur

5. Dr. Rajeev Srivatava

LBS College, Jaipur

Editing and Course Writing

Editor

Dr. Vaibhav Gupta

Department of Computer Science

Lachoo Memorial College of Science & Technology, Jodhpur

Unit Writers Unit No.

1. Dr. Suresh Kumar Sharma (1,2) 5. Dr. Basant Agarwal (9,10)

Department of Computer Science Department of Computer Science

Central University of Rajasthan, Jaipur Central University of Rajasthan, Jaipur

2. Dr. Anju Sharma (3, 4) 6. Mrs. Poonam Pahuja (11,12,13)

Department of Computer Science Department of Computer Science

Birla Institute of Technology & Science, SRD Modi College,

Jaipur Kota

3. Dr. (Mrs.) Seema Gaur (5,6) 7. Dr. Nishtha Keswani (14, 15)

Department of Computer Science Department of Computer Science

Birla Institute of Technology & Science, Jaipur Central University of Rajasthan, Jaipur

4. Mrs. Poonam Keswani (7,8)

Senior Software Consultant

Mapple Technologies, Jaipur

Academic and Administrative Management

Prof. (Dr.) Naresh Dadhich Prof. B.K. Sharma Mr. Yogendra Goyal

 Vice-Chancellor Director (Academic) Incharge
Vardhaman Mahveer Open University, Vardhaman Mahveer Open University, Material Production and

 Kota Kota Distribution Department

Course Material Production

Mr. Yogendra Goyal

Assistant Production Officer
Vardhaman Mahaveer Open University, Kota

BCA-09

 Vardhaman Mahaveer Open University, Kota

Introduction to DBMS

Unit No. Units Page No.

 1. Introduction to Database Management System 1-10

 2. Basic Concept of DBMS 11-18

 3. Database Models 19-27

 4. The Entity Relationship Model 28-47

 5. Relational Model 48-70

 6. RDBMS 71-88

 7. Normalization 89-99

 8. Introduction to Popular RDBMS Packages 100-109

 9. Introduction to SQL 110-127

 10. More on SQL 128-141

 11. Queries and Subqueries 142-159

 12. Transaction Processing 160-182

 13. Concurrency Control 183-194

14. Emerging Trends in Database Management System I 195-204

15. Emerging Trends in Database Management System II 205-215

Preface

We feel great in brining out this book “Introduction to DBMS”, which meets

the requirement of students of BCA Part-II. This book is written entirely according to

the syllabus of Vardhaman Mahaveer Open University, Kota.

Importance of data is well known. Using facilities of computers large databases

are easily handled. The database concepts, technology and architectures have been

developed in the last few decades and a course in database management has become

established as a required course in both undergraduate and graduate level. This is an

important aspect and it should be, considering the central position of the database in

the field of computer science and computer applications. A computer professional

should be able to understand fundamentals of the database to be successful in the

field.

This book provides basic concepts of databases dealing with the complete

syllabus. It offers a balanced view of concepts and details with reference to current

technology. Database architectures, their design and manipulation that are required to

make effective use of database are explained.

1

Unit - 1 : Introduction to Database Management System

Structure of the Unit

1.0 Objective

1.1 Introduction

1.2 Data

1.3 Field

1.4 Record

1.5 Data Base

1.6 Database Management System

1.7 Elements of Database Management Systems

1.8 Database Schema

1.9 Table

1.10 Columns

1.11 Rows

1.12 Data Types

1.13 Keys

1.13.1 Primary Keys

1.13.2 Foreign Keys

1.14 Relationships

1.15 Database Management System Vs File Management System

1.16 Database Management Systems

1.17 Advantages of DBMS

1.18 Features commonly offered by Database Management Systems Include

1.19 Features of DBMS

1.20 Summary

1.21 Self-Assessment Questions

1.0 Objective

At the end of this unit, we should be able to -

• Describe data, field, record and database management system

• Compare database and file oriented approach

• Describe various features of database

• Describe the need and function of the database

• Describe the concept of different keys

1.1 Introduction

Data and its storage may be considered to be the heart of any information system. Data has to be

up-to-date, accurate, accessible in the required form and available to one or perhaps many users at the

same time.

2

For data to be a value it must be presented in a form that supports the various operational,

financial, managerial, decision-making, administrative and clerical activities within an organization.

To meet these objectives data needs to be stored efficiently that means we wish to avoid lengthy

access times and with minimal duplication that means we wish to aovid lengthy update times and the

possibility of inconsistency and inaccuracy. For the data stored by a given organization to have any value

at all its integrity (consistency and accuracy) must always be assured.

In this unit we consider what is database and DBMS, different needs and functions of database

and concepts related to relational database management system.

1.2 Data

Data are the raw facts or figures which are processed to get the information.

1.3 Field

A space allocated for a particular item of information. A tax form, for example, contains a number

of fields: one for your name, one for your Social Security number, one for your income, and so on. In

database systems, fields are the

smallest units of information you can access. In spreadsheets, fields are called cells

1.4 Record

In database management systems, a complete set of information. Records are composed of fields,

each of which contains one item of information. A set of records constitutes a file. For example, a

personnel file might contain records that have three fields: a name field, an address field, and a phone

number field.

1.5 Data Base

A collection of data stored in a standardized format, designed to be processed, shared by different

users. A database may have single table or multiple tables. The data in a database are organized in rows

and columns

A collection of information organized in such a way that a computer program can quickly select

desired pieces of data. You can think of a database as an electronic filing system.

1.6 Database Management System (DBMS)

It is software that defines a database, stores the data and supports a query language, produces

reports,and creates data entry forms.

It is a software package with computer programs that control the creation, maintenance, and the

use of a database. It allows organizations to conveniently develop databases for various applications by

database administrators (DBAs) and other specialists.

It allows a computer to perform database functions of storing, retrieving, adding, deleting and

modifying data.

It allows different user application programs to concurrently access the same database which is an

integrated collection of data records, files, and other database objects.

It provides facilities for controlling data access, enforcing data integrity, managing concurrency

control, recovering the database after failures and restoring it from backup files, as well as maintaining

database security.

Some DBMS software are MS-Access, Oracle, FoxPro, IBM DB2 , MS ACCESS, MYSQL,

SYBASE etc.

3

1.7 Elements of Database Management Systems

The essential elements that are found with just about every example of DBMS currently on the

market are

• Schema objects

• Indexes

• Tables

• Fields and columns

• Records and rows

• Keys

• Relationships

• Data types

1.8 Database Schema

A schema is a group of related objects in a database. Within a schema, objects that are related

have relationships to one another. It is overall design of the database. There is one owner of a schema, who

has access to manipulate the structure of any object in the schema. A schema does not represent a person,

although the schema is associated with a user account that resides in the database.

The three models associated with a schema are as follows:

• The conceptual model, also called the logical model, is the basic database model, which deals with

organizational structures that are used to define database structures such as tables and constraints.

• The internal model, also called the physical model, deals with the physical storage of the database,

as well as access to the data, such as through data storage in tables and the use of indexes to expedite data

access. The internal model separates the physical requirements of the hardware and the operating system

from the data model.

• The external model, or application interface, deals with methods through which users may access

the schema, such as through the use of a data input form. The external model allows relationships to be

created between the user application and the data model. Figure 1 depicts a schema in a relational

database.

Figure 1 : Collection of objects that comprise a database schema.

4

1.9 Table

A table is the primary unit of physical storage for data in a database. The table is the most funda-

mental element found in a database schema. Columns and rows are associated with tables When a user

accesses the database, a table is usually referenced for the desired data. Multiple tables might comprise a

database, therefore a relationship might exist between tables. Because tables store data, a table requires

physical storage on the host computer for the database.

Figure 2 : Database Tables and their Relationships

1.10 Columns

A column, or field, is a specific category of information that exists in a table. A column is to a table

what an attribute is to an entity. In other words, when a business model is converted into a database model,

entities become tables and attributes become columns. A column represents one related part of a table and

is the smallest logical structure of storage in a database. Each column in a table is assigned a data type. The

assigned data type determines what type of values that can populate a column. When visualizing a table, a

column is a vertical structure in the table that contains values for every row of data associated with a

particular column. All of the data in a table associated with a field is called a column.

Figure 3 : Columns in a Database Table

5

1.11 Rows

A row of data is the collection of all the columns in a table associated with a single occurrence. A

row of data is a single record in a table. For example, if there are 25,000 book titles with which a

bookstore deals, there will be 25,000 records, or rows of data, in the book titles table once the table is

populated. The number of rows within the table will obviously change as books' titles are added and

removed.

Figure 4 : Row of data in a database table

1.12 Data Types

A data type determines the type of data that can be stored in a database column.

Although many data types are available, three of the most commonly used data types are

• Alphanumeric

• Numeric

• Date and time

Alphanumeric data types are used to store characters, numbers, special characters, or nearly any

combination. If a numeric value is stored in an alphanumeric field, the value is treated as a character, not a

number. In other words, you should not attempt to perform arithmetic functions on numeric values stored

in alphanumeric fields. Numeric data types are used to store only numeric values.

Date and time data types are used to store date and time values, which widely vary depending on

the relational database management system (RDBMS) being used.

1.13 Keys

The integrity of the information stored in a database is controlled by keys. A key is a column value

in a table that is used to either uniquely identify a row of data in a table, or establish a relationship with

another table. A key is normally correlated with one column in table, although it might be associated with

multiple columns. There are two types of keys: primary and foreign.

1.13.1 Primary Keys

A primary key is the combination of one or more column values in a table that make a row of data

unique within the table. Primary keys are typically used to join related tables. Even if a table has no child

table, a primary key can be used to disallow the entry of duplicate records into a table. For example, an

employee's social security number is sometimes considered a primary key candidate because all SSNs are

unique.

1.13.2 Foreign Keys

A foreign key is the combination of one or more column values in a table that reference a primary key in

another table. Foreign keys are defined in child tables. A foreign key ensures that a parent record has been

created before a child record. Conversely, a foreign key also ensures that the child record is deleted

before the parent record.

6

Figure 5 : Referential Integrity, or Parent/Child Relationships.

1.14 Relationship

DBMS relationships depend on the set-up and use of the DBMS. A relationship exists between

two database tables when one table has a foreign key that references the primary key of another table.

Types of Database Relationships

There are three different types of database relationships, each named according to the number of

table rows that may be involved in the relationship. Each of these three relationship types exists between

two tables.

• One-to-one relationships occur when each entry in the first table has one, and only one, counter-

part in the second table. One-to-one relationships are rarely used because it is often more efficient to

simply put all of the information in a single table.

one record in a table is related to one record in a related table; creates equally dependent tables

Ex. one student has only one PSU ID

• One-to-many relationships are the most common type of database relationship. They occur when

each record in the first table corresponds to one or more records in the second table but each record in the

second table corresponds to only one record in the first table. For example, the relationship between a

Teachers table and a Students table in an elementary school database would likely be a one-to-many

relationship, because each student has only one teacher, but each teacher may have multiple students.

• Many-to-many relationships occur when each record in the first table corresponds to one or more

records in the second table and each record in the second table corresponds to one or more records in the

first table. For example, one student can be enrolled in many courses and each course can have many

students enrolled

1.15 Database Management System Vs File Management System

A Database Management System (DMS) is a combination of computer software, hardware, and

information designed to electronically manipulate data via computer processing. Two types of database

management systems are DBMS's and FMS's. In simple terms, a File Management System (FMS) is a

Database Management System that allows access to single files or tables at a time. FMS's

accommodate flat files that have no relation to other files. The FMS was the predecessor for the

Database Management System (DBMS), which allows access to multiple files or tables at a time.

Auto_id Name Email Biography

Authors

reference primary key

Book_id

1

2

Title Auth_id Cost Category Descrip

1

2

7

 File Management Systems

 Advantages Disadvantages

 Simpler to use Typically does not support multi-user access

 Less expensive· Limited to smaller databases

 Fits the needs of many small businesses

 and home users Limited functionality (i.e. no support for complicated

transactions, recovery, etc.)

 Popular FMS's are packaged along with the operating systems of personal computers (i.e. Microsoft

Cardfile and Microsoft Works) Decentralization of data Good for database solutions for hand held de-

vices such as Palm Pilot Redundancy and Integrity issues Typically, File Management Systems provide the

following advantages and disadvantages:

The goals of a File Management System can be summarized as:

• Data Management. An FMS should provide data management services to the application.

• Generality with respect to storage devices. The FMS data abstractions and access methods should

remain unchanged irrespective of the devices involved in data storage.

• Validity. An FMS should guarantee that at any given moment the stored data reflect the operations

performed on them.

• Protection. Illegal or potentially dangerous operations on the data should be controlled by the FMS.

• Concurrency. In multiprogramming systems, concurrent access to the data should be allowed with

minimal differences.

• Performance. Compromise data access speed and data transfer rate with functionality.

From the point of view of an end user (or application) an FMS typically provides the following functionalities:

• File creation, modification and deletion.

• Ownership of files and access control on the basis of ownership permissions.

• Facilities to structure data within files (predefined record formats, etc).

• Facilities for maintaining data redundancies against technical failure (back-ups, disk mirroring, etc.).

• Logical identification and structuring of the data, via file names and hierarchical directory structures.

1.16 Database Management Systems

Database Management Systems provide the following advantages and disadvantages:

 Advantages Disadvantages

 Greater flexibility Difficult to learn

 Good for larger databases Packaged separately from the operating system (i.e. Oracle,

 Microsoft Access, Lotus/IBM Approach, Borland Paradox,

 Claris FileMaker Pro)

 Greater processing power Slower processing speeds

 Fits the needs of many medium to Requires skilled administrators

 large-sized organizations

 Storage for all relevant data Expensive

 Provides user views relevant to tasks

 performed

8

 Ensures data integrity by managing

 transactions (ACID test = atomicity,

 consistency, isolation, durability)

 Supports simultaneous access

 Enforces design criteria in relation to

 data format and structure

 Provides backup and recovery controls

 Advanced security

The goals of a Database Management System can be summarized as follows:

• Data storage, retrieval, and update (while hiding the internal physical implementation details)

• A user-accessible catalog

• Transaction support

• Concurrency control services (multi-user update functionality)

• Recovery services (damaged database must be returned to a consistent state)

• Authorization services (security)

• Support for data communication Integrity services (i.e. constraints)

• Services to promote data independence

• Utility services (i.e. importing, monitoring, performance, record deletion, etc.)

The components to facilitate the goals of a DBMS may include the following:

• Query processor

• Data Manipulation Language preprocessor

• Database manager (software components to include authorization control, command processor,

integrity checker, query optimizer, transaction manager, scheduler, recovery manager, and buffer manager)

• Data Definition Language compiler

• File manager

• Catalogue Manager

1.17 Advantages of DBMS

• The data independence and efficient access of data.

• It reduces application development time

• It provides data integrity and security

• Easy in data administration or data management

• Provides concurrent access, recovers the data from the crashesCentralized control

Disadvantages of DBMS:

• Problem Associate with centralizedCost of software, hardware and migration.

• Complexity of backup and recovery.

9

1.18 Features Commonly Offered by Database Management Systems Include

Query ability

Querying is the process of requesting attribute information from various perspectives and combinations of

factors. Example: "How many 2-door cars in Texas are green?" A database query language and report

writer allow users to interactively interrogate the database, analyze its data and update it according to the

users privileges on data.

Backup and replication

Copies of attributes need to be made regularly in case primary disks or other equipment fails. A periodic

copy of attributes may also be created for a distant organization that cannot readily access the original.

DBMS usually provide utilities to facilitate the process of extracting and disseminating attribute sets. When

data is replicated between database servers, so that the information remains consistent throughout the

database system and users cannot tell or even know which server in the DBMS they are using, the system

is said to exhibit replication transparency.

Rule enforcement

Often one wants to apply rules to attributes so that the attributes are clean and reliable. For example, we

may have a rule that says each car can have only one engine associated with it (identified by Engine

Number). If somebody tries to associate a second engine with a given car, we want the DBMS to deny

such a request and display an error message. However, with changes in the model specification such as, in

this example, hybrid gas-electric cars, rules may need to change. Ideally such rules should be able to be

added and removed as needed without significant data layout redesign.

Security

For security reasons, it is desirable to limit who can see or change specific attributes or groups of

attributes. This may be managed directly on an individual basis, or by the assignment of individuals and

privileges to groups, or (in the most elaborate models) through the assignment of individuals and groups to

roles which are then granted entitlements.

Computation

Common computations requested on attributes are counting, summing, averaging, sorting, grouping,

cross-referencing, and so on. Rather than have each computer application implement these from scratch,

they can rely on the DBMS to supply such calculations.

Change and access logging

This describes who accessed which attributes, what was changed, and when it was changed. Logging

services allow this by keeping a record of access occurrences and changes.

Automated optimization

For frequently occurring usage patterns or requests, some DBMS can adjust themselves to improve the

speed of those interactions. In some cases the DBMS will merely provide tools to monitor performance,

allowing a human expert to make the necessary adjustments after reviewing the statistics collected.

1.19 Features of DBMS A Typical DBMS has the Following Features

• Provides a way to structure data as records, tables, or objects

• Accepts data input from operators and stores that data for later retrieval

• Provides query languages for searching, sorting, reporting, and other "decision support" activities

that help users correlate and make sense of collected data

• Provides multiuser access to data, along with security features that prevent some users from

viewing and/or changing certain types of information

• Provides data integrity features that prevent more than one user from accessing and changing the

same information simultaneously

10

• Provides a data dictionary (metadata) that describes the structure of the database, related files,

and record information

1.20 Summary

A database is an organized collection of data and the records, which is stored in a system, usually a

computer. The organization of data is achieved by structuring it according to the model of the database.

A DBMS can take any one of the several approaches to manage data. Each approach constitutes a

database model. A data model is a collection of descriptions of data structures and their contained fields,

together with the operations or functions that manipulate them. A data model is a comprehensive scheme

for describng how data is to be represented for manipulation by humans or computer programs.

DBA stands for database administrator, he is a person who is responsible for the features of a databse

like databse recovery, integrity, availability, security and so on. DBA has to check these features in order

to maintain the database.

A key is a field or combination of fields used to identify a record. When a key uniquely identifies a record

it is referred to as the primary key.

1.21 Self-Assessment Questions

1. What do you understand by DBMS? Explain.

2. How file management system is different from DBMS? Explain.

3. List the advantages of DBMS.

4. What is Key? How primary key is different from foreign key?

5. Explain the concept of relationship with the help of an example.

´ ´ ´

11

Unit - 2 : Basic concepts of DBMS

Structure of the Unit

2.0 Objective

2.1 Introduction

2.2 Purpose of Database Management System

2.3 Functions of DBMS

2.4 The Service Provided by the DBMS Includes

2.5 DBA, Database Designers, End Users & Application Programmers

2.5.1 Database Administrator (DBA)

2.5.2 Database Designers

2.5.3 End Users

2.5.3.1 Casual End Users

2.5.3.2 NativeEnd Users

2.5.3.3 Standalone end Users/On-line End Users

2.5.4 Application Programmers

2.6 DBMS-Architecture and Data Independence

2.7 Data Independence

2.7.1 Physical Independence

2.7.2 Logical Independence

2.8 Database Schema

2.9 Database Instance

2.10 Data-Definition Language

2.11 Data-Manipulation Language

2.12 Summary

2.13 Self-Assessment Questions

2.0 Objective

At the end of this unit, we should be abel to -

• Describe functions of database management system

• Describe the role of DBA, End users and application programmes

• Describe data independence

• Describe database schema and instance

• Describe DDL and DML commands

2.1 Introduction

A database management system (DBMS) is a software system that integrates data in storage and

provides easy access to them. The data themselves are placed on disk in a database, which can be thought

of as an integrated collection of related files. Although not all databases are organized identically, many of

them are composed of files, records and fields. For instance, the product file contains five records one

each for skis, boots, poles, bindings, and wax. Finally each record consists of distinct types of data called

12

fileds. The product file stores four fileds for each record product name, product number, supplier, and

price.

Database management softaware enables queries and reports to be prepared by extracting infor-

mation from one file at a time, and, as we will shortly see, from several interrelated files concurrently.

Database management system (DBMS) is a software product designed to integrate data and provide easy

access to them. Database is an integrated collection of related data files and database management system

is a computer programe for database management that links data in related files through common fileds.

Database management system stores data in relevant form and give easy access to them. The data placed

on disk themselves.

2.2 Purpose of Database Management System

The DBMS (Database Management System) is preferred ever the conventional file processing

system due to the following advantages:

1. Controlling Data Redundancy - In the conventional file processing system, every user group

maintains its own files for handling its data files. This may lead to:

• Duplication of same data in different files.

• Wastage of storage space, since duplicated data is stored.

• Errors may be generated due to updation of the same data in different files.

• Time in entering data again and again is wasted.

• Computer Resources are needlessly used.

• It is very difficult to combine information.

2. Elimination of Inconsistency - In the file processing system information is duplicated throughout

the system. So changes made in one file may be necessary be carried over to another file. This may lead to

inconsistent data. So we need to remove this duplication of data in multiple file to eliminate inconsistency.

For example: - Let us consider an example of student's result system. Suppose that in STU-

DENT file it is indicated that Roll no= 10 has opted for 'Computer'course but in RESULT file it is indicated

that 'Roll No. =l 0' has opted for 'Accounts' course. Thus, in this case the two entries for z particular

student don't agree with each other. Thus, database is said to be in an inconsistent state. Sc to eliminate this

conflicting information we need to centralize the database. On centralizing the data base the duplication will

be controlled and hence inconsistency will be removed.

Data inconsistency are often encountered in every day life Consider an another example, w have

all come across situations when a new address is communicated to an organization that we deal it (Eg -

Telecom, Gas Company, Bank). We find that some of the communications from that organization are

received at a new address while other continued to be mailed to the old address. So combining all the data

in database would involve reduction in redundancy as well as inconsistency so it is likely to reduce the

costs for collection storage and updating of Data.

Let us again consider the example of Result system. Suppose that a student having Roll no -201

changes his course from 'Computer' to 'Arts'. The change is made in the SUBJECT file but not in RESULT'S

file. This may lead to inconsistency of the data. So we need to centralize the database so that changes once

made are reflected to all the tables where a particulars field is stored. Thus the update is brought

automatically and is known as propagating updates.

3. Better service to the users - A DBMS is often used to provide better services to the users. In

conventional system, availability of information is often poor, since it normally difficult to obtain information

that the existing systems were not designed for. Once several conventional systems are combined to form

one centralized database, the availability of information and its updateness is likely to improve since the

13

data can now be shared and DBMS makes it easy to respond to anticipated information requests.

Centralizing the data in the database also means that user can obtain new and combined information easily

that would have been impossible to obtain otherwise. Also use of DBMS should allow users that don't

know programming to interact with the data more easily, unlike file processing system where the

programmer may need to write new programs to meet every new demand.

4. Flexibility of the System is Improved - Since changes are often necessary to the contents of

the data stored in any system, these changes are made more easily in a centralized database than in a

conventional system. Applications programs need not to be changed on changing the data in the database.

5. Integrity can be improved - Since data of the organization using database approach is

centralized and would be used by a number of users at a time. It is essential to enforce

integrity-constraints.

In the conventional systems because the data is duplicated in multiple files so updating or changes may

sometimes lead to entry of incorrect data in some files where it exists.

For example : - The example of result system that we have already discussed. Since multiple files are to

maintained, as sometimes you may enter a value for course which may not exist. Suppose course can have

values (Computer, Accounts, Economics, and Arts) but we enter a value 'Hindi' for it, so this may lead to

an inconsistent data, so lack of Integrity.

Even if we centralized the database it may still contain incorrect data. For example: -

• Salary of full time employ may be entered as Rs. 500 rather than Rs. 5000.

• A student may be shown to have borrowed books but has no enrollment.

• A list of employee numbers for a given department may include a number of non existent employees.

These problems can be avoided by defining the validation procedures whenever any update operation is

attempted.

6. Standards can be enforced - Since all access to the database must be through DBMS, so

standards are easier to enforce. Standards may relate to the naming of data, format of data, structure of the

data etc. Standardizing stored data formats is usually desirable for the purpose of data interchange or

migration between systems.

7. Security can be improved - In conventional systems, applications are developed in an adhoc/

temporary manner. Often different system of an organization would access different components of the

operational data, in such an environment enforcing security can be quiet difficult. Setting up of a database

makes it easier to enforce security restrictions since data is now centralized. It is easier to control who has

access to what parts of the database. Different checks can be established for each type of access (retrieve,

modify, delete etc.) to each piece of information in the database.

Consider an Example of banking in which the employee at different levels may be given access to different

types of data in the database. A clerk may be given the authority to know only the names of all the

customers who have a loan in bank but not the details of each loan the customer may have. It can be

accomplished by giving the privileges to each employee.

8. Organization's requirement can be identified - All organizations have sections and

departments and each of these units often consider the work of their unit as the most important and

therefore consider their need as the most important. Once a database has been setup with centralized

control, it will be necessary to identify organization's requirement and to balance the needs of the competating

units. So it may become necessary to ignore some requests for information if they conflict with higher priority

need of the organization.

It is the responsibility of the DBA (Database Administrator) to structure the database system to

provide the overall service that is best for an organization.

For example: - A DBA must choose best file Structure and access method to give fast response

14

for the high critical applications as compared to less critical applications.

9. Overall cost of developing and maintaining systems is lower - It is much easier to respond to

unanticipated requests when data is centralized in a database than when it is stored in a conventional file

system. Although the initial cost of setting up of a database can be large, one normal expects the overall

cost of setting up of a database, developing and maintaining application programs to be far lower than for

similar service using conventional systems, Since the productivity of programmers can be higher in using

non-procedural languages that have been developed with DBMS than using procedural languages.

10. Data Model must be developed - Perhaps the most important advantage of setting up of

database system is the requirement that an overall data model for an organization be build. In conventional

systems, it is more likely that files will be designed as per need of particular applications demand. The

overall view is often not considered. Building an overall view of an organization's data is usual cost effective in

the long terms.

11. Provides backup and Recovery - Centralizing a database provides the schemes such as

recovery and backups from the failures including disk crash, power failures, software errors which may

help the database to recover from the inconsistent state to the state that existed prior to the occurrence of

the failure, though methods are very complex.

2.3 Functions of DBMS

1. DBMS free the programmers from the need to worry about the organization and location of the

data i.e. it shields the users from complex hardware level details.

2. DBMS can organize process and present data elements from the database. This capability

enables decision makers to search and query database contents in order to extract answers that are not

available in regular Reports.

3. Programming is speeded up because programmer can concentrate on logic of the application.

4. It includes special user friendly query languages which are easy to understand by non

programming users of the system.

The various common examples of DBMS are Oracle, Access, SQL Server, Sybase, FoxPro, Dbase etc.

2.4 The Service Provided by the DBMS Includes

1. Authorization services like log on to the DBMS, start the database, stop the Database etc.

2. Transaction supports like Recovery, Rollback etc,

3. Import and Export of Data.

4. Maintaining data dictionary

5. User's Monitoring

2.5 DBA, Database Designers, End Users & Application Programmers

2.5.1 Database Administrator (DBA)

The DBA is a person or a group of persons who is responsible for the management of the data-

base. The DBA is responsible for authorizing access to the database by grant and revoke permissions to

the users, for coordinating and monitoring its use, managing backups and repairing damage due to hard-

ware and/or software failures and for acquiring hardware and software resources as needed. In case

of small organization the role of DBA is performed by a single person and in case of large organizations

there is a group of DBA's who share responsibilities.

2.5.2 Database Designers

They are responsible for identifying the data to be stored in the database and for choosing appro-

15

priate structure to represent and store the data. It is the responsibility of database designers to communi-

cate with all prospective of the database users in order to understand their requirements so that they can

create a design that meets their requirements.

2.5.3 End Users

End Users are the people who interact with the database through applications or utilities. The

various categories of end users are:

2.5.3.1 Casual End Users : These Users occasionally access the database but may need different

information each time. They use sophisticated database Query language to specify their requests. For

example: High level Managers who access the data weekly or biweekly.

2.5.3.2 NativeEnd Users : These users frequently query and update the database using standard types

of Queries. The operations that can be performed by this class of users are very limited and effect precise

portion of the database.

For example: - Reservation clerks for airlines/hotels check availability for given request and make

reservations. Also, persons using Automated Teller Machines (ATM's) fall under this category as he has

access to limited portion of the database.

2.5.3.3 Standalone end Users/On-line End Users : Those end Users who interact with the database

directly via on-line terminal or indirectly through Menu or graphics based Interfaces.

For example: - User of a text package, library management software that store variety of library data such

as issue and return of books for fine purposes.

2.5.4 Application Programmers

Application Programmers are responsible for writing application programs that use the database.

These programs could be written in General Purpose Programming languages such as Visual Basic, Devel-

oper, C, FORTRAN, COBOL etc. to manipulate the database. These application programs operate on

the data to perform various operations such as retaining information, creating new information, deleting or

changing existing information.

• DBMS engine accepts logical requests from various other DBMS subsystems, converts them into

physical equivalents, and actually accesses the database and data dictionary as they exist on a storage

device.

• Data definition subsystem helps the user create and maintain the data dictionary and define the

structure of the files in a database.

• Data manipulation subsystem helps the user to add, change, and delete information in a database

and query it for valuable information. Software tools within the data manipulation subsystem are most often

the primary interface between user and the information contained in a database. It allows the user to

specify its logical information requirements.

• Application generation subsystem contains facilities to help users develop transaction-intensive

applications. It usually requires that the user perform a detailed series of tasks to process a transaction. It

facilitates easy-to-use data entry screens, programming languages, and interfaces.

• Data administration subsystem helps users manage the overall database environment by providing

facilities for backup and recovery, security management, query optimization, concurrency control, and

change management.

16

2.6 DBMS-Architecture and Data Independence

Database management systems are complex softwares which were often developed and optimised

over years. From the view of the user, however, most of them have a quite similar basic architecture.

Three-Schemes Architecture

Knowing about the conceptual and the derived logical scheme (discussed in unit Database Mod-

els, Schemes and Instances this unit explains two additional schemes - the external scheme and the internal

scheme - which help to understand the DBMS architecture.

External Scheme:

An external data scheme describes the information about the user view of specific users (single

users and user groups) and the specific methods and constraints connected with this information. (Trans-

lated) (ZEHNDER 1998)

Internal Scheme:

The internal data scheme describes the content of the data and the required service functionality

which is used for the operation of the DBMS. (Translated) (ZEHNDER 1998)

Therefore, the internal scheme describes the data from a view very close to the computer or

system in general. It completes the logical scheme with data technical aspects like storage methods or help

functions for more efficiency.

Figure 2.1 : Three-Schemes Architecture

The right hand side of the representation above is also called the three-schemes architecture:

internal, logical and external scheme.

While the internal scheme describes the physical grouping of the data and the use of the storage

space, the logical scheme (derived from the conceptual scheme) describes the basic construction of

the data structure. The external scheme of a specific application, generally, only highlights that part of the

logical scheme which is relevant for its application. Therefore, a database has exactly one internal and one

logical scheme but may have several external schemes for several applications using this database.

The aim of the three-schemes architecture is the separation of the user applications from the

physical database, the stored data. Physically the data is only existent on the internal level while other

forms of representation are calculated or derived respectively if needed. The DBMS has the task to realise

this representation between each of these levels.

17

2.7 Data Independence

With knowledge about the three-schemes architecture the term data independence can be

explained as followed: Each higher level of the data architecture is immune to changes of the next lower

level of the architecture.

2.7.1 Physical Independence

Therefore, the logical scheme may stay unchanged even though the storage space or type of some

data is changed for reasons of optimisation or reorganisation.

2.7.2 Logical Independence

Also the external scheme may stay unchanged for most changes of the logical scheme. This is

especially desirable as in this case the application software does not need to be modified or newly

translated.

2.8 Database Schema

Definition : Overall design of data base. Schema contains 'No of records + Type of data + No of

attributes'

1. External level or Sub schema

2. logical schema

3. Physical schema

2.9 Database Instance

The term instance is typically used to describe a complete database environment, including the

RDBMS software, table structure, stored procedures and other functionality. It is most commonly used

when administrators describe multiple instances of the same database.

The information stored in database at the particular movement is called instance.

Also Known As: environment

Examples: An organization with an employees database might have three different instances: production

(used to contain live data), pre-production (used to test new functionality prior to release into production)

and development (used by database developers to create new functionality).

There are two different types of languages to make database system. They are 1. To specify the

database schema, and 2.to express database queries and updates.

2.10 Data-Definition Language

A database schema is specified by a set of definitions expressed by special language

called a data-definition language (DDL). The result of compilation of DDL statements is a set of tables

that is stored in a special file called Data dictionary or data directory.

A data dictionary is a file that contains metadata that is, data about data. This file is consulted

before actual data are read or modified in the database system. The storage structure and access methods

used by the database system are specified by a set of definitions in a special type of DDL called a data

storage and definition language.

2.11 Data-Manipulation Language

The levels of abstraction apply not only to the definition or structuring of data, but also the

manipulation of data. By data manipulation, it means

• The retrieval of information stored in the database

• The insertion of new information into the database

• The deletion of information from the database

18

• The modification of information stored in the database

A data-manipulation language (DML) is a language that enables user to access or manipulate data as

organized by the appropriate data model. They are basically two types.

• Procedural DMLs require a user to specify what data are needed and how to get those data

• Nonprocedural DMLs require a user to specify what data are needed without specifying how to

get those data

Non procedural DMLs are usually easier to learn and use than are procedural DMLs. A query

is a statement requesting the retrieval of information. The portion of a DML that involves information

retrieval is called a query language.

2.12 Summary

A database management system (DBMS) is a software system that integrates data in storage

and provides easy access to them. The data themselves are placed on disk in a database, which can be

thought of as an integrated collection of related files. Although not all databases are organized identically,

many of them are composed of files, records and fields.

2.13 Self-Assessment Questions

1. Explain the different function of DBMS.

2. Explain the role of DBA.

3. Explain the role of different users of DBMS.

4. What is Data Independence? Explain.

5. Explain the concept of DDL and DML commands in DBMS.

´ ´ ´

19

Structure of the Unit

3.0 Objective

3.1 Introduction

3.2 Types of Database Models

3.3 Introduction to Hierarchical Model

3.4 Introduction to Network Model

3.5 Introduction to Relational Model

3.6 Summary

3.7 Self Assessment Questions

3.0 Objective

In this unit we will discuss the fundamental characteristics of the database approach is that it

provides some level of Underlying the structure of a database is the data model: a collection of conceptual

tools for describing data, data relationships, data semantics, and consistency constraints. This unit provides

a general overview of the nature and purpose of database systems. We explain the how the concept of a

database system has developed, what the common features of database systems are, what a database

system does for the user, and how a database system interfaces with operating systems.

3.1 Introduction

A database model s a collection of concepts that can be used to describe the structure of a

database. By structure of a database we mean the data types, relationships and constraints that should

hold on the data. A database model is the theoretical foundation of a database and fundamentally

determines in which manner data can be stored, organized, and manipulated in a database system. It

thereby defines the infrastructure offered by a particular database system. The most popular example of

a database model is the relational model.

Data modeling is a method used to define and analyze data requirements needed to support the business

processes of an organization and by defining the data structures and the relationships between data elements.

Data modeling techniques are used :

· to manage data as a resource (migrate, merge, data quality�)

· for designing computer databases.

· to better cope with change, by allowing to make changes into the model, that will

automatically induce changes in the database and programs

Unit - 3 : Database Models

20

3.2 Types of Database Models

Data models representations usually graphical of complex real-world data structures it facilitate

interaction among the designer, the applications programmer and the end user. End-users must have different

views and needs for data. Data model organizes data for various users.

Data models can be broadly distinguished into 3 main categories-

1. High-level or conceptual data models (based on entities & relationships) :

It provides concepts that are close to the way many users perceive data. Conceptual data models

use concepts such as entities, attributes and relationships .An entity represents a real world object or

concepts, such as employee or a project that is described in the database. An attribute represents some

property of interest that further describes an entity, such as the employee�s name or salary. A relationship

among two or more entities represents an interaction among the entities

3.2.1 The conceptual model describes the system information, as represented by a particular data

manipulation technology type : e.g. flat file system, hierarchical DBMS(IMS,...), network DBMS (IDMS,

IDS2,..), relational DBMS (DB2, ORACLE, SQL SERVER,...). A logical model consists of descriptions

of entities (called « segments » in hierarchical DBMS, « records » in network DBMS, « tables » in relational

DBMS) and attributes (called « data » in hierarchical and network DBMS, « columns » in relational

DBMS), data access keys, type of links beetween entities (called « sets » in network DBMS, « foreigns

keys » in relational DBMS) among other things;

2. Low level or physical data models :

It provides concepts that describe the details of how data is stored in the computer.These concepts

are meant for computer specialist, not for typical end users. The physical model describes the physical

means by which data are stored in a particular DBMS product (flat files, XML files, IMS, IDS2, IDMS,

ORACLE, DB2, ...) . This is concerned with partitions, CPUs, tablespaces, and the like.

3. Representational or implementation data models (record-based, object-oriented) :

It provide concepts that can be understood by end users. These hide some details of data storage

but can be implemented on a computer system directly.

21

3.2.2 The representational model

Describes the semantics of a domain (for example, it may be a model of the interest area of an

organization or industry), i.e. define the meaning of data within the context of its interrelationships and

constraints with other data. It is an abstraction which defines how the stored symbols relate to the real

world. Thus, the semantic model must be a true representation of the real world. A semantic model consists

of entity classes, representing kinds of things of significance in the domain, and relationships assertions

about associations between pairs of entity classes. A semantic model specifies the kinds of facts or

propositions that can be expressed using the model. In that sense, it defines the allowed expressions in an

artificial �language� with a scope that is limited by the scope of the model;

A data model is a collection of concepts for describing data, its relationships, and its constraints

provides a clearer and more accurate description and representation of data Standard platform that

enables database designers and end-users to communicate Come in three varieties:

3.2.3 Object Based Models or Object Oriented Model (conceptual schema)

Theses models are used in describing data at the logical and view levels. They are characterized by the

fact that they provide fairly flexible structuring capabilities and allow data constraints to be specified explicitly.

They are many different models, and more are likely to come. Several of the more widely known ones are:

· The entity relationship model

· The object-oriented model

· The semantic data model

· The functional data model

The entity-relationship(E-R) data model is based on a perception of a real world that consists of a

collection of basic concepts, called entities, and of relationships among these objects. An entity is a �thing�

or �object� in the real world that is distinguishable from other objects. A relationship is an association

among several entities. In addition to entities and relationships, the E-R model represents certain constraints

to which the contents of a database must conform. One important constraint is mapping cardinalities,

which express the number of entities to which another entity can be associated via a relationship set.

The overall logical structure of a database can be expressed graphically by an E-R diagram, which is built

up from the following components:

· Rectangles, which represent entity sets

· Ellipses, which represent attributes

· Diamonds, which represent relationships among entity sets

· Lines, which link attributes to entity sets and entity sets to relationships

Each component is labeled with the entity or relationship that it represents.

Like the E-R model , the object-oriented model is based on a collection of a objects. An object

contains values stored in instance variables within the objects. An object also contains bodies of code that

operate on the objects. These bodies of code are called methods.

Objects that contain the same types of values and the same methods are grouped together into

classes. A class may be viewed as a type definition for objects. This combination of data and methods

comprising a type definition is similar to a programming-language abstract data type.

3.2.4 Record-based models (external schema)

Theses models are used in describing data at the logical and view levels. In contrast to

object-oriented data models, they are used both to specify the overall logical structure of the database

and to provide a higher-level description of the implementation. Record-based models are so named

because the database is structured in fixed-format records of several types. Each record type defines a

fixed number of fields, or attributes, and each field is usually of a fixed length.

22

A record based data model is used to specify the overall logical structure of the database. In this

model the database consists of a no. of fixed formats of different types. Each record type defines a fixed

no. of fields having a fixed length. There are 3 principle types of record based data model. They are:

· Relational model

· Network model

· Hierarchical model

The relational model uses a collection of tables to represent both data and the relationships among

those data. Each table has multiple columns, and each column has a unique name.

Data in the network model are represented by collections of records and the relationships among data are

represented by links , which can be viewed as pointers. The records in the database are organized as

collections of arbitrary graphs.

The hierarchical model is similar to the network model in the sense that data and relationships

among data are represented by records and links, respectively. It differs from the network model in the

that the network in that the records are organized as collections of trees rather than arbitrary graphs .

3.2.5 Physical data models (internal schema)

Physical data models are used to describe data at the lowest level. In contrast to logical data

models, there are few physical data models in use. Two of the widely known ones are the unifying model

and the frame-memory model.

3.3 Introduction to Hierarchical Model

In a hierarchical model , data is organized into a tree-like structure, implying a single upward link

in each record to describe the nesting, and a sort field to keep the records in a particular order in each

same-level list. Hierarchical structures were widely used in the early mainframe database management

systems, such as the information Management System (IMS) by IBM, and now describe the structure of

XML documents. This structure allows one 1:M relationship between two types of data. This structure is

very efficient to describe many relationships in the real world; recipes, table of contents, ordering of

paragraphs/verses, any nested and sorted information. However, the hierarchical structure is inefficient for

certain database operations when a full path (as opposed to upward link and sort field) is not also included

for each record.

Mother�child relationship: Child may only have one mother but a mother can have multiple

children. Mothers and children are tied together by links called �pointers�. A mother will have a list of

pointers to each of her children.

Hierarchical DBMSs were popular from the late 1960s, with the introduction of IBM�s Information

Management System (IMS) DBMS, through the 1970s.

Author_id Name DOB Pub_id Publisher Address

Book_id Author_id Pub_id Book_title

A001

A002

A003

Suresh

Mahesh

Ramesh

6/7/99

23/6/65

10/10/75

P001

P002

P003

THM

DFD

ATL

Delhi

Mumbai

Jaipur

B001

B002

B003

A001

A002

A003

P001

P002

P003

DBMS

SQL

Programming in C

23

The hierarchical data model organizes data in a tree structure. There is a hierarchy of parent and

child data segments. There is a hierarchy of parent and child data segments. This structure implies that a

record can have repeating information, generally in the child data segments. Data in a series of records,

which have a set of field values attached to it. It collects all the instances of a specific record together as a

record type. These record types are the equivalent of tables in the relational model, and with the individual

records being the equivalent of rows. To create links between these record types, the hierarchical model

uses Parent Child Relationships.

These are a 1 : N mapping between record types. This is done by using trees, like set theory used

in the relational model, �borrowed� from maths. For example, an organization might store information

about an employee, such as name, employee number, department, salary. The organization might also

store information about an employee�s children, such as name and date of birth. The employee and children

data forms a hierarchy, where the employee data represents the parent segment and the children data

represents the child segment. If an employee has three children, then there would be three child segments

associated with one employee segment. In a hierarchical database the parent-child relationship is one to

many. This restricts a child segment to having only one parent_segment.

Data in a series of records, which have a set of field values attached to it.

Basic Features of Hierarchical Model :

(a) Logical structure represented as an upside-down �tree�

(b) Hierarchical structure contains levels or segments

(c) Depicts a set of one-to-many (1: M) relationships Between a parent and it�s children

segments

(d) Each parent can have many children

(e) Each child has only one parent

Pavement Improvement

Reconstruction Maintenance Rehabilitation

Routine Corrective Preventive

Hierarchical Model

A Hirachical Structure

Final Assembly

Component A Component B Component C

Assembly A Assembly B Assembly C

Part A Part B Part C Part D Part E

Root Segment

Level 1 Segment

(Root Children)

Level 2 Segment

(Root 1 Children)

Level 3 Segment

(Root 2 Children)

24

Advantages & Disadvantages of Hierarchical model

Advantages :

(a) Many features form the foundation for current data models

(b) Generated a large installed base of programmers Who developed solid business

applications

Disadvantages :

(a) Complex to implement

(b) Difficult to manage

(c) Lacks structural independence

(d) Implementation limitations

(e) Lack of standards (Company vs. Industry or Open)

3.4 Introduction to Network Data Model

The popularity of the network data model coincided with the popularity of the hierarchical data

model. Some data were more naturally modeled with more than one parent per child. So, the network

model permitted the modeling of many-to-many relationships in data. In 1971, the Conference on Data

Systems Languages (CODASYL) formally defined the network model. The basic data modeling construct

in the network model is the set construct. A set consists of an owner record type, a set name, and a

member record type. A member record type can have that role in more than one set; hence the multiparent

concept is supported. An owner record type can also be a member or owner in another set.

The data model is a simple network, and link and intersection record types (called junction

records by IDMS) may exist, as well as sets between them. Thus, the complete network of relationships

is represented by several pairwise sets; in each set some (one) record type is owner (at the tail of the

network arrow) and one or more record types are members (at the head of the relationship arrow).

Usually, a set defines a 1: M relationship, although 1:1 is permitted. The CODASYL network model is

based on mathematical set theory. In the network data model, the database consists of a collection of

set-type occurrences.

The network model (defined by the CODASYL specification) organizes data using two

fundamental constructs, called records and sets. Records contain fields (which may be organized

hierarchically, as in the programming language COBOL). Sets (not to be confused with mathematical

sets) define one-to-many relationships between records: one owner, many members. A record may be

an owner in any number of sets, and a member in any number of sets.

The network model is a variation on the hierarchical model, to the extent that it is built on the

concept of multiple branches (lower-level structures) emanating from one or more nodes (higher-level

structures), while the model differs from the hierarchical model in that branches can be connected to

multiple nodes. The network model is able to represent redundancy in data more efficiently than in the

hierarchical model.

The operations of the network model are navigational in style: a program maintains a current

position, and navigates from one record to another by following the relationships in which the record

participates. Records can also be located by supplying key values.

Although it is not an essential feature of the model, network databases generally implement the

set relationships by means of pointers that directly address the location of a record on disk. This gives

excellent retrieval performance, at the expense of operations such as database loading and reorganization.

Most object database use the navigational concept to provide fast navigation across networks

of objects, generally using object identifiers as �smart� pointers to related objects. Objectivity/DB, for

25

instance, implements named 1:1, 1:many, many:1 and many: many named relationships that can cross

databases. Many object databases also support SQL, combining the strengths of both models.

Each set-type occurrence has one occurrence of OWNER RECORD, with zero or more

occurrences of MEMBER RECORDS.

Basic features of Network Model :

§ Resembles hierarchical model

§ Difference child can have multiple parents

§ Collection of records in 1: M relationships

§ Set � Relationship of at least two record types

� Owner � Equivalent to the hierarchical model�s parent

� Member � Equivalent to the hierarchical model�s child

§ In the network data model, the database consists of a collection of set-type occurrences.

§ Each set-type occurrence has one occurrence of OWNER RECORD, with zero or more

occurrences of MEMBER RECORDS.

-> The member sets belonging to different owners are disjoint.

-> To define a network database one needs to define:

(a) the database record types which consist of data items, and

(b) the set-types.

The member sets belonging to different owners are disjoint.To define a network database one

needs to define:

(a) The database record types which consist of data items, and

(b) The set-types.

3.5 Introduction to Relational Model

The relational model uses a collection of tables to represent both data and the relationships among

those data. Each table has multiple columns, each column has a unique name. (RDBMS - relational

database management system) A database based on the relational model developed by E.F. Codd. A

relational database allows the definition of data structures, storage and retrieval operations and integrity

constraints. In such a database the data and relations between them are organised in tables. A table is a

collection of records and each record in a table contains the same fields.

Properties of Relational Tables:

Preventive Maintenance

Rigid Pavement Flexible Pavement

Spall Repair Joint Seal Crack Seal Patching

Silicone Sealant Asphalt Sealant

Network Model

26

§ Values Are Atomic

§ Each Row is Unique

§ Column Values Are of the Same Kind

§ The Sequence of Columns is Insignificant

§ The Sequence of Rows is Insignificant

§ Each Column Has a Unique Name

Certain fields may be designated as keys, which means that searches for specific values of that

field will use indexing to speed them up. Where fields in two different tables take values from the same set,

a join operation can be performed to select related records in the two tables by matching values in those

fields. Often, but not always, the fields will have the same name in both tables. For example, an �orders�

table might contain (customer-ID, product-code) pairs and a �products� table might contain

(product-code, price) pairs so to calculate a given customer�s bill you would sum the prices of all products

ordered by that customer by joining on the product-code fields of the two tables.

This can be extended to joining multiple tables on multiple fields. Because these relationships are

only specified at retreival time, relational databases are classed as dynamic database management system.

The RELATIONAL database model is based on the Relational Algebra.

The products that are generally referred to as relational database in fact implement a model that is

only an approximation to the mathematical model defined by Codd. Three key terms are used extensively

in relational database models: relations , attributes, and domains. A relation is a table with columns and

rows. The named columns of the relation are called attributes, and the domain is the set of values the

attributes are allowed to take.

The basic data structure of the relational model is the table, where information about a particular

entity (say, an employee) is represented in rows (also called tuples) and columns. Thus, the � relation� in

�relational database� refers to the various tables in the database; a relation is a set of tuples. The columns

enumerate the various attributes of the entity (the employee�s name, address or phone number, for example),

and a row is an actual instance of the entity (a specific employee) that is represented by the relation. As a

result, each tuple of the employee table represents various attributes of a single employee.

All relations (and, thus, tables) in a relational database have to adhere to some basic rules to

qualify as relations. First, the ordering of columns is immaterial in a table. Second, there can�t be identical

tuples or rows in a table. And third, each tuple will contain a single value for each of its attributes.

Activity

Co de

Activity

N ame

2 3

2 4

2 5

Patching

Overlay

Crack Sealing

Activity

Co de
Date

Route

No.

Date
Activity

Co de
Route No.

01/12/01

01/15/01

01/08/01

2 4

2 3

2 4

I-95

I-495

I-66

Relational Model

Key = 24

2 4

2 4

01/12/01

01/08/01

I-95

I-66

27

A relational database contains multiple tables, each similar to the one in the �flat� database model.

One of the strengths of the relational model is that, in principle, any value occurring in two different records

(belonging to the same table or to different tables), implies a relationship among those two records. Yet, in

order to enforce explicit integrity constraints, relationships between records in tables can also be defined

explicitly, by identifying or non-identifying parent-child relationships characterized by assigning cardinality

(1:1, (0)1:M, M:M). Tables can also have a designated single attribute or a set of attributes that can act as

a �key�, which can be used to uniquely identify each tuple in the table.

A key that can be used to uniquely identify a row in a table is called a primary key. Keys are

commonly used to join or combine data from two or more tables. For example, an Employee table may

contain a column named Location which contains a value that matches the key of a Location table. Keys are

also critical in the creation of indexes, which facilitate fast retrieval of data from large tables. Any column can

be a key, or multiple columns can be grouped together into a compound key. It is not necessary to define all

the keys in advance; a column can be used as a key even if it was not originally intended to be one.

A key that has an external, real-world meaning (such as a person�s name, a book�s ISBN, or a

car�s serial number) is sometimes called a �natural� key. If no natural key is suitable (think of the many

people named Brown), an arbitrary or surrogate key can be assigned (such as by giving employees ID

numbers). In practice, most databases have both generated and natural keys, because generated keys can

be used internally to create links between rows that cannot break, while natural keys can be used, less

reliably, for searches and for integration with other databases. (For example, records in two independently

developed databases could be matched up by social security number, except when the social security

numbers are incorrect, missing, or have changed.)

3.6 Summary

A data model is a collection of concepts for describing data, its relationships, and its constraints

provides a clearer and more accurate description and representation of data.

Data models can be broadly distinguished into 3 main categories- High-level or conceptual

data models, Low level or physical data models, Representational or implementation data models.

In a hierarchical model , data is organized into a tree-like structure, implying a single upward link

in each record to describe the nesting, and a sort field to keep the records in a particular order in each

same-level list.

The network model (defined by the CODASYL specification) organizes data using two fundamental

constructs, called records and sets. Records contain fields (which may be organized hierarchically, as in

the programming language COBOL).

All relations (and, thus, tables) in a relational model have to adhere to some basic rules to qualify

as relation.

3.7 Self Assessment Questions

1. Explain why we study the data models in databases.

2. What is data model and write down the basic characteristics of the databases?

3. What is the difference between E-R model and Relational model?

4. What is the difference between network model and hierarchical model?

5. How can you define the relational model and its characteristics?

฀฀฀

28

Structure of the Unit

4.0 Objective

4.1 Introduction

4.2 Entity

4.3 Attribute

4.4 Relationship

4.5 Constraints

4.5.1 Cardinality

4.5.2 Participation

4.5.3 Disjoint Constraints

4.6 Degree and Domain

4.7 Data modeling using the Entity relationship model

4.7.1 E-R model concepts

4.7.2 Notation for E-R diagram

4.7.3 Entity sets

4.8 Keys

4.8.1 Concepts of Super Key

4.8.2 Concepts of Candidate Key

4.8.3 Concepts of Primary Key

4.9 Extended E-R features

4.9.1 Generalization

4.9.2 Specialization

4.9.3 Aggregation

4.10 Summary

4.11 Self Assessment Questions

4.0 Objective

In this unit, we will follow the traditional approach for concentrating on the database structures and

constraints during database design. We will present the modeling concepts of the Entity-Relationship

model, which is a popular high-level conceptual data model. This model and its variations are frequently

used for the conceptual design of database applications, and many databases design tools employ its

concepts. We describe the basic data structuring concepts and constraints of the E-R model and discuss

their use in the design of conceptual schemas for database applications. The entity relationship model(E-R)

data model is based on a perception of a real world that consists of a set of basic objects called entities,

and of relationships among these objects.

4.1 Introduction

In 1976, Chen developed the Entity-Relationship (ER) model, a high-level data model that is

useful in developing a conceptual design for a database. Creation of an ER diagram, which is one of the

first steps in designing a database, helps the designer(s) to understand and to specify the desired components

Unit - 4 : The Entity Relationship Models

29

of the database and the relationships among those components. An ER model is a diagram containing

entities or “items”, relationships among them, and attributes of the entities and the relationships.

We can consider the database on three levels of abstraction: external, conceptual, and internal.

· The external level has the users’ views of the database. Depending on their needs, different users

access different parts of the database. For example, a doctor performing drug tests should be able to

access the patients’ medical data but not their hospital bills. However, a billing clerk should have a very

different view of the database.

· The conceptual level describes the logical structure of an entire database, including descriptions

of the data and relationships among the data. For example, at this level we would describe a row of the

table StudyA05 as containing the values for SSN and placebo. However, we would not give the details of

the physical storage of the fields and records.

· The internal level gives the details of the physical storage of the database on the computer. This

level contains such details as the number of bytes for each data item, ordering of records, and data

compression techniques. For example, at this level we would describe the attribute SSN as 10 bytes to

store the nine-digit social security number.

For example: Three-Level Architecture

External Level

Doctor’s View Billing Office View

SSN dosage SSN LastName FirstName …

Conceptual Level

SSN Dosage LastName FirstName …

Internal Level

struct { string SSN; double dosage; string LastName; string FirstName; ... }

E-R model

To make the description of the model more complete, we consider the example of a physics

department at a college that maintains a database of experimental results. Throughout a laboratory, students

collaborate and share their results and access data sets from other semesters on a computer system. For

example, in the laboratory session on “Freely Falling Objects with Significant Drag,” students determine

the drag coefficient by dropping dust balls from different heights and measuring the times they take to fall.

Each team enters its results into the distributed database, and the class analyzes the data. After a team

enters data into the web-accessed database, all students can obtain the measurements simultaneously. To

simplify the analysis, we assume that the database only stores results related to this experiment over a

period of several years.

4.2 Entity

An Entity is a real-world item or concept that exists on its own. In our example, a particular

student (such as, “Emanuel Vagas”), team, lab section, or experiment is an entity. The set of all possible

values for an entity, such as all possible students, is the entity type. In an ER model, we diagram an entity

type as a rectangle containing the type name, such as student .

For example: E-R diagram notation for entity student

30

An entity is an object that exists and which is distinguishable from other objects. An entity can be

a person, a place, an object, an event, or a concept about which an organization wishes to maintain data.

The following are some examples of entities:

Person: STUDENT, EMPLOYEE, CLIENT

Object: COUCH, AIRPLANE, MACHINE

Place: CITY, NATIONAL PARK, ROOM, WAREHOUSE

Event: WAR, MARRIAGE, LEASE

Concept: PROJECT, ACCOUNT, COURSE

It is important to understand the distinction between an entity type, an entity instance, and an

entity set. An entity type defines a collection of entities that have same attributes. An entity instance is

a single item in this collection. An entity set is a set of entity instances. The following example will clarify

this distinction: STUDENT is an entity type; a student with ID number 555-55-5555 is an entity instance;

and a collection of all students is an entity set.

In the E-R diagram, we assign a name to each entity type. When assigning names to entity types,

we follow certain naming conventions. An entity name should be a concise singular noun that captures the

unique characteristics of the entity type. An E-R diagram depicts an entity type using a rectangle with the

name of the entity inside .

4.3 Attribute

Each entity has attributes, or particular properties that describe the entity. Attributes are descriptive

properties possessed by each member of an entity set. The designation of an attribute for an entity set

expresses that the databases stores similar information concerning each entity in the entity set, each entity

may have its own value for each attribute. For each attribute there is a set of permitted values, called the

domain , or value set, of that attribute.

For example, student Emanuel Vagas has properties of his own Student Identification number,

name, and grade. A particular value of an attribute, such as 93 for the grade, is a value of the attribute.

Most of the data in a database consists of values of attributes. The set of all possible values of an attribute,

such as integers from 0 to 100 for a grade, is the attribute domain. In an ER model, an attribute name

appears in an oval that has a line to the corresponding entity box.

ER diagram notation for an attribute domain (StudentGrade) of an entity type (student)

We represent an entity with a set of attributes. An attribute is a property or characteristic of an

entity type that is of interest to an organization. Some attributes of common entity types include the following:

STUDENT = {Student ID, SSN, Name, Address, Phone, Email, DOB}

ORDER = {Order ID, Date of Order, Amount of Order}

PERSON STUDENT EMPLOYEE

31

ACCOUNT = {Account Number, Account Type, Date Opened, Balance}

CITY = {City Name, State, Population}

We use the following conventions while naming attributes:

1. Each word in a name starts with an uppercase letter followed by lower case letters.

2. If an attribute name contains two or more words, the first letter of each subsequent word is also in

uppercase, unless it is an article or preposition, such as “a,” “the,” “of,” or “about”.

Types of Attributes

Several types of attributes our in the E-R model. Which are as follows :

(a) Simple and Composite Attributes :

An attribute can be simple or composite. A simple attribute is one component that is atomic.

They are not divided into subparts . A simple attribute, such as grade, is one component that is atomic.

A composite attribute, on the other hand, can be divided into subparts. it has multiple components, each

of which is atomic or composite. If we consider the name in two parts, last name and first name, then the

name attribute is a composite. A composite attribute, such as “Emanuel Vagas”, has multiple components,

such as “Emanuel” and “Vagas”; and each component is atomic or composite. We illustrate this composite

nature in the ER model by branching off the component attributesUsing composite attributes in a design

schema is a good choice if a user will wish to refer to an entire attribute on some occasions, and to only

a component of the attribute on other occasions.

For example, ER diagram notation for composite attribute domain, name

(b) Single Valued and Multi-Valued Attributes :

For a particular entity, an entity attribute that holds exactly one value is a single-valued attribute.

A multi-valued attribute has more than one value for a particular entity.

Another way to classify attributes is either as single-valued or multi-valued. For an entity an attribute,

such as StudentGrade, usually holds exactly one value, such as 93, and thus is a single-valued attribute.

However, two lab assistants might assist in a laboratory section. Consequently, the LabAssistant attribute

for the entity LabSection is multi-valued. A multi-valued attribute has more than one value for a particular

entity. We illustrate this situation with a double oval around the lab assistant type, LabAssistant .

For example: ER diagram notation for multi-valued attribute domain, LabAssistant

(c) Stored and Derived attributes :

The value of a derived attribute can be determined by analyzing other attributes. For example, in

Figure 3.3 Age is a derived attribute because its value can be derived from the current date and the

32

attribute DateofBirth. An attribute whose value cannot be derived from the values of other attributes is

called a stored attribute. As we will learn, a derived attribute Age is not stored in the database. Derived

attributes are depicted in the E-R diagram with a dashed ellipse.

A derived attribute can be obtained from other attributes or related entities. For example, the

radius of a sphere can be determined from the circumference. We request the derived attribute with a

dotted oval and line. As another example, consider that the employee entity set has the related attributes

start_date and employment_length, which represent the first day an employee began working for the bank

and the total length of time an employee has worked for the bank, respectively. The value for

employment_length can be derived from the value for start_date and the current date . In this case,

start_date may be referred to as a base attribute , or a stored attribute.

ER diagram notation for derived attribute, radius

(d) Key Attribute :

A key attribute (or identifier) is a single attribute or a combination of attributes that uniquely

identify an individual instance of an entity type. No two instances within an entity set can have the same key

attribute value. For the STUDENT entity , StudentID is the key attribute since each student identification

number is unique. Name, by contrast, cannot be an identifier because two students can have the same

name. We underline key attributes in an E-R diagram .

Sometimes no single attribute can uniquely identify an instance of an entity type. However, in these

circumstances, we identify a set of attributes that, when combined, is unique for each entity instance. In this

case the key attribute, also known as composite key, is not a simple attribute, but a composite attribute

that uniquely identifies each entity instance.

The concept of a key allows us to make such distinctions. However, to determine the class we

need a composite key that consists of several attributes, such as catalogue number, section, semester,

and year. We underline the composite key, class

The Key Attribute

A composite key must be minimal in the sense that no subset of a composite key can form the key

of the entity instance. For example, if a composite key has four attributes, A1 to A4, then any subset, say

A2, A4 or A2, A3 (or any of 16 combinations), should not form a key for an entity. In other words, we

need all attributes, A1–A4, to identify each instance of an entity uniquely. In the E-R diagram, we underline

each attribute in the composite key.For example, consider the CITY entity type. This category includes,

potentially,all the cities in the United States. Notice that none of the attributes (i.e. Name, State or

Student ID

Name

Address

Student

33

Population) can serve as a key attribute since there are many cities in each state and two cities could

possibly have the same name or population. However, the composite attribute {Name, State} is a valid

key attribute for the CITY entity as no two cities within a state can have the same name.An entity can have

more than one attribute that qualifies to be an identifier. For the entity, each of the attributes Name, StateAbbr,

and UnionOrder (the order in which the state entered the union of the United States) can be an identifier.

In this case, it is a matter of preference as to which attribute is made an identifier or key attribute.

The composite key attribute

(e) Null attributes :

Sometimes the value of an attribute is unknown or missing, and sometimes a value is not applicable.

In such cases, the attribute can have the special value of null. Null is the special attribute value that

indicates an unknown or missing value.

For example, until the professor grades a laboratory assignment, the team grade is missing or null.

For a student who is auditing a course but participating as a team member, it is not applicable for that

student to have an individual grade; the student’s grade can have the value of null.

4.4 Relationships

Entities in an organization do not exist in isolation but are related to each other. Students take

courses and each STUDENT entity is related to the COURSE entity. Faculty members teach courses and

each FACULTY entity is also related to the COURSE entity. Consequently, the STUDENT entity is

related to the FACULTY entity through the COURSE entity. E-R diagrams can also illustrate relationships

between entities.

A relationship set is a mathematical relation among n = 2 entities, each taken from entity sets

{(e1, e2, … en) | e1 . E1, e2 . E2, …, en . En} where (e1, e2, …, en) is a relationship

We define a relationship as an association among several entities. Consider, for example, an

association between customers of a bank. If customer Williams has a bank account number 523, then the

quality of ownership constitutes a relationship instance that associates the CUSTOMER instance Williams

with the ACCOUNT instance 523. We can think of the relationship instance as a verb that links a subject

and an object: customer Williams has an account; student John registers for a course; professor Smith

teaches a course. A relationship set is a grouping of all matching relationship instances, and the term

relationship type refers to the relationship between entity types.

In an E-R diagram, we represent relationship types with diamond-shaped boxes connected by

straight lines to the rectangles that represent participating entity types. A relationship type is a given name

that is displayed in this diamond-shaped box and typically takes the form of a present tense verb or verb

phrase that describes the relationship. An E-R diagram may depict a relationship as the following example

of the relationship between the entities CUSTOMER and ACCOUNT does:

Name

State

Population

CITY

34

The relationship set between the CUSTOMER and ACCOUNT entities.

A relationship type is a set of associations among entity types. For example, the student entity

type is related to the team entity type because each student is a member of a team. In this case, a relationship

or relationship instance is an ordered pair of a specific student and the student’s particular physics team,

such as (Emanuel Vagas, Phys201F2005A04), where Phys201F2005A04 is Emanuel’s team number.

illustrates three relationships. Unfortunately, Itnatios Trekas had to drop the course and retake it another

semester. Consequently, his name is associated with two team numbers.

Relationships (Emanuel Vagas, Phys201F2005A04), (Ignatios Trekas,Phys201F2005A04), and

(Ignatios Trekas, Phys201S2006B03)

We use a diamond to illustrate the relationship type in an ER diagram . We arrange the diagram so

that the relationship reads from left to right, “a student is a member of a team.” Alternatively, we can

arrange the components from top to bottom.

A relationship type is a set of associations among entity types. A relationship or relationship

instance is an ordered pair consisting of particular related entities.

For example: ER diagram notation for relationship type, MemberOf

Willson

Spears

Williams

White

Li

George

Mohan

Becker

032-11-385

045-22-258

135-56-637

321-21-769

185-67-485

232-98-506

413-18-237

687-57-017

Gainesville

Live oak

Alachua

Ocala

Ocala

Gainesville

Palatka

Alachua

102

345

638

921

718

523

881

256

356

313

285

409

536

918 7,200

4,700

9,800

1,500

6,700

1,200

900

3,500

1,800

3,300

1,100

5,600

5,163

2,000

Customer

Account

35

A relationship type can also have attributes. The relationship type order connects entities chemical

and supplier. The relationship is many-to-many because each chemical can be from several suppliers and

each supplier has a number of chemicals. An order has a purchase date, amount, and total cost as well as

the chemical and supplier information. Thus, order has attributes PurchaseDate, amount, and TotalCost

that we cannot appropriately associate with chemical or supplier.

For example: Relationship type with attributes

4.5 Constraints

Relationship types usually have certain constraints that limit the possible combinations of entities

that may participate in the corresponding relationship set. These constraints are determined from the

miniworld situation that the relationships present. An important constraint on the entities of an entity type is

the key or uniqueness constraint on attributes. An entity type usually has an attribute whose values are

distinct for each individual entity in the collection.

4.5.1 Cardinality Constraints

The term cardinal number refers to the number used in counting. An ordinal number, by contrast,

emphasizes the order of a number (1st, 7th, etc.). When we say cardinality of a relationship, we mean the

ability to count the number of entities involved in that relationship. For example, if the entity types A and B

are connected by a relationship, then the maximum cardinality represents the maximum number of

instances of entity B that can be associated with any instance of entity A.

However, we don’t need to assign a number value for every level of connection in a relationship.

In fact, the term maximum cardinality refers to only two possible values: one or many. While this may

seem to be too simple, the division between one and many allows us to categorize all of the permutations

possible in any relationship. The maximum cardinality value of a relationship, then, allows us to define the

four types of relationships possible between entity types A and B.

One-to-One Relationship : In a one-to-one relationship, at most one instance of entity B can be associated

with a given instance of entity A and vice versa.

If each team can have at most one student leader and a student can be a leader of at most one

team, we have a 1:1 or one-to-one relationship. We can illustrate this ratio by writing ones on the lines

indicating the relationship.

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

A B

One-to-One One-to-Many Many-to-One Many-to-Many

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

A B

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

A B

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

A B

36

For example : ER diagram notation for one-to-one relationship

One-to-Many Relationship : In a one-to-many relationship, many instances of entity B can be associated

with a given instance of entity A. However, only one instance of entity A can be associated with a given

instance of entity B. For example, while a customer of a company can make many orders, an order can

only be related to a single customer.

Many-to-Many Relationship : In a many-to-many relationship, many instances of entity A can be

associated with a given instance of entity B, and, likewise, many instances of entity B can be associated

with a given instance of entity A. For example, a machine may have different parts, while each individual

part may be used in different machines.

Another example is that a student can retake a course, a student could be a member of more than

one team. Thus, we would need different variables, say N and M, for the numbers of student and team

entities, respectively; and the ratio would be N:M in this many-to-many relationship. For example, a

team has any number of students, and a student can participate in several teams during his or her college

career. Ratios, such as 1:1, 1:N, N:1, and N:M, give a cardinality constraint or numeric restriction on the

possible relationships.

For example :ER diagram notation for many-to-many relationship

Many-to-one Relationship : Several teams can be in each lab section, students as members, so we

write the cardinality ratio as N:1 in this many-to-one relationship and draw the diagram. Similarly, we

can have a one-to-many relationship.

For example : ER diagram notation for many-to-one relationship

Representing Relationship Types : It defines that how we represent different relationship types in an

E-R diagram. An entity on the one side of the relationship is represented by a vertical line, “I,” which

intersects the line connecting the entity and the relationship. Entities on the many side of a relationship are

designated by a crowfoot.

We will now discuss the minimum cardinality of a relationship. The minimum cardinality between

two entity types A and B is defined as the minimum number of instances of entity B that must be associated

with each instance of entity A. In an E-R diagram, we allow the minimum cardinality to take two values:

zero or one. If the minimum cardinality is zero, we say that entity type B is an optional participant in the

37

relationship; otherwise, it is a mandatory participant. An optional relationship is represented by an “O”

and mandatory relationship is represented by “|” in an E-R diagram.

The given figure shows the four possibilities of the minimum cardinality of a relationship between

two entity types A and B. Figure (a) depicts a situation in which no minimum cardinality constraints exist

between the instances of entities A and B, meaning both entities A and B are optional participants in the

relationship. Figure (b) illustrates a situation in which each instance of entity B must be associated with at

least one instance of entity A, but no association is required for an instance of entity A. Figure (c) illustrates

a situation in which each instance of entity A must be associated with at least one instance of entity B, but

no association is required for an instance of entity B. Finally, Figure (d) illustrates a situation in which each

instance of entity A and B must be associated with at least one instance of entity B and A, respectively.

An E-R diagram displays both the maximum and the minimum cardinalities of the relationships

between two entities. Since there are four basic possibilities of maximum cardinalities and four possibilities

of minimum cardinalities between two entities, there are 16 types of relationships possible between two

entities in terms of cardinality. We will see several examples of these relationships while studying unary,

binary, and ternary relationships.

4.5.2 Participation Constraints

4.5.2.1 Participation constraints dictate whether each instance (member) of a superclass must participate

as an instance (member) of a subclass. A participation of superclass instance may be mandatory or optional

in one or more subclasses. The mandatory constraint is also known as a total participation (constraint) or

total specialization rule, while an optional constraint is known as a partial participation (constraint) or

partial specialization rule.

4.5.2.2 Total Participation Rule In total participation, membership is mandatory. Each instance of a

superclass must be an instance of at least one subclass.

A R B A R B

A R B A R B

(a) (b)

(c) (d)

Name SSN GPA

STUDENT

GRADUATE UNDERGRAD

Degree Chair Class

38

Every instance of the superclass STUDENT must be an instance of either the GRADUATE student

or UNDERGRAD student subclass. That is, if John Doe is an instance of a STUDENT, then John must be

a graduate or undergraduate student. However, whether John Doe belongs to the graduate, undergraduate,

or both entity types is answered by the disjoint rule, which we will define in a moment. We use a double line

between the superclass entity type and the circle to represent the total participation.

4.5.2.3 Partial Participation Rule Membership is optional in a partial participation. An instance of a

superclass does not have to be an instance of any of the subclasses. An instance of the LIBRARY ITEM

superclass can be a member of BOOK, VIDEO CD, or JOURNALS; however it is not mandatory for an

instance to belong to any of these subclasses.

If the library item Newspaper is an instance of a superclass, it does not have to be included in one

of the subclasses; it can stay at the superclass level without having values for any subclass attributes. We

use a single line between the superclass entity type and the circle (the default notation) to represent partial

participation.

4.5.3 Disjoint Constraints

4.5.3.1 Disjoint constraints define whether it is possible for an instance of a superclass to simultaneously

be a member of one or more subclasses. Disjoint constraints indicate whether a superclass instance can be

disjointed or overlap more than one subclass.

4.5.3.2 Disjoint Rule The disjoint rule states that if an instance of a superclass is a member of any

subclass, then it cannot be a member of more than one subtype (note that the participation rule will dictate

whether the instance is a member of a subclass or not). We put a constraint of disjoint rule to indicate that

a student must be either a graduate or an undergraduate student but cannot belong to both subclasses

simultaneously. We indicate the disjoint rule by putting a letter “D” in the joining circle of the superclass/

subclass relationship.

An Example of the Disjoint Rule

4.6 Degree and Domain

The degree of a relationship type is the number of entity types that participate. Thus, the

LabSecMemberOf relationship type has degree 2, which we call a binary relationship type. To clarify the

role that an entity plays in each relationship instance, we can label a connecting edge with a role name that

indicates the purpose of an entity in a relationship. For example, we can have two binary relationship types

associating the student and team types, TeamMemberOf and LeaderOf. In the former case, a student

entity is a member of a team entity; in the later case, a student can be a leader of a team.

Name SSN GPA

STUDENT

GRADUATE UNDERGRAD

Degree Chair Class

D

39

The degree of a relationship type is the number of entity types that participate. If two entity types

participate, the relationship type is binary. A role name indicates the purpose of an entity in a relationship.

R diagram notation with roles member, leader, and lab team

The number of entity sets that participate in a relationship is called the degree of relationship.

For example, the degree of the relationship featured in Figure 3.8 is two because CUSTOMER

and ACCOUNT are two separate entity types that participate in the relationship. The three most common

degrees of a relationship in a database are unary (degree 1), binary (degree 2), and ternary (degree 3). We

will briefly define these degrees and then explore each kind of relationship in detail in subsequent sections.

Let E1, E2, . . . , En denote n entity sets and let R be the relationship. The degree of the relationship can

also be expressed as follows:

4.6.1 Unary Relationship A unary relationship R is an association between two instances of the same

entity type (i.e., R . E1 × E1). For example, two students are roommates and stay together in an apartment.

Because they share the same address, a unary relationship exists between them for the attribute Address.

4.6.2 Binary Relationship A binary relationship R is an association between two instances of two

different entity types (i.e., R . E1 × E2). For example, in a university, a binary relationship exists between

a student (STUDENT entity) and an instructor (FACULTY entity) of a single class; an instructor teaches

a student.

4.6.3 Ternary Relationship A ternary relationship R is an association between three instances of three

different entity types (i.e., R . E1 × E2 × E3). For example, consider a student using certain equipment for

a project. In this case, the STUDENT, PROJECT, and EQUIPMENT entity types relate to each other

with ternary relationships: a student checks out equipment for a project.

4.7 Data modeling using the Entity Relationship Model

Conceptual modeling is an important phase in designing a successful database application. Generally,

the term database application refers to a particular database. These programs often provide user-friendly

graphical user interfaces(GUI’s) utilizing forms and menus. Hence, part of the database application will

require the design, implementation and testing of these application programs. Traditionally the design and

testing of application programs has bee considered to be more in the realm of the software Engineering

domain than in the database domain.

4.7.1 E-R model concepts

The E-R data model gives us substantial flexibility in designing a database schema to model a given

enterprise. In this section we consider how a database designer may select from the wide range of alternatives.

Among the decisions to be made are the following :

CUSTOMER Has ACCOUNT

40

(a) Whether to use an attribute or an entity set to present an object.

(b) Whether a real-world concept is expressed most accurately by an entity set or by a

relationship set.

(c) Whether to use a ternary relationship or a pair of binary relationships.

(d) Whether to use a strong or a weak entity set(section 4.8.3), a strong entity set and its

dependent weak entity set may be regarded as a single ‘object’ in the database, since

weak entities are existence dependent on a strong entity set.

(e) Whether using generalization is appropriate , generalization is a hierarchy of a relationships

contributes to modularity by allowing common attributes of similar entity sets to be presented

in one place in an E-R diagram.

(f) Whether using aggregation is appropriate, aggregation groups a part of an E-R diagram

into a single entity set, allowing us to treat the aggregate entity set as a single unit without

concern for the details of its internal structure.

4.7.2 Notation for E-R Diagram

The overall logical structure of a database can be expressed graphically by an E-R diagram. The

relative simplicity and pictorial clarity of this diagramming may well account in large part for the widespread

use of the E-R model. The choices of names for entity types, attributes, relationship types and roles is not

always straightforward. One should choose names that convey as much as possible , the Such a diagram

consists of the following major components. Summary of the ER diagram notation are as follows:

Notation Meaning

Entity type

Attribute

Key attribute

Derived attribute

Multivalued attribute

Composite attribute

Relationship type

Total participation

Many-to-one relationship

Rectangles : which represent entity sets.

Ellipses : which represent attributes.

Diamonds : which represent relationship sets.

Lines : which link attributes to entity sets and entity sets to relationship sets.

Double ellipses : which represent multivalued attributes.

Dashed ellipses : which denote derived attributes.

41

Double lines : which indicate total participation of an entity in a relationship set.

Directed line : a directed line from relationship set to the entity set specifies that relationship is either a

one-to one, or many to one relationship set.

Undirected line : a undirected line from the relationship set relationship to the entity set specifies that

relationship is either a many to many, or a one to many relationship set .

Underlined ellipses : which indicate key attributes.

4.7.3 Entity sets

We know that a database usually contains group of entities that are similar. An entity type defines

a collection of entities that have the same attributes. Each entity type in the database is described by its

name and attributes. The collection of all entities of a particular entity type in the database at any point in

time is called an entity set, the entity set is usually referred to using the same name as the entity type. There

are times you might wish to define an entity set even though its attributes do not formally contain a key.

Entity sets do not need to be disjoint. For example, it is possible to define the entity set of all

employees of a bank and the entity set of all customers of the bank. A person entity may be an employee

entity, a customer entity, both or neither.

An entity set may not have sufficient attributes to form a primary key. Such an entity set is termed

a weak entity set. Usually, this is the case only because the information represented in such an entity set is

only interesting when combined through an identifying relationship set with another entity set we call the

identifying owner.

We will call such a set a weak entity set, and insist on the following:

• The weak entity set must exhibit a key constraint with respect to the identifying relationship

set.

• The weak entity set must have total participation in the identifying relationship set.

Together, this assures us that we can uniquely identify each entity from the weak set by considering

the primary key of its identifying owner together with a partial key from the weak entity.

In our ER diagrams, we will represent a weak entity set by outlining the entity and the identifying

relationship set with dark lines. The required key constraint and total participation are diagrammed with

our existing conventions. We underline the partial key with a dotted line.

In the physics laboratory ER model example, the entity type student is strong because its existence

does not depend on some other entity type. However, the team entity type is weak. The existence of

team depends on the existence of LabSection, and we call the in identifying relationship. We draw double

lines around the identifying relationship, the team entity type, and the line connecting the two to indicate the

weak entity type.

A weak entity set does not have sufficient attributes to form a primary key (not globally unique), a

discriminator is selected for the weak entity set.

name

ssn bt

Employees

cost

Policy

pname age

Dependents

.........

42

n The discriminator of a weak entity set is a set of attributes that allow us to distinguish

entities that are all dependent on one particular strong entity set.

Example (of discriminator):

{ Section number }

n The primary key of a weak entity set can be formed by the primary key of the strong entity

set on which it is existence dependent, plus its discriminator.

Example:

{Course name, section number }

or, {Course number, section number }

Note : An entity type is strong if its existence does not depend on some other entity type. Otherwise, the

entity type is weak.

4.8 Keys

An attribute or set of attributes that uniquely identifies a particular entity is a key. For example,

Emanuel Vagas’ Student Identification Number uniquely identifies him. It is important to be able to specify

how entities within a given entity set and relationships within a given relationship set are distinguished..

4.8.1 Concepts of Super Key

A super key of an entity set is a set of one or more attributes whose values uniquely determine each

entity. The combination of primary keys of the participating entity sets forms a super key of a relationship

set.

(customer-id, account-number) is the super key of depositor

Note : This means a pair of entity sets can have at most one relationship in a particular relationship set. E.g.

if we wish to track all access-dates to each account by each customer, we cannot assume a relationship for

each access.

Superkey: a set of one or more attributes which, taken collectively, allow us to identifying an entity

instance in an entity set uniquely.

Example:

 { student ID, name}

{ social insurance number, address }

{ row number, column number }

4.8.2 Concepts of Candidate Key

A minimal set of attributes in a table that uniquely identifies a record. When there is more than one

attribute in the candidate key, it is called composite key. A candidate key that is chosen to represent a

record uniquely. Each entity type must have an attribute or set of attributes that distinguishes one instance

43

from other instances of the same type. Attribute (or combination of attributes) that uniquely identifies each

instance of an entity type .

Candidate key : a smallest possible superkey. i.e. a superkey for which no proper subset is a superkey.

Example :

{ student ID }

{ social insurance number }

{ row number, column number }

4.8.3 Concepts of Primary Key

A table can have at most one primary key, but more than one unique key. A primary key is a

combination of columns which uniquely specify a row. It is a special case of unique keys. One difference is

that primary keys have an implicit NOT NULL constraint while unique keys do not. Thus, the values in

unique key columns may or may not be NULL, and in fact such a column may contain at most one NULL

fields.

Another difference is that primary keys must be defined using another syntax. That is, a table may

consist of many candidate keys, but ONLY ONE can be selected as a primary key. attribute we say that

the primary key is a composite primary key. One of the common mistakes students have made is to refer

to one of the attributes in the composite key as primary key. Please note that when there is more than one

attribute in the primary key ALL ATTRIBUTES TOGETHER are called the primary key since they together

define the record uniquely.

Primary key: a candidate key chosen by database designer as the principal means of identifying

entities within an entity set.

Example :

{ student ID }

Primary key selection criteria:

{ not change over time}

{ no null value}

4.9 Extended E-R Features

The processes of specialization, generalization and Aggregation are used to find such

opportunities. These processes serve as conceptual models for the development of superclass/subclass

relationships.

4.9.1 Generalization

Generalization is the process of defining general entity types from a set of specialized entity

types by identifying their common characteristics. In other words, this process minimizes the differences

between entities by identifying a general entity type that features the common attributes of specialized

entities. Generalization is a bottom-up approach as it starts with the specialized entity types (subclasses)

and forms a generalized entity type (superclass).

For example, suppose that someone has given us the specialized entity types FACULTY, STAFF,

and STUDENT, and we want to represent these entity types separately in the E-R model as depicted in

Figure 3.25(a). However, if we examine them closely, we can observe that a number of attributes are

common to all entity types, while others are specific to a particular entity.

44

For example, FACULTY, STAFF, and STUDENT all share the attributes Name, SSN, Birth

Date, Address, and Email. On the other hand, attributes such as GPA, Class, and MajorDept are

specific to the STUDENTS; OfficePhone is specific to FACULTY, and Designation is specific to STAFF.

Common attributes suggest that each of these three entity types is a form of a more general entity type. This

general entity type is simply a PERSON superclass entity with common attributes of three subclasses .

Thus, in the generalization process, we group specialized entity types to form one general entity

type and identify common attributes of specialized entities as attributes of a general entity type. The general

entity type is a superclass of specialized entity types or subclasses.

4.9.2 Specialization

Specialization is the process of defining one or more subclasses of a superclass by identifying its

distinguishing characteristics. Unlike generalization, specialization is thus a top-down approach. It starts

with the general entity (superclass) and forms specialized entity types (subclasses) based on specialized

attributes or relationships specific to a subclass.

For example, consider LIBRARY ITEM is an entity type with several attributes such as

IdentificationNo, RecordingDate, Frequency, and Edition. After careful review of these items, it should

become clear that some items such as books do not have values for attributes such as Frequency,

RecordingDate, and CourseNo, while Video CDs do not have an Author or an Edition. In addition, all

items have common attributes such as IdentificationNo, Location, and Subject. Someone creating a

library database, then, could use the specialization process to identify superclass and subclass relationships.

In this case, the original entity LIBRARY ITEM forms a superclass entity type made up of attributes

shared by all items, while specialized items with distinguishing attributes, such as BOOK, JOURNALS,

and VIDEOCD, form subclasses.

Address

SSN
BirthDate

Name

Email

PERSON

FACULTY STAFF STUDENT

Rank

Salary

OfficePhone
Salary Designation Class GPA

RecordingDate

CourseNo

Location

Subject Edition CurrentIssue

AuthorName

Frequency

IdentificationNo

LIBRARY ITEM

45

4.9.3 Aggregation

One limitation of the E-R model is that it is not possible to express relationships among relationships.

To illustrate the need for such a construct, we consider again a database describing information about

employee and branch. Suppose that each employee-branch pair may work with the managers. Using our

basic E-R modeling constructs, we obtain the E-R diagram. It appears that the relationship set works-on

and manages can be combined into one single relationship set. We should not combine them, because

doing so would obscure the logical structure of this schema. For example if we consider the works-on and

manages relationship sets, then this combination specifies that a manages must be assigned to every employee-

branch pair, which is not true.

There is redundant information in the resultant figure, however , since every employee-branch pair

in manages is also in works-on. The best way to model a situation such as the one just described is to use

aggregation. Aggregation is an abstraction through which relationships are treated as higher-level entities.

Thus we regard the relationship set work-on and the entity sets employee and branch as a higher-level

entity set called works-on. Such en entity set is treated in the same manner as in any other entity set.

LIBRARY ITEM

BOOK JOURNAL VIDEOCD

Edition AuthorName

Frequency CurrentIssue

CourseNo RecordDate

Location

IdentificationNo
Subject

Job

employee works-on branch

manages

manager

46

4.10 Summary

· Attribute - a property or description of an entity. A toy department employee entity could have

attributes describing the employee’s name, salary, and years of service.

· Domain - a set of possible values for an attribute.

· Entity - an object in the real world that is distinguishable from other objects such as the green

dragon toy.

· Relationship - an association among two or more entities.

· Entity set - a collection of similar entities such as all of the toys in the toy department.

· Relationship set - a collection of similar relationships

· One-to-many relationship - A key constraint that indicates that one entity can be

· Participation constraint - a participation constraint determines whether relationships must involve

certain entities. An example is if every department entity has a manager entity. Participation

constraints can either be total or partial. A total participation constraint says that every department

has a manager. A partial participation constraint says that every employee does not have to be a

manager.

· Weak entity set - an entity that cannot be identified uniquely without considering some primary key

attributes of another identifying owner entity. An example is including Dependent information for

employees for insurance purposes.

· Aggregation - a feature of the entity relationship model that allows a relationship set to participate

in another relationship set. This is indicated on an ER diagram by drawing a dashed box around the

aggregation.

· Role indicator - If an entity set plays more than one role, role indicators describe the different

purpose in the relationship. An example is a single Employee entity set with a relation Reports-To

that relates supervisors and subordinates.

4.11 Self Assessment Questions

Q.1 Explain the following terms using an example: entity-relationship model, entity type, weak entity,

attribute, key attribute, derived attribute, multi-valued attribute.

Q.2 Explain, using an example (other than the one discussed in the book), the contrast between the

following terms:

(a) entity type; entity instance

manager

manages

works-on

job

employee branch

47

(b) strong entity type; weak entity type

(c) simple attribute; composite attribute

(d) stored attribute; derived attribute

Q.3 Provide an example of multiple relationships between entities. Draw the E-R diagram.

Q.4 Under what conditions is a relationship converted to an associative entity type? Give an example.

Q.5 Explain why we study the E-R model of a database.

Q.6 A department in a university stores the information about its students and courses in a database.

The administrative assistant manages the database. At the end of the semester, he prepares a

report about each course. Is the E-R diagram correct? If not, explain why and draw the correct

diagram.

Q.7 Explain the distinctions among the terms primary key, candidate key, and super key.

Q.8 Define the concepts of Aggregation. Give two examples of where this concept is useful.

Q.9 Explain the difference between a Strong and weak entity set.

Q.10 Explain the distinction between total and partial design constraints. Explain your answer.

฀฀฀

48

Structure of the Unit

5.0 Objective

5.1 Introduction

5.2 Data Models

5.2.1 Object Based Logical Models

5.2.1.1 Object Oriented Moedl

5.2.2 Record Based Logical Models

5.2.2.1 Relational Model

5.2.2.2 Network Model

5.2.2.3 Hierachical Model

5.2.3 Physical Data Models

5.3 Relational Algebra

5.4 Fundamental Operation

5.5 Extended Relational Algebra Operations

5.6 Modification of the Database

5.7 Views

5.8 Tuple Relatonal Calculus

5.9 Domain Relational Calculus

5.10 Codd’s Rules

5.11 Summary

5.12 Answers to Self-Learning Exercises

5.13 Self Assessment Questions

5.0 Objective

The objective of this module is to make student familier with relational data base. After learning this

module student able to write database queries in the relational algebra. They also know how to querying

the data.

5.1 Introduction

E.F. Codd’s give the concept of relational algebra in 1970. Codd proposed an algebra as a basis

for database query languages.Relational algebra based on relational model. R elational model is a part of

record base data mode .It define data at logiacl and view level.

5.2 Data Models

The data model are collection of tools for describing: data, data relationships, data semantics, data

constraints or we can say data models are collection of conceptual tools describing data relationship

among data consistency constraints. Basic data model are :

5.2.1 Object-Based Logical Models

This data model is based on real world that consists of basic objects called entities and of relationship

among these objects. Entities are described in a database by a set of attributes. Example of object based

logical models is :

Unit - 5 : Relational Model

49

5.2.1.1 Object Oriented Model

This model is based on collection of objects. An object contains values stored in instance variables

with in the object. An object also contains bodies of code that operate on the object. These bodies of code

are called methods. Objects that contain same types of values and the same methods are grouped together

into classes.

Example of Object-based logical models is entity-relationship model, object-oriented model.

5.2.2 Record-Based Logical Model

It also describe be data at the conceptual and view levels. Unlike object-oriented models, are

used to specify overall logical structure of the database, and provide a higher-level description of the

implementation. The database is structured in fixed-format records of several types. Each record type

defines a fixed number of fields, or attributes. Each field is usually of a fixed length (this simplifies the

implementation). Record-based models do not include a mechanism for direct representation of code in

the database. Separate languages associated with the model are used to express database queries and

updates. The three most widely-accepted models are the relational, network, and hierarchical.

5.2.2.1 Relational Model

The relational model for database management is a database model proposed in 1969 by E.F.

Codd. Data and relationships are represented by a collection of tables. Each table has a number of

columns with unique names, e.g. Name ,EmpId, DeptName and City .

Examples of relational database are : MySQL, SQL Server, Access, Oracle, Sybase, DB2.

Figure 5.1 : A sample relational database.

Relation :

A relation is a table structure definition (a set of column definitions) along with the data appearing

in that structure. The structure definition is the heading and the data appearing in it is the body, a set of

rows. A database relvar (relation variable) is commonly known as a base table.Figure 5.2 show the employee

is a relation.

Employee

Name Emp Id DeptName City

Harry 3415 Finance Jaipur

Sally 2241 Sales Delhi

Georgy 3401 Finance Jaipur

Harriet 2202 Sales Kota

Figure 5.2 : Employee- relational database.

A
1 A

n

Relation variable

(Table name)

Attribute (Column) {unordered}

Heading

Relation

(Table)Body

Tuple (Row) {Unordered}

Value

R

50

Attribute/Column:

In the context of a relational database table, a column is a set of data values of a particular simple

type, one for each row of the table.The columns provide the structure according to which the rows are

composed. The term field is often used interchangeably with column, although many consider it more

correct to use field (or field value) to refer specifically to the single item that exists at the intersection

between one row and one column.

In relational database terminology, column’s equivalent is called attribute. An attribute is an ordered

pair of attribute name and type name. An attribute value is a specific valid value for the type of the attribute.

This can be either a scalar value or a more complex type.

For example, The Employee relation have the following columns:

Name ,EmpId (identifier, unique to each row), DeptName, City.

Each row would provide a data value for each column and would then be understood as a single

structured data value.The following terms are use with relational database .

Row/tuple :

A tuple is an ordered set of attribute values or a tuple is basically the same thing as a row. In a

relation a row represent a record . For example in employee relation a row is like

Harry 3415 Finance Jaipur

Cardinality :

The cardinality of a set is a measure of the “number of elements of the set”. For example, the set

A = {2, 4, 6} contains 3 elements, and therefore A has a cardinality of 3. similarly cardinality of a relation

is the “Number of rows “ in a relation. For example in employee relation total 4 rows or records so we

can say cardinality is 4.

Degree :

Number of attributes in a relation is called Degree of a relation .In the given example Employee

relation have 4 attribute (Name,EmpId,DeptName ,City) then degree is 4.

Domain :

A domain is a set of all possible data values. For example the domain of name is set of Name

(‘Harry’,’ Sally’,’ George’,’ Harriet’).

Column 1 Column 2

Row 1 Row1, Column 1 Row 1, Column 2

Row 2 Row2, Column 1 Row 2, Column 2

Row 3 Row 3, Column 1 Row 3, Column 2

Row 4 Row 4, Column 1 Row 4, Column 2

Figure 5.3 : Structure of a relation

In figure 5.3 ,the cardinality is 4 becose there are 4 records ,degree is 2 becase there is two

columns.

The consistency of a relational database is enforced, not by rules built into the applications that use

it, but rather by constraints , declared as part of the logical schema and enforced by the DBMS for all

applications. In general, constraints are expressed using relational comparison operators, of which just

one, “is subset of” is theoretically sufficient. In practice, several useful shorthands are expected to be

available, of which the most important are candidate key (really, superkey) and foreign key constraints.

51

Self-Learning Exercise :

1. What is a Relation Schema and a Relation?

5.2.2.2 Network Model

In network model data are represented by collections of records. Relationships among data are

represented by links. Organization is that of an arbitrary graph.

Figure 5.4 shows a sample network database that is the equivalent of the relational database.

Figure 5.4 : A Sample Network Database

5.2.2.3 Hierarchical Model

It is similar to the network model. Organization of the records is as a collection of trees, rather

than arbitrary graphs. Figure 5.5 shows a sample hierarchical database that is the equivalent of the relational

database.

Figure 5.5 : A sample Hierarchical Database

The relational model does not use pointers or links, but relates records by the values they contain.

This allows a formal mathematical foundation to be defined.example of hierarchical model is IMS.

5.2.3 Physical Data Models

The physical data model are used to describe data at the lowest level of abstraction, which is

physical level. Very few models, e.g. Unifying model., Frame memory.

5.3 Relational Algebra

IBM’s original implementation of Codd’s ideas was System R. There have been several

commercial and open source products based on Codd’s ideas, including IBM’s DB2, Oracle Database,

Microsoft SQL Server, PostgreSQL, MySQL, and many others. Most of these use the SQL data

definition and query language. A table in an SQL database schema corresponds to a predicate variable;

the contents of a table to a relation; key constraints, other constraints, and SQL queries correspond to

predicates. However, it must be noted that SQL databases, including DB2, deviate from the relational

model in many details; Codd fiercely argued against deviations that compromise the original

Lowery Maple Queens

Shree North Keonx

Hodges Sideh Kooklyn

900 55

556 L00000

647 L25266

801 LD522

Lowery Maple

900 55

Queens

Shree North Keonx

556 L00000 647 L25266

Hodges Sideh Kooklyn

647 L25266 801 LD522

52

principles.Relational algebra is essentially equivalent in expressive power to relational calculus (and thus

first-order logic); this result is known as Codd’s theorem. We must be careful to avoid a mismatch, that

may arise between the two languages since negation, applied to a formula of the calculus, constructs a

formula that may be true on an infinite set of possible tuples, while the difference operator of relational

algebra always returns a finite result. To overcome these difficulties, Codd restricted the operands of

relational algebra to finite relations only and also proposed restricted support for negation (NOT) and

disjunction (OR). Analogous restrictions are found in many other logic-based computer languages.

Codd defined the term relational completeness to refer to a language that is complete with respect to

first-order predicate calculus apart from the restrictions he proposed. In practice the restrictions have

no adverse effect on the applicability of his relational algebra for database purposes.

A query language is a language in which user requests information from the database. It can be

categorized as either procedural or nonprocedural. In a procedural language the user instructs the system

to do a sequence of operations on database to compute the desired result. In nonprocedural language the

user describes the desired information without giving a specific procedure for obtaining that information.

The relational algebra is a procedure language .It consist set of operation that take one and two

relation as their inputs and produce a new relation as their result .

As in any algebra, some operators are primitive and the others are derived in terms of the

primitive ones. It is useful if the choice of primitive operators parallels the usual choice of primitive

logical operators. Although it is well known that the usual choice in logic of AND, OR and NOT is

somewhat arbitrary, Codd made a similar arbitrary choice for his algebra. Five primitive operators of

Codd’s algebra are the selection, the projection, the Cartesian product (also called the cross product or

cross join), the set union, the set difference . Another operator, rename was not noted by Codd, These

six operators are fundamental in the sense that if you omit any one of them, you will lose expressive

power. Many other operators have been defined in terms of these six. Among the most important are set

intersection,division,and the natural join.

5.4 Fundamental Operation

Selection,Projection and Rename operation are called unary operations,because they operate on

one relation.The other operation are called binary operation because They operate on more then one

relation.

Symbolic Notation

From the example, one can see that for complicated cases a large amount of the answer is formed

from operator names, such as PROJECT and JOIN.The following symbolic notation are use to represent

the operators-

• SELECT ->σ (sigma)

• PROJECT -> π(pi)

• PRODUCT -> ×(times)

• JOIN -> |×| (bow-tie)

• UNION -> U (cup)

• INTERSECTION ->)”(cap)

• DIFFERENCE -> - (minus)

• RENAME ->ρ (rho)

53

RELATION r : Figure 5.6 show a relation

Figure 5.6 Relation r

1. Projection (Π)

A projection is a unary operation written as where a
1
,...,a

n
 is a set of attribute

names. The result of such projection is defined as the set that is obtained when all tuples in R are restricted

to the set {a
1
,...,a

n
}.

π
a1

,....,a
n
 (π

b1
,...,b

m
(R)) = π

a1
,...,a

n
 (R) where {a

1
,....,a

n
} ⊆ {b

1
,....,b

m
}

Example of projection operation is π A,C (r) result of this operation is given below, here r is a

relaion.

Figure 5.7 : π A,C (r) result

If we have employee relation then

Suppose if we want to find name and empid for all the employee from employee then we write

following statement -

π
Name,EmpId

 (Employee)

Output of this statement is

Figure 5.8 : result of π
Name,EmpId

 (Employee)

A B C D

α α 1 7

α β 5 7

β β 12 3

β β 23 10

Employee

Name Empld Dept Name

Harry 3415 Finance

Sally 2241 Sales

George 3401 Finance

Harriet 2202 Sales

Employee

Name Empld

Harry 3415

Sally 2241

George 3401

Harriet 2202

A C

α 1

α 5

β 12

α 23

54

2. Selection (σ)

A generalized selection is a unary operation written as where is a propositional formula

that consists of atoms as allowed in the normal selection and the logical operators (and), (or) and

(negation). This selection selects all those tuples in R for which holds.

Example of selection operation

σ
A=B ̂ D > 5

 (r)

Result of this operation is

If we want to display the employee whose department is Finance from Employee relation then we

write following statement:

σ
DeptName= Finance

 (Employee)

Output of this statement is :

Figure 5.9 : result of σ
DeptName= Finance

 (Employee)

3. Combine Selection and Projection

If we combine both selection and project into a single relation e.g. selected attribute display according

to the specific condition.

If we wants to display only name and employee id from employee relation whose department is

Finance then we write following statement -

π
Name,EmpId

 (σ
DeptName= Finance

 (Employee))

Figure 5.10 : result of π
Name,EmpId

 (σ
DeptName= Finance

 (Employee))

4. Rename (Ρ)

A rename is a unary operation written as ρ
a / b

(R) where the result is identical to R except that the

b field in all tuples is renamed to an a field. This is simply used to rename the attribute of a relation or the

relation itself.Allows us to name, and therefore to refer to, the results of relational-algebra expressions.

Allows us to refer to a relation by more than one name. Example:

ρ x (E)

Returns the expression E under the name X

If a relational-algebra expression E has arity n, then

ρ x (A
1,

A
2
, A

3
…… A

n
)(E)

⊆

55

Returns the result of expression E under the name X, and with the Attributes renamed to A
1,

A
2
,

A
3
…… A

n
 .

5. Set Operators

Although three of the six basic operators are taken from set theory, there are additional constraints

that are present in their relational algebra counterparts: For set union and set difference, the two relations

involved must be union-compatible—that is, the two relations must have the same set of attributes. Because

set intersection can be defined in terms of set difference, the two relations involved in set intersection must

also be union-compatible.

(a) Union :

Notation : r U s

Defined as : For r U s to be valid.

1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (example: 2nd column of r deals with the same type of

values as does the 2nd column of s)

r U s = {t | t ∈ r or t ∈ s} here t is tuple or row this expression is written in TRC which is explain

latter

Example :

σ
DeptName

 (Employee) U σ
DeptName

 (Dept)

Figure 5.11 : result of σ
DeptName

 (Employee) U σ
DeptName

 (Dept)

The union builds a relation consisting of all tuples appearing in either or both of two specified relations.

If we have we relations then union operation is as follows.

Figure 5.12 UNION operation

Employee

Name Empld Dept Name

Harry 3415 Finance

Sally 2241 Sales

George 3401 Finance

Harriet 2202 Sales

Dept.

Dept Name Manager

Finance George

Sales Harriet

Production Charles

Dept Name

Finance

Sales

Production

R

A
B
D
E
F

1
2
3
4
5

S

A
C
D
E

1
2
3
4

1
2
2
3
5
4
4

R UNION S

A
B

D
E
F

C

E

56

Example of UNION

UNION of R and S

The union of two relations is a relation that includes all the tuples that are either in R or in S or in

both R and S. Duplicate tuples are eliminated.

(b) Set Intersect

Notation: r s

Defined as:

Note: r s = r – (r – s)

π
DeptName

 (Employee) π
DeptName

 (Dept)

Figure 5.13 INTERSECT ()operation

Set intersection , the two relations involved must be union-compatible—that is, the two relations

must have the same set of attributes. Because set intersection can be defined in terms of set difference, the

two relations involved in set intersection must also be union-compatible.Intersection of R and S

the intersection of R and S is a relation that includes all tuples that are both in R and S.

(c) Set Difference Operation :

Set difference denoted by _ allows us to find out the tuple that are in one relation but not in

another .

Notation r – s

Defined as : Set differences must be taken between compatible relations.

1. r and s must have the same arity

2. Attribute domains of r and s must be compatible

π
DeptName

 (Dept) - π
DeptName

 (Employee)

 result of this operation is

DeptName

Finance
Sales

R

A
B
D
F
E

1
2
3
4
5

S

A
C
D
E

1
2
3
4

A
D

1
3

R INTERSECTION S

DeptName

Production

57

Figure 5.14 : DIFFERENCE operation

Difference of R and S

The difference of R and S is the relation that contains all the tuples that are in R but that are not in S.

6. Cartesian Product Cross Product :

The Cartesian product is defined differently from the one in set theory in the sense that tuples are

considered to be ‘shallow’ for the purposes of the operation. That is, the Cartesian product of an n-tuple

by an m-tuple has the 2-tuple “flattened” into an n+m-tuple. In set theory, the Cartesian product is a set of

2-tuples. More formally, R × S is defined as follows:

R × S = {(r
1
, r

2
, ..., r

n
, s

1
, s

2
, ..., s

m
) | (r

1
, r

2
, ..., r

n
) U R, (s

1
, s

2
, ..., s

m
) U S}

Like the Cartesian product, the cardinality of the result is the product of the cardinalities of its

factors, i.e., |R × S| = |R| × |S|. In addition, for the Cartesian product to be defined, the two relations

involved must have disjoint headers—that is, they must not have a common attribute name.

The Cartesian Product is also an operator which works on two sets. It is sometimes called the

CROSS PRODUCT or CROSS JOIN.

It combines the tuples of one relation with all the tuples of the other relation.

Notation r × s

Figure 5.15 : CROSS PRODUCT operation

R

A

B

D

F

E

1

2

3

4

5

S

A

C

D

E

1

2

3

4

B

F

E

2

4

5

R DIFFERENCE S

S DIFFERENCE R

C 2

4F

R

A

B

D

F

E

1

2

3

4

5

S

A

C

D

E

1

2

3

4

A 1 A 1

A 1 C 2

A 1 D 3

A 1 E 4

B 2 A 1

B 2 C 2

B 2 D 3

B 2 E 4

D 3 A 1

D 3 C 2

D 3 D 3

D 3 E 4

F 4 A 1

F 4 C 2

F 4 D 3

F 4 E 4

E 5 A 1

E 5 C 2

E 5 D 3

E 5 E 4

R CROSS S

58

7. Joins and Join-Like Operators :

(a) Natural Joins () :

Natural joins () is a binary operator that is written as (R S) where R and S are relations For an

example consider the tables Employee and Dept and their natural join: This can also be used to define

composition of relations. In category theory, the join is precisely the fiber product.

Figure 5.16 : Natural join operation

The natural join is arguably one of the most important operators since it is the relational counterpart

of logical AND. Note carefully that if the same variable appears in each of two predicates that are connected

by AND, then that variable stands for the same thing and both appearances must always be substituted by

the same value. In particular, natural join allows the combination of relations that are associated by a

foreign key.

For example, in the above example a foreign key probably holds from Employee.DeptName to

Dept.DeptName and then the natural join of Employee and Dept combines all employees with their

departments. Note that this works because the foreign key holds between attributes with the same name.

If this is not the case such as in the foreign key from Dept.manager to Employee.Name then we have to

rename these columns before we take the natural join. Such a join is sometimes also referred to as an

equijoin (see θ-join).

It is usually required that R and S must have at least one common attribute, but if this constraint is

omitted, and R and S have no common attributes, then the natural join becomes exactly the Cartesian

product.

(b) Join and Equijoin :

If we want to combine tuples from two relations where the combination condition is not simply the

equality of shared attributes then it is convenient to have a more general form of join operator, which is the

θ-join (or theta-join). The θ-join is a binary operator that is written as or where a and b are attribute

names, is a binary relation in the set {<, d”, =, >, e”}, v is a value constant, and R and S are relations. The

result of this operation consists of all combinations of tuples in R and S that satisfy the relation θ. The result

of the θ-join is defined only if the headers of S and R are disjoint, that is, do not contain a common

attribute.The simulation of this operation in the fundamental operations is therefore as follows:

Employee
DeptName

 Dept = σ
DeptName = Finance

(Employee × Dept)

Dept

DeptName Manager

 Finance George

 Sales Harriet

Production Charles

Dept

DeptName Manager

 Finance George

 Sales Harriet

Production Charles

Employee [x] Dept

Name EmpId DeptName Manager

Harry 3415 Finance George

Sally 2241 Sales Harriet

George 3401 Finance George

Harriet 2202 Sales Harriet

59

That are unique to the relation S (those that are not attributes of R). Then the left outer join can be

described in terms of the natural join (and hence using basic operators) as follows:

Let r
1
, r

2
, ..., r

n
 be the attributes of the relation R and let {(ω, ..., ω)} be the singleton relation on

the attributes

Figure 5.17 : result of Employee
DeptName

 Dept = σ
DeptName = Finance

(Employee × Dept)

In case the operator θ is the equality operator (=) then this join is also called an equijoin.

R

θ
 S = σ

θ
(R × S)

(c) Left Outer Join ():

The left outer join is written as R S where R and S are relations. The result of the left outer join is

the set of all combinations of tuples in R and S that are equal on their common attribute names, in addition

(loosely speaking) to tuples in R that have no matching tuples in S.

For an example consider the tables Employee and Dept and their left outer join:

In the resulting relation, tuples in S which have no common values in common attribute names with

tuples in R take a null value, ω.

Figure 5.18 Result of left outer join

Since there are no tuples in Dept with a DeptName of Finance or Executive, ωs occur in the

resulting relation where tuples in DeptName have tuples of Finance or Executive.

Let r
1
, r

2
, ..., r

n
 be the attributes of the relation R and let {(ω, ..., ω)} be the singleton relation on

the attributes that are unique to the relation S (those that are not attributes of R). Then the left outer join can

be described in terms of the natural join (and hence using basic operators) as follows:

(d) Right Outer Join ()

The right outer join behaves almost identically to the left outer join, but the roles of the tables are

switched.The right outer join of relations R and S is written as R S. The result of the right outer join is the

set of all combinations of tuples in R and S that are equal on their common attribute names, in addition to

tuples in S that have no matching tuples in R.

Employee [x] Dept

Name EmpId DeptName Manager

Harry 3415 Finance George

George 3401 Finance George

60

For example consider the tables Employee and Dept and their right outer join:

Figure 5.19 : Result of right outer join

In the resulting relation, tuples in R which have no common values in common attribute names with

tuples in S take a null value, ω.

Since there are no tuples in Employee with a DeptName of Production, ωs occur in the Name

attribute of the resulting relation where tuples in DeptName had tuples of Production.

Let s
1
, s

2
, ..., s

n
 be the attributes of the relation S and let {(ω, ..., ω)} be the singleton relation on

the attributes that are unique to the relation R (those that are not attributes of S). Then, as with the left outer

join, the right outer join can be simulated using the natural join as follows:

(e) Full Outer Join ()

The outer join or full outer join in effect combines the results of the left and right outer joins.

The full outer join is written as R S where R and S are relations. The result of the full outer join is

the set of all combinations of tuples in R and S that are equal on their common attribute names, in addition

to tuples in S that have no matching tuples in R and tuples in R that have no matching tuples in S in their

common attribute names.

The result of a join consists of tuples formed by combining matching tuples in the two operands,

an outer join contains those tuples and additionally some tuples formed by extending an unmatched tuple in

one of the operands by “fill” values for each of the attributes of the other operand.

In the resulting relation, tuples in R which have no common values in common attribute names with

tuples in S take a null value, ω. Tuples in S which have no common values in common attribute names with

tuples in R also take a null value, ω.

For an example consider the tables Employee and Dept and their full outer join :

61

Figure 5.20 : Result of full outer join

The full outer join can be simulated using the left and right outer joins (and hence the natural join

and set union) as follows:

R S = (R S) (R S)

8. Division (÷)

The division is a binary operation that is written as R ÷ S. The result consists of the restrictions of

tuples in R to the attribute names unique to R, i.e., in the header of R but not in the header of S, for which

it holds that all their combinations with tuples in S are present in R. For an example see the tables

Figure 5.21 : Result of Division operation

More formally the semantics of the division is defined as follows:

Let r(R) and s(S) be given relations, with S ⊆ R:

r ÷ s = π
R-S

-(r) - π
R-S

-(π
R-S

-(r) x s) -π
R-S

-

,S
(r))

5.5 Extended Relational Algebra Operations

Generalized Projection :

It extends the projection operation by allowing arithmetic functions to be used in projection list.

Π F1,F2 … Fn (E)

62

Where E: relational algebra expression Fi: arithmetic expression General format used for grouping :

G
1
, G

2
, … G

n

F
-

1 A1, F2 A2, … Fm Am
 (E) ,Where E is the relational algebra expression G

1
, G

2
, … G

n

are a list of attribute on which to groupFi are aggregate functions and Ai are attribute names

Example :

Table “Credit-info” :-

Figure 5.22 : “Credit-info” relation

Find how much money a person can spend. result of this quary is as-

Π
Customer-name,Limit, Credit_balance

(Credit-info)

Aggregate Function :

It takes a collection of values and returns a single value as a result. The aggregate functions are sum

() for summation, max () for fiding maximum, min () for minimum, avg () for finding average value, count ()

for finding count,

Table “stud” :-

Figure 5.23 : “stud” relation

So the Aggregate Functions are use as follows : -

SUM () : The sum() function find the total of the attribut on which we apply .

To find total of the Marks attribute of Record

G
sum (Marks)

 (stud)

AVG ():The avg() function find the average of the attribute on which we apply .

To find average of the Marks attribute of Record

G
 average (Marks)

(stud)

MIN (): The MIN () function find the minimum of of the attribute on which we apply.

To find the minimum of the Marks attribute of Record.

G
min (Marks)

(stud)

MAX():The MAX () function find the maximum of the attribute on which we apply.

To find the maximum of the Marks attribute of Record.

G
max (Marks)

 (stud)

63

COUNT(): The COUNT () function find the count of the attribute on which we apply.

To find the number of distinct values of Address attribute of Record

G
count distinct (Address)

 (stud)

Let’s assume that we have a table named Account with three columns, name Account_Number,

Branch_Name and Balance.

We wish to find the maximum balance of each branch.

Code: Π
Branch_Name

G
Max(Balance)

(Account).

To find the highest balance of all accounts regardless of branch.

Code : G
Max(Balance)

(Account).

Limitations Of Relational Algebra :

Although relational algebra seems powerful enough for most practical purposes, there are some

simple and natural operators on relations, which cannot be expressed by relational algebra. The transitive

closure of a binary relation is one of them.

5.6 Modification of the Database

There are certain operations for database modification .we express data modification by

assignment operation.

Insert :

To insert data information into a relation.

r← r ∪ E

where r is a relation and E is a relational algebra expression .

If we want insert the information about Smith with his new ecode number ‘017’ and address as

abc.

Relational algebraic expression for insertion:

0mployee ← Employee ∪ {(“07 “, “Smith “, “abc”)}

Insertion of loan information in loan relation then the expression is as follows:

loan ← loan ∪ {(“L-7”, “SBI”)}

Delete :

To delete data information into a relation.

r← r - E

where r is a relation and E is a relational algebra expression .

Write a relational algebraic expression to delete employee who live in city Kota.

Employee ← Employee - {(σ
city =’Kota’

(Employee))}

Update :

To change a value in a tuple without changing all values in the tuple. General formats for updating

is :

Generalized projection operator can be used. ie.,

r ß π
F1 F2 … Fn

-(r)

where r is the relational algebra expression.

Fi is either ith attribute of r to be updated

Example expression for illustration to increase balance with amount 100.

account ß π
acc_no, branch_name, balance + 100

- (account)

64

If we want to select only some tuples and update them, we can use the following expression.ie.,

r ←
F1 F2 … Fn

-(σ
P
(r)) ∪ (r - σ

P
(r))

where

r is the relational algebra expression.

Fi is either ith attribute of r to be updated

P denotes the selection condition

Write a relational algebraic expression to update by adding the balances more than 20000 with

Rs.60/- interest and otherwise Rs. 50/- interest.

Relational algebraic expression for updating:

account ← π
branch_name, acc_no, balance ← balance + 60

(σ
balance > 20000

(account)) ∪ π
branch_name, acc_no, balance ← balance

+ 50
(σ

balance < 20000
(account))

5.7 Views

Any relation that is not a part of the logical model but is made visible to the user as a virtual

(imaginary) relation is called a view. So a view is a virtual table.

Statement for creating view is as follows:

Create view view_name as <relational algebra expression>

Example : If a person wants to see a relation consisting of the employees with city ‘jaipur’ weite expression

as follows:

Create view emp as

(σ
city = “Jaipur”

(Employee))

Here employee is a relation and emp is a view name.

Materialized views :

Definitions :

Certain database systems allow view relations to be stored, but they make sure that if the actual

relations used in the view definition change then the view is kept up to date. Such views are called materialized

views.

The process of keeping views up to date is called view maintenance.

Use of materialized views :

If the views are used frequently then materialized views are used. But benefits of materialization

must be weighed against the storage cost and the added overhead of updates.

The following Example illustration updation cannot be perform Using views -

To create a view called loan_branch to display the loan relation without the amount information.

Create view loan_branch as π
loan_no, branch_name

(loan)

Now if insertion of loan information is done to the view, then the expression is as follows:

loan_branch loan_branch ∪ {(“L-37”, “Perryridge”)}

But while inserting into a view, it will directly insert the values into the loan relation and it will be

reflected back into the view by the view definition. But we need amount information to be added to the

loan relation since amount is set as NOT NULL constraint.

So, two chances will occur in this situation:

• Reject the insertion to the view and return an error message to the user.

65

• Insert a tuple with values as {(“L-37”, Peeryridge”, null)} by dropping the constraint in the

amount attribute of loan relation.

5.8 Tuple Relational Calculus

A nonprocedural query language. It describes information without giving specific procedure for

obtaining that information .A query or expression can be expressed in tuple relational calculus as

{ t | P(t)}

which means the set of all tuples ‘t’ such that predicate P is true for ‘t’.

Notations used :

• t[A] → the value of tuple ‘t’ on attribute, A

• t ∈ r → tuple ‘t’ is in relation ‘r’

• ∃ → there exists

Definition for ‘there exists’ (∃):

∃ t ∈ r(Q(t))

which means there exists a tuple ‘t’ in relation ‘r’ such that predicate Q(t) is true.

• for all

Definition for ‘for all’ :

 t ∈ r(Q(t))

which means Q(t) is true for all tuples ‘t’ in relation ‘r’.

• ⇒ → Implication

Definition for Implication (⇒):

P⇒Q means if P is true then Q must be true.

t | t denotes that tuple t is in relation and P is a formula similar to that of the predicate calculation.

Set of comparison operators: (e.g., <, =, >) and Set of connectives: and (Λ), or (V)‚ not (Ø) .

The equivalence rules of tuple relational calculus.

• P
1
∧ P

2
 is equivalent to -

—

¬ (¬ P
1
∨ ¬ P

2
)

• t ∈ r(P(t)) is equivalent to ¬ ∃ t ∈ r(¬P(t))

• P
1

⇒ P
2-
 is equivalent to ¬ P

1
∨ P

2

Division Operation in TRC :

R ÷ S = { t[a
1
,...,a

n
] : t R s S ((t[a

1
,...,a

n
] s) R) }

where {a
1
,...,a

n
} is the set of attribute names unique to R and t[a

1
,...,a

n
] is the restriction of t to this

set. It is usually required that the attribute names in the header of S are a subset of those of R because

otherwise the result of the operation will always be empty.

Natural Join Operation Statement in Relational Algebra :

The result of the natural join is the set of all combinations of tuples in R and S that are equal on their

common attribute names.

Self learning Exercise :

2. Write queries in tuple relational calculus in following form using following schema -

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

66

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)

(a) Find the loan number for each loan of an amount greater than $1200.

(b) Find the names of all customers having a loan, an account, or both at the bank

(c) Find the names of all customers having a loan at the Perryridge branch.

Safety of Expressions:

It is possible to write tuple calculus expressions that generate infinite relations. For example, { t | ¬

t ∈ r } results in an infinite relation if the domain of any attribute of relation r is infinite. To guard against the

problem, we restrict the set of allowable expressions to safe expressions.

An expression {t | P (t)} in the tuple relational calculus is safe if every component of t appears in

one of the relations, tuples, or constants that appear in P or we can say

Safety of expression in tuple relational calculus :

Query or expression {t | P (t)} is safe if all values that appear in the result are values from dom (p),

where dom (p) is domain of P. Else it is unsafe.

NOTE : This is more than just a syntax condition.

Example : { t | ¬ (t ∈ Emp) } is not safe , it defines an infinite set with attribute values that do not appear

in any relation or tuples or constants in P.

5.9 Domain Relational Calculus

A nonprocedural query language equivalent in power to the tuple relational calculus. Each query is

an expression of the form :

{ < x1, x2, …, xn > | P (x1, x2, …, xn)}

where x
1
,x

n
, … x

n
represents domain variables.

P represents a formula composed of atoms or domain

There are some question in DRC for which we can know how to write statement in DRC.

1. Suppose if we find the loan_number, branch_name, and amount for loans of over $1200

we write the following expression-

{< l, b, a > | < l, b, a > loanΛ a > 1200}

Note : There are three attrinbute in loan relation l for loan_no,b for branch_name ,a for amount.

2. Suppose if we find the names of all customers who have a loan of over $1200

{< c > | ∃ l, b, a (< c, l > ∈ borrower Λ < l, b, a > ∈ loan Λ a > 1200)}

Note : There are two attrinbute in borrower relation c for customer name l for loan_no, and there are

three attrinbute in loan relation l for loan_no,b for branch_name ,a for amount.

3. Suppose if we find the names of all customers who have a loan from the “SBI” branch and

the loan amount :

{< c, a > | l (< c, l > ∈ borrower ∃ b (< l, b, a > ∈ loan Λ b = “SBI”))}

OR

{< c, a > | ∃ l (< c, l > ∈ borrower Λ < l, “SBI”, a ∈ loan)}

67

4. Suppose if we find the loan_number, branch_name, and amount for loans of over $1200

{< l, b, a > | < l, b, a > loan Λ a > 1200}

5. Suppose if we find the names of all customers having a loan, an account, or both at the

“SBI” branch:

{< c > | l (< c, l > ∈ borrower

Λ ∃ b,a (< l, b, a > ∈ loan Λ b = “SBI”)) Λ∃ a (< c, a >∈ depositor

Λ∃ b,n (< a, b, n > ∈ account Λ b = “SBI”))}

Note : Account relation have three attributes are account_number, branch_name, balance, depositor have

customer_name,account_number, borrower have customer_name,loanno.

6. Suppose if we find the names of all customers who have an account at all branches located

in Jaipur:

{< c > | ∃ s,n (< c, s, n > customer) Λ

x,y,z (< x, y, z > ∈ branch Λ y = “Jaipur”)

∃ a,b (< x, y, z > ∈ account Λ < c,a > ∈ depositor)}

Note : Branch relation have branchname,branch city,assets,customer relation have customername,

account_number, account relation have three attributes are account_number, branch_name, balance and

depositor have customer_name,account_number

Safety of Expressions :

The expression:

{ < x1, x2, …, xn > | P (x1, x2, …, xn)}

is safe if all of the following hold :

1. All values that appear in tuples of the expression are values from dom (P) (that is, the values

appear either in P or in a tuple of a relation mentioned in P).

2. For every “there exists” subformula of the form $ x (P1(x)), the subformula is true if and only if

there is a value of x in dom (P1)such that P1(x) is true.

3. For every “for all” subformula of the form “x (P1 (x)), the subformula is true if and only if P1(x)

is true for all values x from dom (P1).

Self-learning Exercise :

3. Write an expression to find all customers who have an account, a loan or both at the Perryridge

branch in domain relational calculus.

5.10 Codd’S Rules

The consistency of a relational database is enforced, not by rules built into the applications that use

it, but rather by consteraints declared as part of the logical schema and enforced by the DBMS for all

applications. In practice, several useful shorthands are expected to be available, of which the most important

are candidate key (really, superkey) and foreign key constraints. Dr. E. F. Codd’s 12 rules.

For defining a fully relational database

Note that based on these rules there is no fully relational database management system available

today. In particular, rules 6, 9, 10, 11 and 12 are difficult to satisfy.

1. Foundation Rule :

A relational database management system must manage its stored data using only its relational

capabilities.

68

2. Information Rule :

All information in the database should be represented in one and only one way - as values in a

table.

3. Guaranteed Access Rule :

Each and every datum (atomic value) is guaranteed to be logically accessible by resorting to a

combination of table name, primary key value and column name.

4. Systematic Treatment of Null Values :

Null values (distinct from empty character string or a string of blank characters and distinct from

zero or any other number) are supported in the fully relational DBMS for representing missing

information in a systematic way, independent of data type.

5. Dynamic On-line Catalog Based on the Relational Model :

The database description is represented at the logical level in the same way as ordinary data, so

authorized users can apply the same relational language to its interrogation as they apply to regular

data.

6. Comprehensive Data Sublanguage Rule :

A relational system may support several languages and various modes of terminal use. However,

there must be at least one language whose statements are expressible, per some well-defined

syntax, as character strings and whose ability to support all of the following is comprehensible:

(a) data definition

(b) view definition

(c) data manipulation (interactive and by program)

(d) integrity constraints

(e) authorization

(f) transaction boundaries (begin, commit, and rollback).

7. View Updating Rule :

All views that are theoretically updateable are also updateable by the system.

8. High-level Insert, Update, and Delete :

The capability of handling a base relation or a derived relation as a single operand applies nor only

to the retrieval of data but also to the insertion, update, and deletion of data.

9. Physical Data Independence :

Application programs and terminal activities remain logically unimpaired whenever any changes

are made in either storage representation or access methods.

10. Logical Data Independence :

Application programs and terminal activities remain logically unimpaired when information

preserving changes of any kind that theoretically permit unimpairment are made to the base

tables.

11. Integrity Independence :

Integrity constraints specific to a particular relational database must be definable in the relational

data sublanguage and storable in the catalog, not in the application programs.

12. Distribution Independence :

The data manipulation sublanguage of a relational DBMS must enable application programs and

terminal activities to remain logically unimpaired whether and whenever data are physically

centralized or distributed.

69

13. Nonsubversion Rule :

If a relational system has or supports a low-level (single-record-at-a-time) language, that

low-level language cannot be used to subvert or bypass the integrity rules or constraints

expressed in the higher-level (multiple-records-at-a-time) relational language.

5.11 Summary

The relation algebra is a procedural language define set of algebraic operations that operate on

tables,and output tables are their results .there are two types of operation Selection,Projection and

Rename operation are called unary operations,because they operate on one relation.The other operation

are called binary operation because They operate on more then one relation

Database can be modify by insert ,delete and update commands we use assignment operator to

express these modification.

Tuple relational and domain relational calculus are non procedural query language .

Any relation that is not a part of the logical model but is made visible to the user as a virtual

(imaginary) relation is called a view. So a view is a virtual table.updatable views are those which are define

on a single relation because through the view we can modify the base table on which we can define a view.

5.12 Aanswer to Self Learning Exercise

Ans. 1 A relation Schema denoted by R(A
1
, A

2
, …, A

n
) is made up of the relation name R and the list of

attributes Ai that it contains. A relation is defined as a set of tuples. Let r be the relation which

contains set tuples (t
1
, t

2
, t

3
, ..., t

n
). Each tuple is an ordered list of n-values t=(v

1
,v

2
, ..., v

n
).

Ans. 2 (a) {t | s ∈ loan (t [loan_number] = s [loan_number] Λ s [amount] > 1200)}

Notice that a relation on schema [loan_number] is implicitly defined by the query.

(b) {t | s ∈borrower (t [customer_name] = s [customer_name])

Λ ∃ u ∈ depositor (t [customer_name] = u [customer_name]) }

(c) {t | ∃ s ∈ borrower (t [customer_name] = s [customer_name]

Λ u [loan_number] = s [loan_number]) Λ∃u ∈ loan (u [branch_name] =

“Perryridge”)}

Ans. 3 {<c> | ∃ l (<c,l> ∈ borrower ∧ ∃ b,a (<l,b,a> ∈ loan ∧ b = “Perryridge”)) ∨ ∃ a (<c,a> ∈

depositor ∧ ∃ b,bal (<a,b,bal> ∈ account ∧ b = “Perryridge”))}

5.13 Self Assessment Questions

1. Explain about the relational algebra?

2. Explain the various basic relational algebra operations in detail.

3. Write a note on relational calculus.

4. Consider the following tables:

Employee (Emp_no, Name, Emp_city)

Company (Emp_no, Company_name, Salary)

writes the following queries in relational algebra

(i) Write a query display Employee name and company name.

(ii) Write a query to display employee name, employee city ,company name and salary of all

the employees whose salary >10000

70

(iii) Write a query to display all the employees working in ‘XYZ’ company.

5. What is meant by a unary and binary operation? What are they?

6. How ‘Natural –Join’ operation is performed?

7. What is a join? What are the benefits of joins?

8. What is equijoin and non-equijoin?

9. List the operations of Relational algebra.

10. Differentiate between Cartesian product and natural join operations used in relationa

11. Define the following terms :

(a) Tuple (b) Domain

(c) Relation (d) Entity

(e) Regular entities

12. Discuss the various type of join operations ? Why are these join required.

13. List the operations of relational algebra and purpose of each.

14. What is the difference between tuple relational calculus and domain relational calculus?

15. SQL is called as non-procedural language. Explain?

16. What you mean by attribute? Explain various types of attributes.

17. How does Tuple-oriented relational calculus differ from domain-oriented relational calculus.

฀฀฀

71

Structure of the Unit

6.0 Objective

6.1 Introduction

6.2 Integrity Constraints

6.2.1 Check Integrity Constraints

6.2.2 Assertions

6.2.3 Trigger

6.2.4 Not Null

6.2.5 Unique Key

6.2.6 Primary Key

6.2.7 Referential Integrity

6.3 Summary

6.4 Answers to Self-Learning Exercises

6.5 Self Assessment Questions

6.0 Objective

The objective of this module to understand about Relational database management system. A type

of database in which the data can be spread across several tables that are related together. Data in related

tables are associated by shared attributes. Any data element can be found in the database through the

name of the table, the attribute (column) name, and the attribute values that uniquely identify each row.

After learning this module they differentiated between DBMS and RDBMS. They understand that a RDBMS

requires few assumptions about how data is related or how it will be extracted from the database. As a

result, the data can be arranged in different combinations.

6.1 Introduction

A relational DBMS is special system software that is used to manage the organization, storage,

access, security and integrity of data. This specialized software allows application systems to focus on the

user interface, data validation and screen navigation. When there is a need to add, modify, delete or

display data, the application system simply makes a “call” to the RDBMS. Although there are many

different types of database management systems, relational databases are by far the most common. Other

types include hierarchical databases and network databases.

The database management systems have been around since the 1960s; relational databases didn’t

become popular until the 1980s .A relational DBMS stores information in a set of “tables”, each of which

has a unique identifier or “primary key”. The tables are then related to one another using “foreign keys”. A

foreign key is simply the primary key in a different table. Diagrammatically, a foreign key is depicted as a

line with an arrow at one end.

In the Figure 6.1 , “Customer ID” is the primary key (PK) in one table and the foreign key (FK) in

another. The arrow represents a one-to-many relationship between the two tables. The relationship indicates

that one customer can have one or more orders. One and only one customer, however, can initiate a given

order. By storing data in a RDBMS, undesirable data redundancy can be avoided. This not only makes data

management easier, but it also makes for a flexible database that can respond to changing requirements.

Customer Customer ID (PK) Last Name First NamePhone Number

Unit - 6 : RDBMS

72

Order Order Number (PK)Customer ID (FK) Order DateOrder Fill Date

Figure 6.1 : Example of a Relational Database Management System (RDBMS)

Table 6.1

In table 6.1 show many different vendors that currently produce relational database management

systems (RDBMS). Relational databases vary significantly in their capabilities and in costs. Some products

are proprietary while others are open source. The leading vendors of RDBMS are listed below:

Self-Learning Exercise :

1. What is difference between DBMS and RDBMS?

6.2 Integrity Constraints

Integrity constraints are use to prevent invalid data entry into the base tables of the database. We

can define integrity constraints to enforce the business rules you want to associate with the information in a

database. If any of the results of a DML statement execution violate an integrity constraint, then database

systems back the statement and return an error.

For example, assume that you define an integrity constraint for the salary column of the employee’s

table. This integrity constraint enforces the rule that no row in this table can contain a numeric value greater

Customer

Customer ID (PK)

Last Name

First Name

Phone Number

Order

Order Number

(PK)Customer ID (FK)

Order Date

Order Fill Date

Vendors RDBMS

Computer INGRES

Associates

IBM DB2

INFORMIX INFORMIX

Software

Oracle Corporation Oracle

Microsoft

Corporation MS Access

Microsoft

Corporation SQL Server

MySQL AB MySQL

NCR Teradata

PostgreSQL Dvlp PostgreSQL

Grp

Sybase Sybase 11

73

than 10,000 in this column. If an INSERT or UPDATE statement attempts to violate this integrity constraint,

then Oracle rolls back the statement and returns an information error message.

The integrity constraints implemented in Oracle fully comply with ANSI X3.135-1989 and ISO

9075-1989 standards.

Use of integrity constraints to enforce the business rules associated with your database and prevents

the entry of invalid information into tables.

It is important that data adhere to a predefined set of rules, as determined by the database

administrator or application developer. As an example of data integrity, consider the tables employees and

departments and the business rules for the information in each of the tables, as illustrated in Figure 6.2.

Figure 6.2 : Examples of Data Integrity

Note that some columns in each table have specific rules that constrain the data contained within

them.

Data Integrity :

The following categories of the data integrity exist with each RDBMS:

· Entity Integrity : There are no duplicate rows in a table.

· Domain Integrity : Enforces valid entries for a given column by restricting the type, the

format, or the range of values.

· Referential integrity : Rows cannot be deleted, which are used by other records.

· User-Defined Integrity : Enforces some specific business rules that do not fall into

entity, domain, or referential integrity.

Specifying Semantic Integrity Constraints SQL DDL provides three constructs for specifying

semantic integrity constraints: Checks, Assertions, and Triggers. Check constraint specify where condition

is full fill or not. assertions and triggers, is implemented in all DBMSs.

A constraint is a predicate that must be satisfied, and it can be expressed as a condition over

multiple tables similarly to the way in which the WHERE-clause of a query using EXIST and NOT EXIST

is expressed.

Table DEPT

DEPTNO DNAME LOC

20 RESEARCH DALLAS

30 SALES CHICAGO

Table DEPT

EMPNO ENAME ...Other Columns...

6666 MULDER 5500.00 20

7329 SMITH 9000.00 20

7499 ALLEN 7500.00 100.00 30

7521 WARD 5000.00 200.00 30

7566 JONES 2975.00 400.00 30

SAL COMM DEPTNO

Each row must have a value

for the ENAME Column

Each value inthe

DEPTNO column

must match a value in

the DEPTNO column

of the DEPT table

Each value in the DNAME

column must be unique

Each row must have a

value for the EMPNO.

column & the value

must be unique

Each value in the SAL

column must be less

then 10,000

74

6.2.1 Check Integrity Constraints

A Check integrity constraint on a column or set of columns requires that a specified condition be

true or unknown for every row of the table. If a DML statement results in the condition of the CHECK

constraint evaluating to false, then the statement is rolled back.

The Check Condition CHECK constraints enable you to enforce very specific integrity rules by

specifying a check condition.

SQL Check Constraint :

This constraint defines a business rule on a column. All the rows must satisfy this rule. The constraint

can be applied for a single column or a group of columns.

Syntax to Define a Check Constraint :

[CONSTRAINT constraint_name] CHECK (condition)

For Example: In the employee table to select the gender of a person, the query would be like:-

Check Constraint at Column Level:

CREATE TABLE employee

(id number(5) ,

name char(20),

dept char(10),

age number(2),

gender char(1) CHECK (gender in (‘M’,’F’)),

salary number(10),

location char(10)

);

Check Constraint at Table Level :

CREATE TABLE employee

(id number(5) ,

name char(20),

dept char(10),

age number(2),

gender char(1),

salary number(10),

location char(10),

CONSTRAINT gender_ck CHECK (gender in (‘M’,’F’))

);

6.2.2 Assertions

An assertion prohibits an action that would violate a specified constraint. However, It isevaluated

every time a table involved in the constraint is modified. Assertions as global constraints.

An assertion is specified using the CREATE ASSERTION command. As an example, that the

budget in SECTION cannot be less than the sum of the salaries of the librarians who work in that section.

The same constraint expressed as an ASSERTION is given below.

Syntax:

CREATE ASSERTION < assertion_name>

SQL statement ;

75

Example :

CREATE ASSERTION ass_budget

CHECK (NOT EXISTS (SELECT * FROM SECTION

 WHERE budget < (SELECT SUM (Salary) FROM LIBRARIAN)));

Here ass_budget is the name of assertion .

When an assertion is not needed any longer, it can be removed, using the DROP ASSERTION

command:

DROP ASSERTION < assertion_name>;

Example :

DROP ASSERTION ass_budget;

6.2.3 Trigger

Although triggers are supported by several DBMSs, SQL2 has not fully defined them. Triggers

are expected to be defined fully in SQL3. A trigger is a block that is associated with a database table or

a view. It is executed when automatically fired by a DML statement.

A trigger is specified using the DEFINE TRIGGER command. Or CREATE TRIGGER, and it

consists of two parts: a condition and an action. The action is executed when the condition becomes

true. The condition specifies the time, and the events that will trigger the action. The time can specify

before or after a particular event. An event could be one of the modification operations: INSERT,

DELETE, or UPDATE.

The general form of DEFINE Trigger is

DEFINE TRIGGER

<trigger-name>

< time events>

ON <list-of-tables>

WHEN <Predicate>

<action-name>

An action could be, for example, a ROLLBACK, a DELETE, a transaction with multiple updates,

a stored procedure (as in our example below), and so on.

Let us express the same constraint we used above as a trigger: the salary of a librarian must not be

greater than the salary of his or her head librarian.

DEFINE TRIGGER librarian_salary_

after UPDATE of Salary

ON LIBRARIAN

WHEN (EXISTS (SELECT * FROM LIBRARIAN L, LIBRARIAN H, SECTION S

WHERE L.Salary > H.Salary AND L.Section = S.SectNo

AND S.HeadSSN = H.SSN and L.SSN <> H.SSN))

inform_director (L.SSN,HeadSSN);

We assumed that inform_director() is a procedure stored in the database and can be called by

the DBMS. Its arguments are the SSNs of the librarian and the head librarian and it sends an email to

the director of the library. When a trigger is not needed any longer, it can be removed using the DROP

TRIGGER command:

DROP TRIGGER librarian_salary ;

76

In conclusion, note the difference between assert and trigger in the condition. A trigger allows an

action that may violate a constraint and hence it tests for the presence of the violation. An assertion does

not permit a violation and hence it typically tests for its absence.

Self-Learning Exercise:

2. Assume that table EMPLOYEE contains column SALARY. Create a trigger, SAL_ADJ, that

prevents an update to an employee’s salary that exceeds 20% and signals such an error.

3. Difference between Store Procedure and Trigger?

So We can say that integrity constraints are the rules that can be applied to table columns to

enforce different types of data integrity. Other integrity constraints are as follows-

6.2.4 Not Null

A null is a rule defined on a single column that allows or disallows inserts or updates of rows

containing a null (the absence of a value) in that column. By default, all columns in a table allow nulls. Null

means the absence of a value. A NOT NULL constraint requires a column of a table contain no null values.

For example, you can define a NOT NULL constraint to require that a value be input in the last_name

column for every row of the employees table. Figure show a NOT NULL integrity constraint.

Figure 6.3 : Not Null Integrity Constraints

SQL Statement for Not Null Constraint :

This constraint ensures all rows in the table contain a definite value for the column which specified

as not null. Which means a null value is not allowed.

Constraints can be defined in two ways

(1) The constraints can be specified immediately after the column definition. This is called column level

definition.

(2) The constraints can be specified after all the columns are defined. This is called table-level

definition.

Syntax to Define a Not Null Constraint :

CREATE TABLE table name

(column1 datatype (size) CONSTRAINT id_c NOT NULL,

column2 datatype (size),

….

);

For Example : To create a employee table with Null value, the query would be like

CREATE TABLE employee

Table EMP

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7329 SMITH CEO 17-DEC-85 9,000.00 20

7499 ALLEN VP_SALES 7329 20-FEB-90 7,500.00 100.00 30

7521 WARD MANAGER 7499 22-FEB-90 5,000.00 200.00 30

7566 JONES SALESMAN 7521 02-APR-90 2,975.00 400.00 30

NOT NULL CONSTRAINT

(no row may contain a null

value for this column)

Absence of Not

NULL Constraint

(any row can contain

null for this column)

77

(id number(5) CONSTRAINT id_c NOT NULL,

name char(20) CONSTRAINT nm_nn NOT NULL,

dept char(10),

age number(2),

salary number(10),

location char(10)

);

Here we define two constraints on two different coloum we define id attribute to not null and give

constraint name id_c and second constraint is nm_nn which is define name attribute not null. That is it does

not accept null value we must enter some value in these attribute.

6.2.5 Unique Key

A UNIQUE key integrity constraint requires that every value in a column or set of columns (key)

be unique—that is, no two rows of a table have duplicate values in a specified column or set of columns.

The columns included in the definition of the UNIQUE key constraint are called the unique key.

Unique key is often incorrectly used as a synonym for the terms UNIQUE key constraint or UNIQUE

index. However, note that key refers only to the column or set of columns used in the definition of the

integrity constraint.

If the UNIQUE key consists of more than one column, that group of columns is said to be a

composite unique key. For example, in Figure the customer table has a UNIQUE key constraint defined

on the composite unique key: the area and phone columns.

Figure 6.4 : A Composite Unique Key Constraint

This Unique key constraint lets you enter an area code and telephone number any number of

times, but the combination of a given area code and given telephone number cannot be duplicated in the

table. This eliminates unintentional duplication of a telephone number.

Table CUSTOMER

CUSTNO CUSTNAME ...Other Columns... AREA PHONE

230 OFFICE SUPPLIES 303 506-7000

245 ORACLE CORP 415 506-7000

257 INTERNAL SYSTEMS 303 341-8100

Composite UNIQUE

Key Constraint

(no row may duplicate a set of

values in the key)

268 AEA CONSTRUCTION 415 506-7000

270 WW MANUFACTURING 506-7000

This row violates the, UNIQUE

key constraint, because 415/506-

7000 is already present in an-

other row; therefore, it is not al-

lowed in the table

This row is allowed because a

null value is entered for the

AREA column; however, if a

NOT NULL constraint is also

defined on the AREA column,

then this row is not allowed.

INSERT

INTO

78

Combine Unique Key and Not Null Integrity Constraints :

In Figure 6.4, Unique key constraints allow the input of nulls unless you also define Not Null

constraints for the same columns. In fact, any number of rows can include nulls for columns without Not

Null constraints because nulls are not considered equal to anything. A null in a column (or in all columns of

a composite Unique key) always satisfies a Unique key constraint. Columns with both unique keys and

Not Null integrity constraints are common. This combination forces the user to enter values in the unique

key and also eliminates the possibility that any new row’s data will ever conflict with an existing row’s

data.

SQL statement for Unique Key :

This constraint ensures that a column or a group of columns in each row have a distinct value.A

column(s) can have a null value but the values cannot be duplicated.

Syntax to Define a Unique Key at Column Level :

[CONSTRAINT constraint_name] UNIQUE

Syntax to Define a Unique Key at Table Level :

[CONSTRAINT constraint_name] UNIQUE(column_name)

For Example : To create an employee table with Unique key, the query would be like,

Unique Key at Column Level :

Synatx:

CREATE TABLE tablename

((column1 datatype (size) UNIQUE,

column2 datatype (size),

….

);

Example :

CREATE TABLE employee

(id number(5) ,

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10) UNIQUE

);

Note : We can define more than one column as a Unique.

or

CREATE TABLE employee

(id number(5) ,

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10) CONSTRAINT loc_un UNIQUE

);

79

Unique Key at Table Level :

Likewise, unique keys can be defined as part of the CREATE TABLE SQL statement.

CREATE TABLE TABLE_NAME (

id_col NUMBER(2),

col2 VARCHAR(20),

...

CONSTRAINT key_unique UNIQUE(key_col),

...

);

CREATE TABLE employee

(id number(5) ,

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10),

CONSTRAINT loc_un UNIQUE(location)

);

Defining Unique Keys in Already Created Table :

The definition of unique keys is as follows .

ALTER TABLE <TABLE identifier>

ADD [CONSTRAINT <CONSTRAINT identifier>]

UNIQUE (<COLUMN expression> {, <COLUMN expression>}...)

Example :

ALTER TABLE employee

ADD CONSTRAINT loc_un UNIQUE (location);

6.2.6 Primary Key

Each table in the database can have at most one PRIMARY KEY constraint. The values in the

group of one or more columns subject to this constraint constitute the unique identifier of the row. In effect,

each row is named by its primary key values.

The Oracle implementation of the PRIMARY KEY integrity constraint guarantees that following are true:

· No two rows of a table have duplicate values in the specified column or set of columns.

· The primary key columns do not allow nulls. That is, a value must exist for the primary key

columns in each row.

Primary Keys

The columns included in the definition of a table’s PRIMARY KEY integrity constraint are called

the primary key. Although it is not required, every table should have a primary key so that:

Each row in the table can be uniquely identified .No duplicate rows exist in the table

Figure 6.5 illustrates a Primary Key constraint in the departments table and examples of rows that

violate the constraint.

80

Figure 6.5 : A Primary Key Constraint

SQL Primary Key :

This constraint defines a column or combination of columns which uniquely identifies each row in

the table.

Syntax to Define a Primary Key at Column Level :

column name datatype [CONSTRAINT constraint_name] PRIMARY KEY

Syntax to Define a Primary Key at Table Level :

[CONSTRAINT constraint_name] PRIMARY KEY

(column_name1,column_name2,..)

column_name1, column_name2 are the names of the columns which define the primary Key.

The syntax within the bracket i.e. [CONSTRAINT constraint_name] is optional.

For Example : To create an employee table with Primary Key constraint, the query would be like.

Primary Key at Column Level :

If the primary key consists only of a single column, the column can be marked as such using the

following syntax:

CREATE TABLE TABLE_NAME (

id_col NUMBER(2) PRIMARY KEY,

col2 VARCHAR(20),

...

);

Example :

CREATE TABLE employee

(id number(5) PRIMARY KEY,

PRIMARY KEY

(no row may duplicate a value in the

key and no null values are allowed)

This row is not allowed because ‘20’ duplicates

an existing value in the primary key.

This row is not allowed because it contains

a null value for the primary key.

Table DEPT

DEPTNO DNAME LOC

20 RESEARCH DALLAS

30 SALES CHICAGO

20 MARKETING DALLAS

FINANCE NEW YORK

INSERT

INTO

81

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10)

);

or

CREATE TABLE employee

(id number(5) CONSTRAINT emp_id_pk PRIMARY KEY,

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10)

);

Primary Key at Table Level :

The primary key can also be specified directly during table creation. In the SQL Standard,

primary keys may consist of one or multiple columns. Each column participating in the primary key is

implicitly defined as Not Null. Note that some DBMS require explicitly marking primary-key columns

as Not Null.

Syntax for Defining Primary Key at Table Level :

CREATE TABLE TABLE_NAME (

id_col NUMBER(2),

col2 CHAR(20),

...

CONSTRAINT tab_pk PRIMARY KEY(id_col),

...

);

Example :

CREATE TABLE employee

(id number(5),

name char(20),

dept char(10),

age number(2),

salary number(10),

location char(10),

82

CONSTRAINT emp_id_pk PRIMARY KEY (id)

);

The syntax to add such a constraint to an existing table is defined in SQL:2003 like this:

ALTER TABLE <TABLE identifier>

ADD [CONSTRAINT <CONSTRAINT identifier>]

PRIMARY KEY (<COLUMN expression> {, <COLUMN expression>}...)

Example :

ALTER TABLE <TABLE identifier>

ADD CONSTRAINT emp_id_pk

PRIMARY KEY (id);

Or

ALTER TABLE <TABLE identifier>

ADD PRIMARY KEY (id); //without defining as a constraint

Self-Learning Exercise :

4. What’s the difference between a primary key and a unique key?

6.2.7 Referential Integrity

Common columns can relate different tables in a relational database, and the rules that govern

the relationship of the columns must be maintained. Referential integrity rules guarantee that these

relationships are preserved.

The following terms are associated with referential integrity constraints.

Term Definition :

Foreign Key : The column or set of columns included in the definition of the referential integrity

constraint that reference a referenced key.

Referenced Key : The Unique Key or primary key of the same or different table that is

referenced by a foreign key.

Dependent or Child Table :

The table that includes the foreign key. Therefore, it is the table that is dependent on the values

present in the referenced unique or primary key.

Referenced or Parent Table :

The table that is referenced by the child table’s foreign key. It is this table’s referenced key that

determines whether specific inserts or updates are allowed in the child table.

A referential integrity constraint requires that for each row of a table, the value in the foreign key

matches a value in a parent key.

Figure 6.6 shows a foreign key defined on the deptno column of the employees table. It guarantees

that every value in this column must match a value in the primary key of the departments table (also the

deptno column). Therefore, no erroneous department numbers can exist in the dept no column of the

employees table.

Foreign keys can be defined as multiple columns. However, a composite foreign key must

83

Figure 6.6 Referential Integrity Constraints

Self-Referential Integrity Constraints :

Another type of referential integrity constraint, shown in Figure –6.7, is called a self-referential

integrity constraint. This type of foreign key references a parent key in the same table.

In Figure-6.7, the referential integrity constraint ensures that every value in the mgr column of the

employees table corresponds to a value that currently exists in the empno column of the same table, but not

necessarily in the same row, because every manager must also be an employee. This integrity constraint

eliminates the possibility of erroneous employee numbers in the mgr column.

Figure 6.7 Single Table Referential Constraints

Table DEPT

DEPTNO DNAME LOC

20 RESEARCH DALLAS

30 SALES CHICAGO

Table DEPT

EMPNO ENAME JOB

7329 SMITH CEO 17-DEC-85 9,000.00 20

7499 ALLEN VP-SALES 7329 20-FEB-90 3,00.00 100.00 30

7521 WARD MANAGER 7499 22-FEB-90 5,00.00 200.00 30

7566 JONES SALESMAN 7521 02-APR-90 400.00 30

HIREDATE SAL DEPTNO

Referenced or

Parent Table

Foreign Key

(Values in dependent

table must match a

value in unique key or

primary key of

referenced table)

Parent Key

Primary key of

referenced table

MGR COMM

7571 FORD MANAGER 7499 23-FEB-90 5,000.00 200.00 40

7571 FORD MANAGER 7499 23-FEB-90 5,000.00 200.00

This row violates the referential constraint
because ‘40’ is not present in the referenced
table’s primary key; therefore, the row is not
allowed in the table.

This row is allowed in the table because a null

value is entered in the DEPTNO column;

however, if a not null constraint is also defined

for this column, this row is not allowed.

INSERT

INTO

Table DEPT

EMPNO ENAME JOB

7329 SMITH CEO 7329 9,000.00 20

7499 ALLEN VP-SALES 7329 7,500.00 100.00 30

7521 WARD MANAGER 7499 5,000.00 200.00 30

7566 JONES SALESMAN 7521 2,975.00 400.00 30

HIREDATE SAL DEPTNOMGR COMM

7571 FORD MANAGER 7331 23-FEB-90 5,000.00 200.00 30

This row violates the referential
constraint, because ‘7331’ is not present
in the referenced table’s primary key;
therefore, it is not allowed in the table.

INSERT

INTO

Foreign Key
(Values in dependent table must match a value in
unique key or primary key of referenced table)

Dependent or
Child Table

Referenced or
Parent Table

Primary Key
of referenced table

84

SQL Foreign Key or Referential Integrity :

This constraint identifies any column referencing the Primary Key in another table. It establishes a

relationship between two columns in the same table or between different tables. For a column to be

defined as a Foreign Key, it should be a defined as a Primary Key in the table which it is referring. One or

more columns can be defined as Foreign key.

Syntax to Define a Foreign Key at Column Level :

[CONSTRAINTconstraint_name]REFERENCES

Referenced_Table_name(column_name)

Syntax to Define a Foreign Key at Table Level :

[CONSTRAINT constraint_name] FOREIGN KEY(column_name)

REFERENCES referenced_table_name(column_name);

For Example:

1. Lets use the “Dept” table and “Emp”.

Foreign Key at Column Level :

CREATE TABLE Dept

(deptno number(5) CONSTRAINT pd_id_pk PRIMARY KEY,

dname char(20),

locchar(20));

CREATE TABLE Emp

(empno number(5) CONSTRAINT od_id_pk PRIMARY KEY,

ename char(20),

job char(20),

mgr number(5),

hiredate date,

sal number(8,2),comm number (5),

comm number (5,2),

deptno number(5) CONSTRAINT pd_id_fk REFERENCES dept(deptno)

);

Foreign Key at Table Level :

(empno number(5),

ename char(20),

job char(20),

mgr number(5),

hiredate date,

sal number(8,2),comm number (5),

comm number (5,2),

deptno number(5)

CONSTRAINT od_id_pk PRIMARY KEY(empno),

CONSTRAINT pd_id_fk FOREIGN KEY (deptno) REFERENCES dept(deptno)

);

85

2. If the employee table has a ‘mgr_id’ i.e, manager id as a foreign key which references primary key

‘id’ within the same table, the query would be like,

CREATE TABLE Emp

(empno number(5) PRIMARY KEY,

ename char(20),

job char(20),

mgr number(5)) REFERENCES Emp(empno),

hiredate date,

sal number(8,2),comm number (5),

comm number (5,2),

deptno number(5)

);

Nulls and Foreign Keys :

The relational model permits the value of foreign keys either to match the referenced primary or

unique key value, or be null. If any column of a composite foreign key is null, then the non-null portions of

the key do not have to match any corresponding portion of a parent key.

Actions Defined by Referential Integrity Constraints :

Referential integrity constraints can specify particular actions to be performed on the dependent

rows in a child table if a referenced parent key value is modified. The referential actions supported by the

FOREIGN KEY integrity constraints of Oracle are UPDATE and DELETE NO ACTION, and DELETE

CASCADE.

Update and Delete no Action :

The No Action (default) option specifies that referenced key values cannot be updated or deleted

if the resulting data would violate a referential integrity constraint. For example, if a primary key value is

referenced by a value in the foreign key, then the referenced primary key value cannot be deleted because

of the dependent data.

Delete Cascade :

A delete cascades when rows containing referenced key values are deleted, causing all rows in

child tables with dependent foreign key values to also be deleted. For example, if a row in a parent table

is deleted, and this row’s primary key value is referenced by one or more foreign key values in a child

table, then the rows in the child table that reference the primary key value are also deleted from the child

table.

Syntax :

Column datatype (size) REFERENCES tablename [(column name)] [ON DELETE CASCADE]

Example :

CREATE TABLE employee

(id number(5) PRIMARY KEY,

name char(20),

dept char(10),

age number(2),

mgr_id number(5) REFERENCES employee(id) ON DELETE CASCADE,

86

salary number(10),

location char(10)

);

If ON DELETE CASCADE option is set, a DELETE operation in the master table will trigger the

DELETE operation for the correcponding records in the detail table .

After a referential constraint has been defined, it can be dropped or altered by an ALTER TABLE

statement. To drop a foreign or parent key after a referential constraint has been defined, you must first

drop the constraint and then alter the table.

Update Cascade :

A update cascades when rows containing referenced key values are updated , causing all rows

in child tables with dependent foreign key values to also be updated. For example, if a row in a parent table

is updated , and this row’s primary key value is referenced by one or more foreign key values in a child

table, then the rows in the child table that reference the primary key value are also update from the child

table.

Syntax :

Column datatype (size) REFERENCES tablename [(column name)] [ON UPDATE CASCADE]

Example :

CREATE TABLE employee

(id number(5) PRIMARY KEY,

name char(20),

dept char(10),

age number(2),

mgr_id number(5) REFERENCES employee(id) ON UPDATE CASCADE,

salary number(10),

location char(10)

);

If ON UPDATE CASCADE option is set, a UPDATE operation in the master table will trigger

the UPDATE operation for the correcponding records in the detail table .

After a referential constraint has been defined, it can be dropped or altered by an ALTER TABLE

statement. To drop a foreign or parent key after a referential constraint has been defined, you must first

drop the constraint and then alter the table.

To DROP the Foreign Key We Use Following Syntax :

ALTER TABLE table name DROP FOREIGN KEY ;

To DROP the foreign key we use define it by using constraint following syntax:

ALTER TABLE table name DROP CONSTRAINT constraints name;

Self-Learning Exercise :

5. What are the advantages and disadvantages of primary key and foreign key in SQL?

6.3 Summary

RDBMS stands for Relational Database Management System. RDBMS is the basis for SQL,

and for all modern database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft

Access.A Relational database management system (RDBMS) is a database management system (DBMS)

that is based on the relational model as introduced by E. F. Codd. The data in RDBMS is stored in

87

database objects called tables. The table is a collection of related data entries and it consists of columns

and rows. Every table is broken up into smaller entities called fields. The fields in the EMPLOYEE

table consist of ID, NAME, AGE, ADDRESS and SALARY. A field is a column in a table that is

designed to maintain specific information about every record in the table. A record, also called a row of

data, is each individual entry that exists in a table.A record is a horizontal entity in a table.A column is a

vertical entity in a table that contains all information associated with a specific field in a table.

A NULL value in a table is a value in a field that appears to be blank which means A field with a

NULL value is a field with no value. It is very important to understand that a NULL value is different than

a zero value or a field that contains spaces. A field with a NULL value is one that has been left blank during

record creation.

Constraints are the rules enforced on data columns on table. These are used to limit the type of

data that can go into a table. This ensures the accuracy and reliability of the data in the database.

Constraints could be column level or table level. Commonly used constraints are-

Not Null Constraint : Ensures that a column cannot have Null value.

Default Constraint : Provides a default value for a column when none is specified.

Unique Constraint : Ensures that all values in a column are different.

Primary Key : Uniquely identified each rows/records in a database table.

Foreign Key : Uniquely identified a rows/records in any another database table.

Check Constraint : The CHECK constraint ensures that all values in a column satisfy certain conditions.

6.4 Answers to Self-Learning Exercises

1. The main difference of DBMS & RDBMS is RDBMS have Normalization. Normalization means

to refining the redundant information and the DBMS hasn’t normalization concept.

2. CREATE TRIGGER SAL_ADJ

AFTER UPDATE OF SALARY ON EMPLOYEE

REFERENCING OLD AS OLD_EMP

NEW AS NEW_EMP

FOR EACH ROW MODE DB2SQL

WHEN (NEW_EMP.SALARY > (OLD_EMP.SALARY *1.20))

BEGIN ATOMIC

SIGNAL SQLSTATE ‘75001’(‘Invalid Salary Increase - Exceeds 20%’);

END

3. We can call stored procedure explicitly, but trigger is automatically invoked when the action

defined in trigger is done. Stored procedure can’t be inactive but trigger can be Inactive. Triggers

are used to initiate a particular activity after fulfilling certain condition. Ttrigger can be define and

can be enable and disable according to need.

4. Both primary key and unique enforce uniqueness of the column on which they are defined. But

we can define more than one column as a unique but a relation have only one primary key.

Another major difference is that, primary key doesn’t allow NULLs, but unique key allows one

Null only .

5. Primary Key

Advantages

(1) It is a unique key on which all the other candidate keys are functionally dependent

Disadvantage

88

(1) There can be more than one keys on which all the other attributes are dependent on.

Foreign Key :

It allows referencing another table using the primary key for the other table

6.5 Self Assesment Questions

1. Explain different type of integrity constraints with example.

2. What do you meant by database integrity?

3. What are the advantages and limitation of triggers?

4. How are the nulls represented in database system?

5. What are the situations where you can use nulls?

6. What is a primary key? Give an example.

7. What is an alternate key? Give an example.

8. What do you mean by foreign key?

9. What are domain constraints?

10. What is entity integrity?

11. What is a referential integrity?

´ ´ ´

89

Unit - 7 : Normalization

Structure of the Unit

7.0 Objective

7.1 Introduction

7.2 Database Design

7.2.1 Meaning of ‘Relation’

7.2.2 Introduction to Normalization

7.2.3 Purpose of Normalization

7.2.4 Steps of Normalization

7.2.5 Functional Dependency

7.3 Normal Forms

7.3.1 First Normal Form (1NF)

7.3.2 Second Normal Form (2NF)

7.3.3 Third Normal Form (3NF)

7.3.4 Boyce-Code Normal Form (BCNF)

7.4 Summary

7.5 Answer to Self-Learning Exercises

7.6 Self Assessment Questions

7.0 Objective

Topics covered within the unit are as follows,

• Idea about Database Design;

• Define a Relation;

• Know the purpose of Normalization;

• Understand the steps involved for normalization process.

7.1 Introduction

Normalization is a technique that is more applicable to record-based data models for e.g. a

relational database model. Each of the processes can be carried out independently to arrive at normalized

tables (depending on how detailed the decompositions is). If ER Modeling is done in detail, normalization

may not be required at all. However, some people use the ER diagram as an input to normalization i.e. if

the tables derived from ER diagrams are in the first normal form.

In this unit we will concentrate on normalization which is an important step in database design,

particularly for relation DBMSs. The relational data model is based on a relation. When structuring data

that is to be stored, the analyst must anticipate the need to access the data to meet unexpected

requirements and to reduce redundancy. These can be achieved through the techniques of

‘Normalization’ that provides a systematic way of boiling data structures down to their simplest possible

forms.

90

7.2 Database Design

Database design involves designing the conceptual model of the databases. This model is independent

of the physical representation of data. Before actually implementing the database, the conceptual model is

designed using various techniques.

The requirements of all the users are taken into account to decide the actual data that needs to be

stored in the system. Once the conceptual model is designed, it can then be mapped to the DBMS/

RDBMS that is actually being used. Two of the widely used approaches are Entity-Relationship (ER)

Modeling and Normalization.

7.2.1 Meaning of ‘Relation’

A ‘Relation’ is a two-dimensional table. It consists of ‘rows’ which represent records and

‘columns’ which show the attributes of the entity. A relation is also called a file, it consists of a number of

records which are also called as tuples. Record consists of a number of attributes which are also known as

fields or domains.

In order for a relational structure to be useful and manageable, the relation tables must first be ‘normalized’.

Figure 7.1: Components of a ‘Relation’

Some of the properties of a relation are,

• No duplication: In the sense that no two records are identical.

• Unique key: Each relation has a unique key by which it can be accessed.

• Order: There is no significant order of data in the table

Figure 7.2 : Un-normalized Employee Record

Data

Item 1

Data

Item 2

Data

Item 3

Records

Relations

Attributes

91

Figure 7.2 shows a relation (un-normalized form) of the employee entity. As per the figure an un-

normalized form of an employee record consists of the following,

Employee no., employee name, employee details (department code, grade, date of joining,

exit code and exit date), annual salary earned (MMYY, net paid), bank details (bank code, bank

name, address, employees A/C no).

In case we want the names of all the employees whose grade is 20, we can scan the employee

relation, noting the grade. Here the unique key is the employee number.

Here it is clearly seen that the employee’s annual salary earned details which are Month and Year

paid, net paid, are being repeated. Therefore this relation is not following the normalization process. Now,

the question arises ‘what is normalization’?

7.2.2 Introduction to Normalization

Normalization is a process of simplifying the relationship between data elements in a record. It is

the transformation of complex data stores to a set of smaller, stable data structures.

Normalized data structures are simpler, more stable and are easier to maintain. Normalization can

therefore be defined as a process of simplifying the relationship between data elements in a record.

7.2.3 Purpose of Normalization

Normalization is carried out for the following four reasons,

• To structure the data so that there is no repetition of data, this helps in saving space.

• To permit simple retrieval of data in response to query and report requests.

• To simplify the maintenance of the data through updates, insertions and deletions.

• To reduce the need to restructure or reorganize data when new application requirements

arise.

7.2.4 Steps of Normalization

Normalization process starting with a data store developed for a data dictionary and analyst normalizes

a data structure in three steps. Each step involves an important procedure to simplify the data structure.

It consists of basic three steps:

1. First Normal Form which decomposes all data groups into two-dimensional records.

2. Second Normal form which eliminates any relationship in which data elements do not fully depend

on the primary key of the record.

3. Third Normal Form which eliminates any relationships that contain transitive dependencies.

Figure 7.3 Steps of Normalization

 User Views/ Data

Stores

Un-normalized

Relations

First Normal Form

Second Normal

Form

Third Normal

Form

Step 1: Remove repeating groups
Fix record length

Identify primary key.

Step 2: Removal of data items which
are not dependent on primary key.

Step 3: Removal of transitive
 dependencies

92

7.2.5 Functional Dependency

So, before we start to learn about ‘Normalization and its steps’, we have to understand the term

‘Functional dependency’.

Let X and Y be two attributes of a relation R. Given the value of X, if there is only one value of Y

corresponding to it, then y is said to be functionally dependent on X.

X

 Y

So, Y is functionally dependent on X.

Consider an example, given the value of item code, there is only one value of item name for it. Thus

item name is functionally dependent on item code.

Item Code Item Name

Functional dependency may also be based on a composite attributes. Suppose, if we write,

X, Z Y

It means that there is only one value of Y corresponding to given values of X,Z. So, Y is functionally

dependent on the composite X, Z. In figure 7.3, for example, Order no., and Item code together determine

Qty. and Price.

Order no., Item code Qty., Price

Order no. Order date Item code Quantity Price/unit

1456 260289 3687 52 50.40

1456 260289 4627 38 60.20

1456 260289 3214 20 17.50

1886 040389 4629 45 20.25

1886 040389 4627 30 60.20

1788 040489 4627 40 60.20

Figure 7.4 : Normalized form of the Relation

There are mainly three types of functional dependencies,

(a) Full functional dependency

(b) Partial functional dependency

(c) Transitive dependency

(a) Full functional dependency :

Consider the following Relation

REPORT1(S#, SName, C#, CTitle, Iname, Room#, Marks, Grade)

S# Student Number

SName Student Name

C# Course Number

CTitle Course Title

Iname Name of the Instructor who delivered the course

Room# Room number which is assigned to respective instructor

93

Marks Scored in Course COURSE# by the student STUDENT#

Grade Obtained by student STUDENT# in Course C#

Functional dependencies in the given example are,

S# SName

C# CTitle

C# Iname (Assuming one course is thought by only one instructor)

IName Room# (Assuming each instructor has his won non-shared room)

S#.C# Marks

Marks Grade

S#.C# Grade

Dependency Diagram :

REPORT1(S#, C#, CTitle, SName, Iname, Room#, Marks, Grade)

Figure 7.5 : Dependency Diagram

In above example, Marks is fully functionally dependent on S#, C# and not on subset of S#, C#.

This means, marks cannot be determined either by S# or C# alone. It can be determined only using S# and

C# together. Hence Marks is fully functionally dependent on S# and C#.

(b) Partial functional dependency :

If in a relation R, X and Y are attributes. Attribute Y is partially dependent on the attribute X only

if it is dependent on a sub-set of attribute X.\

In the above relationship (figure 7.4) CTitle, Iname are partially dependent on composite attributes

S#, C# because C# alone defines the CTitle, Iname.

(c) Transitive dependency :

In a give relation R, there are three attributes X, Y and Z. Y is functionally dependent on X and Z

is functionally dependent on Y. Therefore there is an indirect dependency between X and Z. This is called

‘Transitive (indirect) Dependency’.

SName

Marks

Grade

CTitle

IName

Room#

S#

C#

94

X Y

Y Z

X Z

In the above example, Room# depends on Iname and in turn Iname depends on C#. Hence

Room# transitively depends on C#.

Similarly, Grade depends on Marks, in turn Marks depends on S#, C# hence Grade depends

transitively on S#, C#.

Check Your Progress - 7.1 :

 1. A _________ is a two-dimensional table. It consists of ‘rows’ which represent records and

‘columns’ which show the attributes of the entity.

(a) Relation (b) Software

(c) System (d) None of above ()

 2. A relation is also called a _________.

(a) File (b) Data

(c) Software (d) None of above ()

 3. A Relation consists of a number of records which are called as__________.

(a) Columns (b) Systems

(c) Tuples (d) All of above ()

 4. Record consists of a number of attributes which are also known as _______.

(a) Fields (b) Package

(c) Programs (d) None of above ()

 5. _________reduces redundancy.

(a) Normalization (b) System

(c) Software (d) Table ()

7.3 Normal Forms

Normalization reduces redundancy. Redundancy is the unnecessary repetition of data. It can

cause problems with storage and retrieval of data. Redundancy can lead to

• Inconsistencies: Errors are more likely to occur when facts are repeated.

• Update Anomalies

o Inserting, modifying and deleting data may cause inconsistencies.

o There is a high likelihood of updating or deleting data in one relation, while

omitting to make corresponding changes in other relations.

7.3.1 First Normal Form (1NF)

A relation is said to be in first normal form if all attributes defined on domains containing atomic

values. Consider the following relation; this relation is un-normalized because each row contains multiple

values.

The relational model does not permit tables that the un-normalized. In the relational mode, every

relation is in first normal form. Hence, the tables arrived at form the entity-relationship diagram should be

at least in first normal form.

95

ECODE DEPT PROJCODE HOURS

EN101 SYSTEMS P27 90

 P51 101

 920 60

EN305 SALES P27 109

EN508 ADMIN P51 Null

 P27 72

Figure 7.6 : Un-normalized Relation

Steps for above converting a database to 1NF:

• Put all double values in separate lines.

 ECODE DEPT PROJCODE HOURS

 EN101 SYSTEMS P27 90

 EN101 SYSTEMS P51 101

 EN101 SYSTEMS 920 60

 EN305 SALES P27 109

 EN508 ADMIN P51 NULL

 EN508 ADMIN P27 72

Figure 7.7 : A relation in First Normal Form (1NF)

7.3.2 Second Normal Form (2NF)

Data in the tables in 1NF may be redundant. Consider the table in figure 7.6. This table stores the

following attributes:

ECODE : employee code.

DEPT : department to which the employee belongs.

PROJCODE : code of project on which employee is working.

HOURS : number of hours worked on project.

The primary key here is composite (ECODE + PROJCODE). Few attributes in this table depends

upon only part of the primary key as given below,

• PROJCODE + ECODE functionally determine HOURS.

• ECODE functionally determines DEPT. Attributes DEPT has no dependency on

PROJCODE.

This situation could lead to the following problems,

(a) Insertion : The department of a particular employee cannot be recorded until the employee is

assigned a project.

(b) Updation : For a given employee, the employee code and department is repeated several times.

Hence, if an employee is transferred to another department, this change will have to be recorded

in every instance or record of the employee. Any omissions will lead to inconsistencies.

(c) Deletion : If an employee completes work on a project, his/her record will be deleted. The

information regarding the department the employee belongs to will also be lost.

96

The table in figure 7.6 should, therefore, be decomposed without any loss of information as shown

under,

ECODE

EN101

EN305

EN508

ECODE PROJCODE HOURS

EN101 P27 90

EN101 P51 101

EN101 920 60

EN305 P27 109

EN508 P51 NULL

EN508 P27 72

Figure 7.8 : No-loss decomposition in Second Normal Form (2NF)

Notice that the original table can be reconstructed with a join.

A table is said to be in Second Normal Form when it is in First Normal Form, and every attribute

in the record is functionally dependent upon the whole key, and not just a part of the key.

The steps for converting a database to Second Normal Form (2NF):

• Identify the functional dependencies in the relation.

• Identify attributes that are dependent only to a part of key (partial dependency).

• Remove partial dependencies by placing them in new relations together with a copy of

determinant.

7.3.3 Third Normal Form (3NF)

A table is said to be in 3NF when it is in 2NF and every non-key attribute is functionally dependent

on just the primary key. For example, consider the figure 7.8. The primary key is ECODE. The attribute

DEPT is dependent on ECODE. The attribute DEPT-HEAD is dependent on DEPT-HEAD is the code

of the department head. Notice that there is a transitive dependence between ECODE and DEPT-HEAD

attributes.

ECODE DEPT DEPT-HEAD

E101 SYSTEMS E901

E305 SALES E906

E402 SALES E906

E508 ADMIN E908

E607 FINANCE E909

E608 FINANCE E909

Figure 7.8 : Table with Transitive Dependency

97

The problems with transitive dependency are:

• Insertion :

The department head of a new department that does not have any employees as yet cannot be

entered. This is because the primary key is unknown.

• Updation :

For a given department, the department head’s code is repeated several times. Hence, if a

department head is moved to another department, the change will have to be made consistently

across.

• Deletion :

If a particular employee record is deleted, the information regarding the head of the department

will also be deleted. Hence, there will be a loss of information.

The relation is therefore, reduced to the following two relations:

ECODE DEPT DEPT DEPT-HEAD

E101 SYSTEMS SYSTEMS E901

E305 SALES SALES E906

E402 SALES ADMIN E908

E508 ADMIN FINANCE E909

E607 FINANCE

E608 FINANCE

Figure 7.9 : Removing Transitive Dependency

Each non-key attribute depends of the key, the whole key and nothing but the key.

7.3.4 Boyce-Code Normal Form (BCNF)

The original definition of 3NF was inadequate in some situations. It was not satisfactory for relation

that:

• Had multiple candidate keys, where

⇒ Those candidate keys were composite.

⇒ The candidate keys overlapped (had at least one attribute in common).

Hence, a new normal form – the Boyce-Codd Normal Formal (BCNF) was introduced. We must

understand that in relations where the above three conditions do not apply, we can stop at the third normal

form. In such cases, 3NF is the same as BCNF.

Let us examine BCNF in detail. Consider the table in figure 7.10. The relation PROJECT holds

details on the number of hours spent by each employee working on each project.

ECODE EMAILID PROJCODE HOURS

E1 bk@rediffmail.com P2 48

E1 bk@rediffmail.com P5 100

E1 bk@rediffmail.com P6 15

E4 rahul@rediffmail.com P5 250

E5 rahul@rediffmail.com P5 75

Figure 7.10 : Project Table

98

Notice the following dependencies in this relation :

• The attributes ECODE and PROJCODE functionally determine HOURS.

• The attribute EMAILID and PROJCODE also functionally determine determines HOURS.

• ECODE functionally determine EMAILID.

• EMAILID functionally determine ECODE.

Notice that this relation has :

• Multiple candidate keys.

• The candidate keys are composite.

• The candidate keys overlap – PROJCODE is common.

This is a case for the Boyce-Codd Normal Form. This relation is in 3NF. The only non-key item

is HOURS, and it is dependent on the whole key and only the key, i.e. PROJCODE+ECODE or

PROJCODE+EMAILID. However, this relation has redundancies. If the emailed of and employee is

changed, the change will have to be made in every tuple of the relation, otherwise inconsistencies will creep

in. This table needs to be further decomposed to eliminate dependence between the candidate key columns.

Figure 7.10 illustrates the non-loss decomposition of the table in figure 7.11.

ECODE PROJCODE HOURS ECODE EMAILID

E1 P2 48 E1 bk@rediffmail.com

E1 P5 100 E4 rahul@rediffmail.com

E1 P6 15

E4 P5 250

E4 P5 75

Figure 7.11 : Non-loss decomposition of Project table in BCNF.

 Check Your Progress 7.2 :

 1. Normalization is the ________________of logical database design.

(a) Top-down approach (b) bottom-up approach

(c) Database systems (d) None of above ()

 2. ________ is a step-by-step decomposition of complex records into simple records.

(a) Normalization (b) System

(c) Database (d) None of above ()

 3. A relation is said to be in _____________if all attributes defined on domains containing atomic

values.

(a) First Normal Form (b) Second Normal Form

(c) Third Normal Form (d) None of above ()

 4. A table is said to be in _____________when it is in First Normal Form, and every attribute in the

record is functionally dependent upon the whole key, and not just a part of the key.

(a) First Normal Form (b) Second Normal Form

(c) Third Normal Form (d) None of above ()

 5. A table is said to be in ______________ when it is in 2NF and every non-key attribute is

functionally dependent on just the primary key.

(a) First Normal Form (b) Second Normal Form

(c) Third Normal Form (d) None of above ()

99

7.4 Summary

A ‘Relation’ is a two-dimensional table. It consists of ‘rows’ which represent records and ‘columns’

which show the attributes of the entity. A relation is also called a file, it consists of a number of records

which are also called as tuples. Record consists of a number of attributes which are also known as fields or

domains. Normalization is a technique that is more applicable to record-based data models for e.g. a

relational database model. Each of the processes can be carried out independently to arrive at normalized

tables (depending on how detailed the decompositions is). Normalization is the bottom-up approach of

logical database design. It is a step-by-step decomposition of complex records into simple records.

Normalization reduces redundancy. Redundancy can lead to inconsistencies as well as Insertion, Updation

and Deletion anomalies. The different stages of normalization are known as ‘normal forms’. The most

important and widely used of these are: 1NF, 2NF, 3NF, BCNF, 4NF etc. A relation is said to be in first

normal form if all attributes defined on domains containing atomic values.

7.5 Answer to the Self -Learning Exercises

Answer to Check Your Progress - 7.1

1. (a) 2. (a) 3. (c)

4. (a) 5. (a)

Answer to Check your progress 7.2

1. (b) 2. (a) 3. (a)

4. (b) 5. (c)

7.6 Self Assessment Questions

1. What is Normalization? Discuss its need.

2. Define Boyce-codd normal form. How does it differ from 3NF? Why it is considered as a stronger

form of 3NF?

3. What are the design goals of a good relational database design? Is it always possible to achieve

these goals? If some of these goals are not achievable, what alternate goals should you aim for and

why?

4. What do you understand by ‘Functional Dependency’? Discuss various types of dependencies

with suitable examples.

5. Explain 1NF, 2NF, 3NF and BCNF with suitable example.

´ ´ ´

100

Unit - 8 : Introduction to Popular RDBMS Packages

Structure of the Unit

8.0 Objective

8.1 Introduction

8.2 Various Types of RDBMS Packagaes

8.2.1 Commercial RDBMS V/s. Open Source RDBMS

8.3 SQL Server

8.3.1 Characteristics

8.3.2 Strength

8.3.3 Limitations

8.4 Oracle

8.4.1 Characteristics

8.4.2 Strength

8.4.3 Limitations

8.5 Summary

8.6 Answer to Self-Learning Exercises

8.7 Self Assessment Questions

8.0 Objective

A database is a collection of data that is related to a particular topic or purpose. As an example,

employee records in a filing cabinet, a collection of sales leads in a notebook, are examples of collections

of data or databases. A Database Management System (DBMS) is a system that stores and retrieves

information in a database. It is used to help you organize your data according to a subject, so that it is easy

to track and verify your data, and you can store information about how different subjects are related, so

that it makes it easy to bring related data together.

A DBMS stores data in a table where the entries are filed under a specific category and are

properly indexed. This allowed programmers to have a lot more structure when saving or retrieving data.

A relational database contains data in more than one table. Each table contains a database that is then

linked to other tables with respect to their relationships.

This unit provides a brief description about various popular RDBMS packages. Some of them are

used for commercial purpose while others are available as an open source packages.

8.1 Introduction

Data is the most important aspect in computing. Any program, whether big or small, needs data in

order to process and produce its output; which often is some sort of data. Storing data has evolved a lot

over the last few years. The first method of storing data before was in text files but this way very inefficient

and difficult to deal with large amounts of data.

DBMS provides search functionalities in order to find a certain database entry. Once it is found,

you can then pull out any other related information from that entry. DBMS is a very competent system for

keeping track of data, but it doesn’t scale very well. Dealing with huge databases, although possible,

becomes a huge task in DBMS.

101

Relational database contains data in more than one table. Each table contains a database that is

then linked to other tables with respect to their relationships. RDBMS is an improvement over the older

DBMS. It provides the mechanism to overcome the restrictions that DBMS faces.

8.2 Various Types of RDBMS Packages

A DBMS that is based on relational model is called as RDBMS. Relation model is most successful

mode of all three models. Designed by E.F.Codd, relational model is based on the theory of sets and

relations of mathematics.

Relational model represents data in the form a table. A table is a two dimensional array containing

rows and columns. Each row contains data related to an entity such as a student. Each column contains the

data related to a single attribute of the entity such as student name. One of the reasons behind the success

of relational model is its simplicity. It is easy to understand the data and easy to manipulate.

Another important advantage with relational model, compared with remaining two models is, it

doesn’t bind data with relationship between data item. Instead it allows you to have dynamic relationship

between entities using the values of the columns.

Almost all Database systems that are sold in the market, now- a-days, have either

complete or partial implementation of relational model.

8.2.1 Commercial RDBMS V/s. Open Source RDBMS

Basically Commercial (such as Oracle, MSSQL Server etc) will cost money, Non Commercial

(MySQL, PostgreSQL) are ‘free’ or at least open source. They are developed in different ways and come

with different levels of support.

 Check Your Progress 8.1 :

 1. A __________ is a system that stores and retrieves information in a database.

(a) Operating System (b) Software System

(c) Design System (d) Database Management System ()

 2. A ________ stores data in a table where the entries are filed under a specific category and are

properly indexed.

(a) DBMS (b) Network System

(c) Operating System (d) None of above ()

 3. Relational database contains data in __________ table.

(a) One (b) Two

(c) More than one (d) None of above ()

 4. Relational Model of DBMS was designed by _________.

(a) Thomas Cook (b) Saint Louis

(c) E.F.Codd (d) None of above ()

 5. The relational model is based on the theory of____________.

(a) Analytical Systems (b) Gene Analysis

(c) Object Analysis Systems (d) Sets & Relations of Mathematics ()

102

8.3 SQL Server

Microsoft SQL Server is a relational database server which is developed by Microsoft. MS

SQL Server is a software product whose primary function is to store and retrieve data as requested by

other software applications from networks or other systems. There are at least a dozen different editions of

Microsoft SQL Server aimed at different audiences and for different workloads, some of them are,

Table 8.1: Various Versions of SQL Server

8.3.1 Characteristics

Microsoft SQL Server is an application used to create computer databases for the Microsoft

Windows family of server operating systems. Microsoft SQL Server provides an environment used to

generate databases that can be accessed from workstations, the Internet, or other media such as a personal

digital assistant (PDA).

Microsoft SQL Server 2000 is a full-featured relational database management system (RDBMS)

that offers a variety of administrative tools to ease the burdens of database development, maintenance and

administration. Six of the more frequently used tools are: Enterprise Manager, Query Analyzer, SQL Profiler,

Service Manager, Data Transformation Services and Books Online. Let’s take a brief look at each:

• Enterprise Manager is the main administrative console for SQL Server installations. It

provides you with a graphical ‘birds-eye’ view of all of the SQL Server installations on

your network. You can perform high-level administrative functions that affect one or more

servers, schedule common maintenance tasks or create and modify the structure of

individual databases.

• Query Analyzer offers a quick method for performing queries against any of your SQL

Server databases. It’s a great way to quickly pull information out of a database in response

to a user request, test queries before implementing them in other applications, create/

modify stored procedures and execute administrative tasks.

• SQL Profiler provides a window into the inner workings of your database. You can

monitor many different event types and observe database performance in real time. SQL

Profiler allows you to capture and replay system ‘traces’ that log various activities. It’s a

great tool for optimizing databases with performance issues or troubleshooting particular

problems.

VVVaaarrriiiooouuusss vvveeerrrsssiiiooonnnsss ooofff SSSQQQLLL SSSeeerrrvvveeerrr

VVVeeerrrsssiiiooonnn YYYeeeaaarrr RRReeellleeeaaassseee NNNaaammmeee

111...000 (((OOOSSS///222))) 111999888999 SSSQQQLLL SSSeeerrrvvveeerrr 111...000 (((111666bbbiiittt)))

111...111 (((OOOSSS///222))) 111999999111 SSSQQQLLL SSSeeerrrvvveeerrr 111...111 (((111666bbbiiittt)))

444...222111

(((WWWiiinnnNNNTTT)))

111999999333 SSSQQQLLL SSSeeerrrvvveeerrr 444...222111

666...000 111999999555 SSSQQQLLL SSSeeerrrvvveeerrr 666...000

666...555 111999999666 SSSQQQLLL SSSeeerrrvvveeerrr 666...555

777...000 111999999888 SSSQQQLLL SSSeeerrrvvveeerrr 777...000

777...000 111999999999 SSSQQQLLL SSSeeerrrvvveeerrr 777...000 (((wwwiiittthhh OOOLLLAAAPPP TTToooooolllsss)))

888...000 222000000000 SSSQQQLLL SSSeeerrrvvveeerrr 222000000000

888...000 222000000333 SSSQQQLLL SSSeeerrrvvveeerrr 222000000000 (((666444---bbbiiittt EEEdddiiitttiiiooonnn)))

999...000 222000000555 SSSQQQLLL SSSeeerrrvvveeerrr 222000000555

111000...000 222000000888 SSSQQQLLL SSSeeerrrvvveeerrr 222000000888

111000...222555 222000111000 SSSQQQLLL AAAzzzuuurrreee

111000...555 222000111000 SSSQQQLLL SSSeeerrrvvveeerrr 222000000888 RRR222

111111...000 SSSQQQLLL SSSeeerrrvvveeerrr 222000111222

103

• Service Manager is used to control the MSSQLServer (the main SQL Server process),

MSDTC (Microsoft Distributed Transaction Coordinator) and SQLServerAgent

processes. An icon for this service normally resides in the system tray of machines running

SQL Server. You can use Service Manager to start, stop or pause any one of these services.

• Data Transformation Services (DTS) provide an extremely flexible method for importing

and exporting data between a Microsoft SQL Server installation and a large variety of

other formats. The most commonly used DTS application is the ‘Import and Export Data’

wizard found in the SQL Server program group.

• Books Online is an often overlooked resource provided with SQL Server that contains

answers to a variety of administrative, development and installation issues. It’s a great

resource to consult before turning to the Internet or technical support.

8.3.2 Strength

SQL Server includes an assortment of add-on services which are the strength of this application.

While these are not essential for the operation of the database system, they provide value added services

on top of the core database management system. Some of them are given as under,

ü Service Broker : Used inside an instance, it is used to provide an asynchronous programming

environment. For cross instance applications, Service Broker communicates over

TCP/IP and allows the different components to be synchronized together, via exchange of

messages. The Service Broker, which runs as a part of the database engine, provides a reli

able messaging and message queuing platform for SQL Server applications.

ü Replication Services : SQL Server Replication Services are used by SQL Server to replicate

and synchronize database objects, either in entirety or a subset of the objects present,

across replication agents, which might be other database servers across the network, or

database caches on the client side. Replication follows a publisher/subscriber model i.e., the changes

are sent out by one database server (‘publisher’) and are received by others (‘subscribers’). SQL

Server supports three different types of replications:

o Transaction Replication : Each transaction made to the publisher database (master

database) is synced out to subscribers, who update their databases with the transaction.

Transactional replication synchronizes databases in near real time.

o Merge replication: Changes made at both the publisher and subscriber databases are

tracked, and periodically the changes are synchronized bi-directionally between the

publisher and the subscribers. If the same data has been modified differently in both the

publisher and the subscriber databases, synchronization will result in a conflict which has

to be resolved - either manually or by using pre-defined policies.

o Snapshot replication: Snapshot replication published a copy of the entire database

(the then-snapshot of the data) and replicates out to the subscribers. Further changes

to the snapshot are not tracked.

ü Analysis Services : SQL Server Analysis Services adds OLAP and data mining capabilities

for SQL Server databases. The OLAP engine supports MOLAP, ROLAP and HOLAP

storage modes for data. Analysis Services supports the XML for Analysis standard as the

underlying communication protocol. The cube data can be accessed using MDX and LINQ queries.

Data mining specific functionality is exposed via the DMX query language. Analysis Services

includes various algorithms - Decision trees, clustering algorithm, Naive Bayes algorithm, time

series analysis, sequence clustering algorithm, linear and logistic regression analysis, and neural

networks - for use in data mining.

ü Reporting Services: SQL Server Reporting Services is a report generation environment for

data gathered from SQL Server databases. It is administered via a web interface. Reporting

104

services features a web services interface to support the development of custom reporting

applications. Reports are created as RDL files. Reports can be designed using recent

versions of Microsoft Visual Studio (Visual Studio.NET 2003, 2005, and 2008) with Business

Intelligence Development Studio, installed or with the included Report Builder. Once created,

RDL files can be rendered in a variety of formats including Excel, PDF, CSV, XML, TIFF (and

other image formats), and HTML Web Archive.

ü Notification Services: Originally introduced as a post-release add-on for SQL Server 2000,

Notification Services was bundled as part of the Microsoft SQL Server platform for the first and

only time with SQL Server 2005. SQL Server Notification Services is a mechanism for generating

data-driven notifications, which are sent to Notification Services subscribers. A subscriber

registers for a specific event or transaction (which is registered on the database server as a

trigger); when the event occurs, Notification Services can use one of three methods to send

a message to the subscriber informing about the occurrence of the event. These methods include

SMTP, SOAP, or by writing to a file in the filesystem. Notification Services was discontinued

by Microsoft with the release of SQL Server 2008 in August 2008, and is no longer an

officially supported component of the SQL Server database platform.

ü Integration Services : SQL Server Integration Services is used to integrate data from different

data sources. It is used for the ETL capabilities for SQL Server for data warehousing

needs. Integration Services includes GUI tools to build data extraction workflows integration

various functionality such as extracting data from various sources, querying data, transforming

data including aggregating, duplication and merging data, and then loading the transformed data

onto other sources, or sending e-mails detailing the status of the operation as defined by the

user.

8.3.3 Limitations

Although SQL Server has several strong features for Database creation, security, monitoring etc.

but there are a few limitations with SQL Server 2005 as it introduced Database Mirroring, but it was not

fully supported until the first Service Pack release (SP1). In the initial release (RTM) of SQL Server 2005,

database mirroring was available, but unsupported. In order to implement database mirroring in the RTM

version, one had to apply trace flag 1400 at startup. Database mirroring is a high availability option that

provides redundancy and failover capabilities at the database level.

8.4 Oracle

Oracle databases are used with many applications, for large and small organizations operating in a

variety of sectors. Powerful, secure and reliable database applications can be built with Oracle, as the

platform has a range of features for handling both the data itself and user access to it. Oracle also provides

tools for maintenance and developer functions. Oracle is a proprietary database system, and therefore has

to be purchased with a commercial license before it can be used.

8.4.1 Characteristics

An Oracle database is a collection of data treated as a unit. The purpose of a database is to store

and retrieve related information. A database server is the key to solving the problems of information

management. In general, a server reliably manages a large amount of data in a multiuser environment so

that many users can concurrently access the same data. All this is accomplished while delivering high

performance. A database server also prevents unauthorized access and provides efficient solutions for

failure recovery.

Oracle Database is the first database designed for enterprise grid computing, the most flexible and

cost effective way to manage information and applications. Enterprise grid computing creates large pools

of industry-standard, modular storage and servers. With this architecture, each new system can be rapidly

provisioned from the pool of components. There is no need for peak workloads, because capacity can be

105

easily added or reallocated from the resource pools as needed. The database has logical structures and

physical structures. Because the physical and logical structures are separate, the physical storage of data

can be managed without affecting the access to logical storage structures.

Oracle is an ORDBMS (Object Relational Database Management System) product. This means

that Oracle databases model data in terms of objects and their relationships. Data modeled within an

Oracle system is divided into conceptual entities, each of which has a set of attributes. ORDBMS modeling

also has some of the characteristics of Object Oriented development, in which application responsibilities

are divided between logical objects, each of which has a well-defined set of characteristics and behaviors.

Oracle database architecture models the data for a system as a single unit stored on a database

server. This data is managed as a unit, but is designed to allow access by multiple users at any one time,

while still maintaining data integrity. This means that even where multiple users have the ability to view the

same data items, to update, insert and even remove data, an Oracle system is able to prevent corruption of

the data. This is known as transaction management and is a key feature of Oracle systems.

Oracle databases are developed with various features to enhance the efficiency, reliability and

security of systems in different organizational environments. Concurrency features in Oracle prevent the

same item of data from being changed by more than one user at the same time. Consistency is also a key

feature, meaning that when a user accesses a data item, they can be sure it is accurate at the time of access.

Management of user accounts within an Oracle database is also an important feature, as are the many

administration tools, which facilitate any necessary maintenance work by database administrators (DBAs).

There are two aspects of Oracle database development: development of the database itself and

development of the user interface application for accessing it. Development of a database is carried out

through SQL programming, where databases can be created in the form of tables with columns. The

columns are for specific data items and have set data types. Oracle databases can also be created through

a user interface. The set of database queries required by an application will also be constructed in SQL

code.

A database application consists of the database itself, and the application that provides an interface

for user access. These interfaces can be developed using many different languages and technologies.

Oracle databases provide APIs (Application Programming Interfaces) to assist developers in some of the

more common languages used. Oracle applications can be built in languages such as Java, PHP and PL/

SQL among others.

8.4.2 Strength

Oracle includes several software mechanisms to fulfill the following important requirements of an

information management system:

• Data concurrency of a multiuser system must be maximized. A primary concern of a multiuser

database management system is how to control concurrency, which is the simultaneous access

of the same data by many users. Without adequate concurrency controls, data could be updated

or changed improperly, compromising data integrity. One way to manage data concurrency is to

make each user wait for a turn. The goal of a database management system is to reduce that wait

so it is either nonexistent or negligible to each user. All data manipulation language statements

should proceed with as little interference as possible, and destructive interactions between

concurrent transactions must be prevented. Destructive interaction is any interaction that incorrectly

updates data or incorrectly alters underlying data structures. Neither performance nor data integrity

can be sacrificed. Oracle resolves such issues by using various types of locks and a multiversion

consistency model. These features are based on the concept of a transaction. It is the

application designer’s responsibility to ensure that transactions fully exploit these concurrency

and consistency features.

• Data must be read and modified in a consistent fashion. The data a user is viewing or changing

is not changed (by other users) until the user is finished with the data. Read consistency, as

106

supported by Oracle, does the following:

ü Guarantees that the set of data seen by a statement is consistent with respect to a

single point in time and does not change during statement execution

(statement-level read consistency).

ü Ensures that readers of database data do not wait for writers or other readers of

the same data.

ü Ensures that writers of database data do not wait for readers of the same data.

ü Ensures that writers only wait for other writers if they attempt to update identical

rows in concurrent transactions.

• High performance is required for maximum productivity from the many users of the database

system.

• To manage the multiversion consistency model, Oracle must create a read-consistent set of data

when a table is queried (read) and simultaneously updated (written). When an update occurs,

the original data values changed by the update are recorded in the database undo records. As long

as this update remains part of an uncommitted transaction, any user that later queries the modified

data views the original data values. Oracle uses current information in the system global area

and information in the undo records to construct a read-consistent view of a table’s data for a

query. Only when a transaction is committed are the changes of the transaction made permanent.

Statements that start after the user’s transaction is committed only see the changes made by the

committed transaction. The transaction is key to Oracle’s strategy for providing read

consistency. This unit of committed (or uncommitted) SQL statements:

ü Dictates the start point for read-consistent views generated on behalf of readers

ü Controls when modified data can be seen by other transactions of the database for reading

or updating

• By default, Oracle guarantees statement-level read consistency. The set of data returned by a

single query is consistent with respect to a single point in time. However, in some situations,

you might also require transaction-level read consistency. This is the ability to run multiple queries

within a single transaction, all of which are read-consistent with respect to the same point in time,

so that queries in this transaction do not see the effects of intervening committed transactions.

If you want to run a number of queries against multiple tables and if you are not doing any updating,

you prefer a read-only transaction.

• Oracle also uses locks to control concurrent access to data. When updating information, the data

server holds that information with a lock until the update is submitted or committed. Until that

happens, no one else can make changes to the locked information. This ensures the data integrity

of the system. Oracle provides unique non-escalating row-level locking. Oracle always locks only

the row of information being updated. Because Oracle includes the locking information with the

actual rows themselves, Oracle can lock an unlimited number of rows so users can work

concurrently without unnecessary delays.

• Oracle locking is performed automatically and requires no user action. Implicit locking occurs

for SQL statements as necessary, depending on the action requested. Oracle’s lock manager

automatically locks table data at the row level. By locking table data at the row level, contention

for the same data is minimized. Oracle’s lock manager maintains several different types of row

locks, depending on what type of operation established the lock. The two general types of locks

are exclusive locks and share locks. Only one exclusive lock can be placed on a resource

(such as a row or a table); however, many share locks can be placed on a single resource. Both

exclusive and share locks always allow queries on the locked resource but prohibit other activity

on the resource (such as updates and deletes).

107

• Under some circumstances, a user might want to override default locking. Oracle allows manual

override of automatic locking features at both the row level (by first querying for the rows that will

be updated in a subsequent statement) and the table level.

• Oracle Database provides a high degree of self-management - automating routine DBA tasks

and reducing complexity of space, memory, and resource administration. Oracle self-managing

database features include the following: automatic undo management, dynamic memory

management, Oracle-managed files, meantime to recover, free space management, multiple block

sizes, and Recovery Manager (RMAN).

• Enterprise Manager is a system management tool that provides an integrated solution for

centrally managing your heterogeneous environment. Combining a graphical console, Oracle

Management Servers, Oracle Intelligent Agents, common services, and administrative

tools, Enterprise Manager provides a comprehensive systems management platform for managing

Oracle products.

• Automatic Storage Management automates and simplifies the layout of data files, control files,

and log files. Database files are automatically distributed across all available disks, and database

storage is rebalanced whenever the storage configuration changes. It provides redundancy

through the mirroring of database files, and it improves performance by automatically distributing

database files across all available disks. Rebalancing of the database’s storage automatically

occurs whenever the storage configuration changes.

• Traditionally, the operating systems regulated resource management among the various applications

running on a system, including Oracle databases. The Database Resource Manager controls the

distribution of resources among various sessions by controlling the execution schedule inside the

database. By controlling which sessions run and for how long, the Database Resource Manager

can ensure that resource distribution matches the plan directive and hence, the business objectives.

• Oracle provides for complete media recovery from all possible types of hardware failures, including

disk failures. Options are provided so that a database can be completely recovered or partially

recovered to a specific point in time. If some data files are damaged in a disk failure but most of the

database is intact and operational, the database can remain open while the required table spaces

are individually recovered. Therefore, undamaged portions of a database are available for normal

use while damaged portions are being recovered.

• A data warehouse is a relational database designed for query and analysis rather than for transaction

processing. It usually contains historical data derived from transaction data, but it can include

data from other sources. It separates analysis workload from transaction workload and enables

an organization to consolidate data from several sources. In addition to a relational database, a

data warehouse environment includes an extraction, transportation, transformation, and

loading (ETL) solution, an online analytical processing (OLAP) engine, client analysis tools, and

other applications that manage the process of gathering data and delivering it to business users.

• Oracle has many SQL operations for performing analytic operations in the database. These include

ranking, moving averages, cumulative sums, ratio-to-reports, and period-over-period

comparisons.

• Oracle includes datatypes to handle all the types of rich Internet content such as relational data,

object-relational data, XML, text, audio, video, image, and spatial. These datatypes appear as

native types in the database. They can all be queried using SQL. A single SQL statement can

include data belonging to any or all of these datatypes.

• Oracle includes built-in spatial features that let you store, index, and manage location content

(assets, buildings, roads, land parcels, sales regions, and so on.) and query location relationships

using the power of the database. The Oracle Spatial Option adds advanced spatial features such

as linear reference support and coordinate systems.

108

• The Oracle database provides discretionary access control, which is a means of restricting

access to information based on privileges. The appropriate privilege must be assigned to a

user in order for that user to access a schema object. Appropriately privileged users can

grant other users privileges at their discretion. Oracle manages database security using several

different facilities:

ü Authentication to validate the identity of the entities using your networks, databases,

and applications

ü Authorization processes to limit access and actions, limits that are linked to user’s

identities and roles.

ü Access restrictions on objects, like tables or rows.

ü Security policies

ü Database auditing

Other characteristics are given as under,

ü Oracle is very simple to install.

ü There is no need to install agents when you are going to install Oracle.

8.4.3 Limitations

• Oracle not provides any kind of GUI.

• There is no direct memory access for fine grained monitoring.

• There is no graphical tool like Excel.

• Users still need indepth knowledge of the Oracle database.

• Users still need a method for performance tuning & analyses.

• Analysis of performance puts extra load on the database.

 Check Your Progress 8.2 :

 1. ___________is an application used to create computer databases for the Microsoft Windows

family of server operating systems.

(a) Operating System (b) Microsoft SQL Server

(c) Firewall systems (d) None of above ()

 2. ________provide an extremely flexible method for importing and exporting data between a

Microsoft SQL Server installation and a large variety of other formats.

(a) Data Transformation Services (DTS) (b) Graphics System

(c) Computer Screen (d) None of above ()

 3. SQL Server Analysis Services adds ________and data mining capabilities for SQL Server

databases.

(a) OLAP (b) Cryptography

(c) Secret Key Cryptography (d) None of above ()

 4. Oracle is an ___________ product.

(a) ORDBMS (b) OLAP

(c) Database (d) None of above ()

 5. Oracle uses ________ to control concurrent access to data.

(a) Network cards (b) Memory

(c) Locks (d) Output devices ()

109

8.5 Summary

A database is a collection of data that is related to a particular topic or purpose. A database

management system (DBMS) is a system that stores and retrieves information in a database. A

DBMS stores data in a table where the entries are filed under a specific category and are properly

indexed. A DBMS that is based on relational model is called as RDBMS. Relational model is based on

the theory of sets and relations of mathematics. Microsoft SQL Server is a relational database server

which is developed by Microsoft. MS SQL Server is a software product whose primary function is to

store and retrieve data as requested by other software applications from networks or other systems.

Microsoft SQL Server 2000 is a full-featured relational database management system (RDBMS) that

offers a variety of administrative tools to ease the burdens of database development, maintenance and

administration. An Oracle database is a collection of data treated as a unit. The purpose of a database

is to store and retrieve related information. Oracle Database is the first database designed for enterprise

grid computing, the most flexible and cost effective way to manage information and applications. Oracle

is an ORDBMS (Object Relational Database Management System) product. This means that Oracle

databases model data in terms of objects and their relationships. Data modeled within an Oracle system

is divided into conceptual entities, each of which has a set of attributes.

8.6 Answer to Self Learning Exercises

Answer to Check your Progress - 8.1 :

1. (d) 2. (a) 3. (c)

4. (c) 5. (d)

Answer to Check Your Progress - 8.2 :

1. (b) 2. (a) 3. (a)

4. (a) 5. (c)

8.7 Self Assesment Questions

1. What do you understand by ‘Relational Database Management System’? How it is differ from

DBMS?

2. Write a short note on Microsoft SQL Server with discussion of its strengths.

3. How Oracle is differing from other Relational Database Designs? Discuss some features of Oracle.

4. List and draw a table indicating different versions of SQL Server.

5. What are the basic limitations of Oracle?

´ ´ ´

110

Unit - 9 : Introduction to SQL

Structure of the Unit

9.0 Objective

9.1 Introduction

9.2 What is SQL?

9.2.1 Characteristics of SQL

9.3 Types of SQL

9.3.1 The Relational database

9.3.2 Client/Server Technology

9.3.3 Web-Based Database System

9.4 Advantage of SQL

9.5 SQL Data types and Literals

9.5.1 String types

9.5.2 Numeric types

9.5.3 Date and time types

9.6 Large Object Types

9.6.1 Numeric Types

9.6.2 Decimal Types

9.6.3 Integers

9.6.4 Floating-Point Decimals

9.6.5 Date and Time Types

9.6.6 NULL Data Types

9.6.7 User-Defined Types

9.7 Types of SQL Commands

9.7.1 Data Definition Language (DDL)

9.7.2 Data Manipulation Language (DML)

9.7.3 Data Query Language (DQL)

9.7.4 Data Control Language (DCL)

9.7.5 Transactional Control Commands

9.8 Summary

9.9 Self-Assessment Questions

9.0 Objective

At the end of this unit, you should be able to -

· Describe the various types of SQL

· Describe the different data types and use of SQL

· Describe the DML, DML, DQL and DCL commands of SQL

· Describe the data administrations and TCL commands of SQL

· Describe the various queries of SQL to manipulate data

111

9.1 Introduction

SQL is a relational database data sublanguage. It is not a complete programming language, but

depends on the I/O and control facilities of a host language. It is both a dejure and a de facto standard.

ANSI (American Nationa Standards Institute) has published three generations of SQL, as has ISO

(International Organization for Standardization). X/Open, a consortium, has also published an SQL

specification. Chamberlin and Boyce (1974) published the first paper on what became SQL, based on

Codd’s mathematical foundation for logical representation and manipulation of data (Codd 1974). In

1978, ANSI began to standardize a data definition language for the network database language then being

designed by CODASYL; Technical Committee X3H2 was formed for this project, which soon evolved to

encompass the entire network database language, published in 1986 as Databae Language NDL. X3H2

recognized the importance of the relational model and intitated a project based on Chamberlin’s work. In

cooperation with the corresponding ISO group, the SQL specification was developed and published in

1986. SQL-86 omitted support for referential integrity, but SQL-89 added basic referential integrity.

SQL-86 and SQL-89 were rightly criticiezed as inadequate for real applications. In 1922, a major new

version, SQL-92, was published, containing features that allowed signifcant applications without vendor

extensions (ANSI 1992 ; ISO 1992).

SQL has proved key in the success of relational database management systems and is central to

many areas, ragning from traditional MIS applications to scientific reserach. The fourth generation of SQL

is currently being prepared. SQL 3 adds significant new facilities, including support for object tehcnology,

and is partioned into several parts that can progress independently. See Melton and Simon (1993) for a

comprehensive introduction to the SQL language.

9.2 What is SQL?

Structured Query Language (SQL) is the standard language used to communicate with a rela-

tional database. The prototype was originally developed by IBM using Dr. E.F. Codd’s paper (“A Rela-

tional Model of Data for Large Shared Data Banks”) as a model. In 1979, not long after IBM’s prototype,

the first SQL product, ORACLE, was released by Relational Software, Incorporated (which was later

renamed Oracle Corporation). Today it is one of the distinguished leaders in relational database

technologies.

The American National Standards Institute (ANSI) is an organization that approves certain stan-

dards in many different industries. SQL has been deemed the standard language in relational

database communication, originally approved in 1986 based on IBM’s implementation. In 1987, the

ANSI SQL standard was accepted as the international standard by the International Standards Organiza-

tion (ISO). The standard was revised again in 1992 (SQL-92) and once again in 1999 (SQL-99). The

newest standard is now called SQL-2008, which was officially adopted in July of 2008.

Characteristics of SQL

SQL databases tend to be mysterious when it comes to the information that is stored within them.

The SQL Database Engine is the core service for storing, processing, and extracting data. The SQL

Database Engine provides access and rapid transaction processing to meet the requirements of

applications.

The SQL Database Engine can be used to create relational databases for online transaction pro-

cessing or online analytical processing data. It is likely that you have a number of applications that put

information into your various SQL database engines. From this information set, you need to be able to

retrieve meaningful information and that is where this course comes in.

112

9.3 Types of SQL

9.3.1 The Relational Database

A relational database is a database divided into logical units called tables, where tables are related

to one another within the database. A relational database allows data to be broken down into logical,

smaller, manageable units, enabling easier maintenance and providing more optimal database performance

according to the level of organization. In Figure 1, you can see that tables are related to one another

through a common key (data value) in a relational database.

Figure 1. The relational database

Again, tables are related in a relational database, allowing adequate data to be retrieved in a single

query (although the desired data may exist in more than one table). By having common keys, or fields,

among relational database tables, data from multiple tables can be joined to form one large set of data. As

you venture deeper into this book, you see more of a rela- tional database’s advantages, including overall

performance and easy data access.

9.3.2 Client/Server Technology

In the past, the computer industry was predominately ruled by mainframe computers—large, pow-

erful systems capable of high storage capacity and high data processing capabilities. Users communicated

with the mainframe through dumb terminals—terminals that did not think on their own but relied solely on

the mainframe’s CPU, storage, and memory. Each terminal had a data line attached to the mainframe. The

mainframe environment definitely served its purpose and does today in many businesses, but a greater

technology was soon to be introduced: the client/server model.

In the client/server system, the main computer, called the server, is accessible from a network—

typically a local area network (LAN) or a wide area network (WAN). The server is normally accessed by

personal computers (PCs) or by other servers, instead of dumb terminals. Each PC, called a client, is

provided access to the network, allowing communication between the client and the server, thus explaining

the name client/server. The main difference between client/server and mainframe environments is that the

user’s PC in a client/server environment is capable of thinking on its own, capable of running its own

processes using its own CPU and memory, but readily accessible to a server computer through a network.

In most cases, a client/server system is much more flexible for today’s overall business needs and is much

preferred.

Modern database systems reside on various types of computer systems with various operating

systems. The most common types of operating systems are Windows-based systems, Linux, and com-

mand-line systems such as UNIX. Databases reside mainly in client/server and web environments. A lack

of training and experience is the main reason for failed implementations of database systems. Nevertheless,

an understanding of the client/server model and web-based systems, which will be explained in the next

section, is imperative with the rising (and sometimes unreasonable) demands placed on today’s businesses

as well as the development of Internet technologies and network computing. Figure 2 illustrates the con-

cept of client/server technology.

113

Figure 2. The client/server model.

9.3.3 Web-Based Database System

Business information systems are moving toward web integration. Databases are now accessible

through the Internet, meaning that customers’ access to an organization’s information is enabled through an

Internet browser such as Internet Explorer or Firefox. Customers (users of data) are able to order mer-

chandise, check on inventories, check on the status of orders, make administrative changes to accounts,

transfer money from one account to another, and so forth. A customer simply invokes an Internet browser,

goes to the organization’s website, logs in (if required by the organization), and uses an application built

into the organization’s web page to access data. Most organizations require users to register with them and

issue a login and password to the customer. Of course, many things occur behind the scenes when a

database is being accessed via a web browser. SQL, for instance, can be executed by the web applica-

tion. This executed SQL is used to access the organization’s database, return data to the web server, and

then return that data to the customer’s Internet browser.

The basic structure of a web-based database system is similar to that of a client-server system

from a user’s standpoint (refer to Figure 1.3). Each user has a client machine, which has a connection to

the Internet and contains a web browser. The network in Figure 1.3 (in the case of a web-based database)

just happens to be the Internet, as opposed to a local network. For the most part, a client is still accessing

a server for information. It doesn’t matter that the server might exist in another state or even another

country. The main point of web-based database systems is to expand the potential customer base of a

database system that knows no physical location bounds, thus increasing data availability and an organization’s

customer base.

9.4 Advantages of SQL

Programming using static SQL requires less effort than using embedded dynamic SQL. Static

SQL statements are simply embedded into the host language source file, and the precompiler handles

the necessary conversion to database manager run-time services API calls that the host language compiler

can process.

Because the authorization of the person binding the application is used, the end user does not

require direct privileges to execute the statements in the package. For example, an application could allow

a user to update parts of a table without granting an update privilege on the entire table. This can be

achieved by restricting the static SQL statements to allow updates only to certain columns or to a range of

values.

Static SQL statements are persistent, meaning that the statements last for as long as the package

exists.

Dynamic SQL statem ents are cached until they are either invalidated, freed for space management

114

reasons, or the database is shut down. If required, the dynamic SQL statements are recompiled implicitly

by the DB2(R) SQL compiler whenever a cached statement becomes invalid.

The key advantage of static SQL, with respect to persistence, is that the static statements exist

after a particular database is shut down, whereas dynamic SQL statements cease to exist when this oc-

curs. In addition, static SQL does not have to be compiled by the DB2 SQL compiler at run time, while

dynamic SQL must be explicitly compiled at run time (for example, by using the PREPARE statement).

Because DB2 caches dynamic SQL statements, the statements do not need to be compiled often by DB2,

but they must be compiled at least once when you execute the application.

There can be performance advantages to static SQL. For simple, short-running SQL programs, a

static SQL statement executes faster than the same statement processed dynamically because the overhead

of preparing an executable form of the statement is done at precompile time instead of at run time.

9.5 SQL Data Types and Literals

The following sections discuss the basic data types supported by ANSI SQL. Data types are

characteristics of the data itself, whose attributes are placed on fields within a table. For example, you can

specify that a field must contain numeric values, disallowing the entering of alphanumeric strings. After all,

you would not want to enter alphabetic characters in a field for a dollar amount. Defining each field in the

database with a data type eliminates much of the incorrect data found in a database due to data entry

errors. Field definition (data type definition) is a form of data validation that controls the type of data that

may be entered into each given field. Depending on your implementation of relational database manage-

ment sys- tem (RDBMS), certain data types can be converted automatically to other data types depend-

ing upon their format. This type of conversion in known as an implicit conversion, which means that the

database handles the con- version for you. An example of this is taking a numeric value of 1000.92 from

a numeric field and inputting it into a string field. Other data types cannot be converted implicitly by the host

RDBMS and therefore must undergo an explicit conversion. This usually involves the use of an SQL

function, such as CAST or CONVERT. For example

SELECT CAST(‘12/27/1974’ AS DATETIME) AS MYDATE

The very basic data types, as with most other languages, are

ü String types

ü Numeric types

ü Date and time types

Fixed-Length Strings :

Constant characters, those strings that always have the same length, are stored using a fixed-length

data type. The following is the standard for an SQL fixed-length character:

Character (n) :

n represents a number identifying the allocated or maximum length of the particular field with this

definition.

Some implementations of SQL use the CHAR data type to store fixed-length data. You can

store alphanumeric data in this data type. An example of a constant length data type would be for a state

abbreviation because all state abbreviations are two characters.

Spaces are normally used to fill extra spots when using a fixed-length data type; if a field’s length

was set to 10 and data entered filled only 5 places, the remaining 5 spaces would be recorded as spaces.

The padding of spaces ensures that each value in a field is a fixed length.

Varying-Length Strings :

SQL supports the use of varying-length strings, strings whose length is not constant for all data.

The following is the standard for an SQL varying- length character:

115

Character Varying (n) :

n represents a number identifying the allocated or maximum length of the particular field with this

definition.

Common data types for variable-length character values are the VARCHAR, VARBINARY, and

VARCHAR2 data types. VARCHAR is the ANSI standard, which Microsoft SQL Server and MySQL

use; Oracle uses both VARCHAR and VARCHAR2. The data stored in a character-defined column can

be alphanumeric, which means that the data value may contain numeric characters. VARBINARY is similar

to VARCHAR and VARCHAR2 except that it contains a variable length of bytes. Normally, you would

use a type such as this to store some kind of digital data such as possibly an image file.

Remember that fixed-length data types typically pad spaces to fill in allocated places not used by

the field. The varying-length data type does not work this way. For instance, if the allocated length

of a varying-length field is 10, and a string of 5 characters is entered, the total length of that particular

value would be only 5. Spaces are not used to fill unused places in a column.

9.6 Large Object Types

Some variable-length data types need to hold longer lengths of data than what is traditionally

reserved for a VARCHAR field. The BLOB and TEXT data types are two examples of such data types in

modern database implementations. These data types are specifically made to hold large sets of data. The

BLOB is a binary large object, so its data is treated as a large binary string (a byte string). A BLOB is

especially useful in an implementation that needs to store binary media files in the database, such as images

or MP3s. The TEXT data type is a large character string data type that can be treated as a large VARCHAR

field. It is often used when an implementation needs to store large sets of character data in the database.

An example of this would be storing HTML input from the entries of a blog site. Storing this type of data

in the database enables the site to be dynamically updated.

9.6.1 Numeric Types

Numeric values are stored in fields that are defined as some type of number, typically referred to

as NUMBER, INTEGER, REAL, DECIMAL, and so on. The following are the standards for SQL

numeric values:

· BIT(n)

· BIT VARYING(n)

· DECIMAL(p,s)

· INTEGER

· SMALLINT

· BIGINT

· FLOAT(p,s)

· DOUBLE PRECISION(p,s)

· REAL(s)

p represents a number identifying the allocated or maximum length of the particular field for

each appropriate definition.

s is a number to the right of the decimal point, such as 34.ss.

A common numeric data type in SQL implementations is NUMERIC, which accommodates the

direction for numeric values provided by ANSI. Numeric values can be stored as zero, positive, negative,

fixed, and floating-point numbers. The following is an example using NUMERIC:

NUMERIC(5)

This example restricts the maximum value entered in a particular field to 99999. Note that all the

116

database implementations that we use for the examples support the NUMERIC type but implement it

as a DECIMAL.

9.6.2 Decimal Types

Decimal values are numeric values that include the use of a decimal point. The standard for a

decimal in SQL follows, where p is the precision and s is the decimal’s scale:

DECIMAL(p,s)

The precision is the total length of the numeric value. In a numeric defined DECIMAL(4,2), the

precision is 4, which is the total length allocated for a numeric value. The scale is the number of digits to the

right of the decimal point. The scale is 2 in the previous DECIMAL(4,2) example. If a value has more

places to the right side of the decimal point than the scale allows, the value is rounded; for instance, 34.33

inserted into a DECIMAL(3,1) is typically rounded to 34.3. If a numeric value was defined as the follow-

ing data type, the maximum value allowed would be 99.99:

DECIMAL(4,2)

The precision is 4, which represents the total length allocated for an associated value. The scale is

2, which represents the number of places, or bytes, reserved to the right side of the decimal point. The

decimal point does not count as a character.

Allowed values for a column defined as DECIMAL(4,2) include the following:

· 12

· 12.4

· 2.44

· 12.449

The last numeric value, 12.449, is rounded off to 12.45 upon input into the column. In this case,

any numbers between 12.445 and 12.449 would be rounded to 12.45.

9.6.3 Integers

An integer is a numeric value that does not contain a decimal, only whole numbers (both positive

and negative).

Valid integers include the following:

· 1

· 0

· –1

· 99

· –99

· 199

9.6.4 Floating-Point Decimals

Floating-point decimals are decimal values whose precision and scale are variable lengths and

virtually without limit. Any precision and scale is acceptable. The REAL data type designates a column

with single-precision, floating-point numbers. The DOUBLE PRECISION data type designates a column

that contains double-precision, floating-point numbers. To be considered a single-precision floating point,

the precision must be between 1 and 21 inclusive. To be considered a double-precision floating point, the

precision must be between 22 and 53 inclusive. The following are examples of the FLOAT data type:

· FLOAT

· FLOAT(15)

· FLOAT(50)

117

9.6.5 Date and Time Types

Date and time data types are quite obviously used to keep track of information concerning dates

and time. Standard SQL supports what are called DATETIME data types, which include the following

specific data types:

· DATE

· TIME

· DATETIME

· TIMESTAMP

The elements of a DATETIME data type consist of the following:

· YEAR

· MONTH

· DAY

· HOUR

· MINUTE

· SECOND

9.6.6 NULL Data Types

As you should know from Hour 1, a NULL value is a missing value or a column in a row of data

that has not been assigned a value. NULL values are used in nearly all parts of SQL, including the creation

of tables, search conditions for queries, and even in literal strings.

The following are two methods for referencing a NULL value:

· NULL (the keyword NULL itself)

The following does not represent a NULL value, but a literal string containing the characters N-U-

L-L:

’NULL’ When using the NULL data type, it is important to realize that data is not required in a

particular field. If data is always required for a given field, always use NOT NULL with a data type. If

there is a chance that there might not always be data for a field, it is better to use NULL.

9.6.7 User-Defined Types

A user-defined type is a data type that the user defines. User-defined types allow users to custom-

ize their own data types to meet data storage needs and are based on existing data types. User-defined

data types can assist the developer by providing greater flexibility during database application develop-

ment because they maximize the number of possibilities for data storage. The CREATE TYPE statement is

used to create a user-defined type.

For example, you can create a type as follows in both MySQL and Oracle:

CREATE TYPE PERSON AS OBJECT

(NAME VARCHAR (30),

 SSN VARCHAR (9));

You can reference your user-defined type as follows:

CREATE TABLE EMP_PAY

(EMPLOYEE PERSON,

 SALARY DECIMAL(10,2),

 HIRE_DATE DATE);

Notice that the data type referenced for the first column EMPLOYEE is PERSON. PERSON is the

user-defined type you created in the first example.

118

9.7 Types of SQL Commands

The following sections discuss the basic categories of commands used in SQL to perform vari-

ous functions. These functions include building database objects, manipulating objects, populating data-

base tables with data, updating existing data in tables, deleting data, performing database queries, control-

ling database access, and overall database administration.

The main categories are

· Data Definition Language (DDL)

· Data Manipulation Language (DML)

· Data Query Language (DQL)

· Data Control Language (DCL)

· Data administration commands

· Transactional control commands

9.7.1 Data Definition Language (DDL)

Data Definition Language (DDL) is the part of SQL that enables a database user to create and

restructure database objects, such as the creation or the deletion of a table.

Some of the most fundamental DDL commands discussed during the following hours include

· CREATE TABLE

· ALTER TABLE

· DROP TABLE

· CREATE INDEX

· ALTER INDEX

· DROP INDEX

· CREATE VIEW

· DROP VIEW

1. Create Table: This command is used to create a new table in a database.

The SQL syntax for CREATE TABLE is

CREATE TABLE “table_name”

(“column 1” “data_type_for_column_1”,

”column 2" “data_type_for_column_2”,

...)

So, if we are to create the customer table specified as above, we would type in

CREATE TABLE customer

(First_Name char(50),

Last_Name char(50),

Address char(50),

City char(50),

Country char(25),

Birth_Date date)

2. Alter table:

The ALTER TABLE statement is used to add or drop columns in an existing table.

ALTER TABLE table_name

ADD column_name datatype

119

ALTER TABLE table_name

DROP COLUMN column_name

Person:

LastName FirstName Address

Pettersen Kari Storgt 20

Example

To add a column named “City” in the “Person” table:

ALTER TABLE Person ADD City varchar(30)

Result:

LastName FirstName Address City

Pettersen Kari Storgt 20

3. Drop Table: This command is used to drop a table from a database.

The syntax for drop table is

DROP TABLE “table_name”

4. Create Index:

Indices are created in an existing table to locate rows more quickly and efficiently. It is possible to

create an index on one or more columns of a table, and each index is given a name. The users cannot see

the indexes, they are just used to speed up queries.

Note: Updating a table containing indexes takes more time than updating a table without, this is because

the indexes also need an update. So, it is a good idea to create indexes only on columns that are often used

for a search.

A Unique Index

Creates a unique index on a table. A unique index means that two rows cannot have the same

index value.

CREATE UNIQUE INDEX index_name

ON table_name (column_name)

The “column_name” specifies the column you want indexed.

A Simple Index

Creates a simple index on a table. When the UNIQUE keyword is omitted, duplicate values are

allowed.

CREATE INDEX index_name

ON table_name (column_name)

The “column_name” specifies the column you want indexed.

Example

This example creates a simple index, named “PersonIndex”, on the LastName field of the

Person table:

CREATE INDEX PersonIndex

ON Person (LastName)

If you want to index the values in a column in descending order, you can add the reserved word

DESC after the column name:

CREATE INDEX PersonIndex

ON Person (LastName DESC)

120

If you want to index more than one column you can list the column names within the parenthe-

ses, separated by commas:

CREATE INDEX PersonIndex

ON Person (LastName, FirstName)

5. Drop Index

You can delete an existing index in a table with the DROP INDEX statement.

Syntax for Microsoft SQLJet (and Microsoft Access):

DROP INDEX index_name ON table_name

Syntax for MS SQL Server:

DROP INDEX table_name.index_name

Syntax for IBM DB2 and Oracle:

DROP INDEX index_name

Syntax for MySQL:

ALTER TABLE table_name DROP INDEX index_name

6. Create View

In SQL, a VIEW is a virtual table based on the result-set of a SELECT statement.

A view contains rows and columns, just like a real table. The fields in a view are fields from one or

more real tables in the database. You can add SQL functions, WHERE, and JOIN statements to a view

and present the data as if the data were coming from a single table.

Note: The database design and structure will NOT be affected by the functions, where, or join statements

in a view.

Syntax

CREATE VIEW view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition

Note: The database does not store the view data. The database engine recreates the data, using the

view’s SELECT statement, every time a user queries a view.

Using Views

A view could be used from inside a query, a stored procedure, or from inside another view. By

adding functions, joins, etc., to a view, it allows you to present exactly the data you want to the user. The

sample database Northwind has some views installed by default. The view “Current Product List” lists all

active products (products that are not discontinued) from the Products table. The view is created with the

following SQL:

CREATE VIEW [Current Product List] AS

SELECT ProductID,ProductName

FROM Products

WHERE Discontinued=No

We can query the view above as follows:

SELECT * FROM [Current Product List]

Another view from the Northwind sample database selects every product in the Products table

that has a unit price that is higher than the average unit price:

121

CREATE VIEW [Products Above Average Price] AS

SELECT ProductName,UnitPrice

FROM Products

WHERE UnitPrice>(SELECT AVG(UnitPrice) FROM Products)

We can query the view above as follows:

SELECT * FROM [Products Above Average Price]

Another example view from the Northwind database calculates the total sale for each category in 1997.

Note that this view select its data from another view called “Product Sales for 1997”:

CREATE VIEW [Category Sales For 1997] AS

SELECT DISTINCT CategoryName,Sum(ProductSales) AS CategorySales

FROM [Product Sales for 1997]

GROUP BY CategoryName

We can query the view above as follows:

SELECT * FROM [Category Sales For 1997]

We can also add a condition to the query. Now we want to see the total sale only for the category

“Beverages”:

SELECT * FROM [Category Sales For 1997]

WHERE CategoryName=’Beverages’

9.7.2 Data Manipulation Language (DML)

Data Manipulation Language (DML) is the part of SQL used to manipulate data within objects of a

relational database.

The three basic DML commands are

Ø INSERT

Ø UPDATE

Ø DELETE

1. INSERT Statement

The INSERT Statement adds one or more rows to a table. It has two formats:

INSERT INTO table-1 [(column-list)] VALUES (value-list)

and,

INSERT INTO table-1 [(column-list)] (query-specification)

The first form inserts a single row into table-1 and explicitly specifies the column values for the row. The

second form uses the result of query-specification to insert one or more rows into table-1. The result rows

from the query are the rows added to the insert table.

Both forms have an optional column-list specification. Only the columns listed will be assigned values.

Unlisted columns are set to null, so unlisted columns must allow nulls. The values from the VALUES

Clause (first form) or the columns from the query-specification rows (second form) are assigned to the

corresponding column in column-list in order.

If the optional column-list is missing, the default column list is substituted. The default column list contains

all columns in table-1 in the order they were declared in CREATE TABLE, or CREATE VIEW.

VALUES Clause

The VALUES Clause in the INSERT Statement provides a set of values to place in the columns of a new

row. It has the following general format:

122

VALUES (value-1 [, value-2] ...)

value-1 and value-2 are Literal Values or Scalar Expressions involving literals. They can also specify

NULL.

The values list in the VALUES clause must match the explicit or implicit column list for INSERT in

degree (number of items). They must also match the data type of corresponding column or be convertible

to that data type.

INSERT Examples

INSERT INTO p (pno, color) VALUES (‘P4’, ‘Brown’)

Before After

pno descr color pno descr color

P1 Widget Blue P1 Widget Blue

P2 Widget Red => P2 Widget Red

P3 Dongle Green P3 Dongle Green

P4 NULL Brown

INSERT INTO sp

SELECT s.sno, p.pno, 500

FROM s, p

WHERE p.color=’Green’ AND s.city=’London’

Before After

sno pno qty sno pno qty

S1 P1 NULL S1 P1 NULL

S2 P1 200 => S2 P1 200

S3 P1 1000 S3 P1 1000

S3 P2 200 S3 P2 200

S2 P3 500

2. UPDATE Statement

The UPDATE statement modifies columns in selected table rows. It has the following general

format:

UPDATE table-1 SET set-list [WHERE predicate]

The optional WHERE Clause has the same format as in the SELECT Statement. See WHERE

Clause. The WHERE clause chooses which table rows to update. If it is missing, all rows are in table-1 are

updated.

The set-list contains assignments of new values for selected columns.

The SET Clause expressions and WHERE Clause predicate can contain subqueries, but the

subqueries cannot reference table-1. This prevents situations where results are dependent on the order of

processing.

SET Clause

The SET Clause in the UPDATE Statement updates (assigns new value to) columns in the selected

table rows. It has the following general format:

SET column-1 = value-1 [, column-2 = value-2] ...

column-1 and column-2 are columns in the Update table. value-1 and value-2 are expressions that can

reference columns from the update table. They also can be the keyword — NULL, to set the column to null.

123

Since the assignment expressions can reference columns from the current row, the expressions

are evaluated first. After the values of all Set expressions have been computed, they are then assigned to

the referenced columns. This avoids results dependent on the order of processing.

UPDATE Examples

UPDATE sp SET qty = qty + 20

Before After

sno. pno qty sno. pno qty

S1 P1 NULL S1 P1 NULL

S2 P1 200 => S2 P1 220

S3 P1 1000 S3 P1 1020

S3 P2 200 S3 P2 220

UPDATE s

SET name = ‘Tony’, city = ‘Milan’

WHERE sno = ‘S3’

Before After

sno name city sno name city

S1 Pierre Paris S1 Pierre Paris

S2 John London => S2 John London

S3 Mario Rome S3 Tony Milan

3. DELETE Statement

The DELETE Statement removes selected rows from a table. It has the following general format:

DELETE FROM table-1 [WHERE predicate]

The optional WHERE Clause has the same format as in the SELECT Statement. See WHERE

Clause. The WHERE clause chooses which table rows to delete. If it is missing, all rows are in table-1 are

removed.

The WHERE Clause predicate can contain subqueries, but the subqueries cannot reference table-

1. This prevents situations where results are dependent on the order of processing.

DELETE Examples

DELETE FROM sp WHERE pno = ‘P1’

Before After

sno pno qty sno pno qty

S1 P1 NULL S3 P2 200

S2 P1 200 =>

S3 P1 1000

S3 P2 200

DELETE FROM p WHERE pno NOT IN (SELECT pno FROM sp)

Before After

pno descr color pno descr color

P1 Widget Blue P1 Widget Blue

P2 Widget Red => P2 Widget Red

P3 Dongle Green

124

9.7.3 Data Query Language (DQL)

Though comprised of only one command, Data Query Language (DQL) is the most concentrated

focus of SQL for modern relational database users. The base command is SELECT.

This command, accompanied by many options and clauses, is used to compose queries against a

relational database. A query is an inquiry to the database for information. A query is usually issued to the

database through an application interface or via a command-line prompt. You can easily create queries,

from simple to complex, from vague to specific.

The SELECT statement is used to select data from a table. The tabular result is stored in a

result table (called the result-set).

Syntax

SELECT column_name(s)

FROM table_name

Note: SQL statements are not case sensitive. SELECT is the same as select.

SQL SELECT Example

To select the content of columns named “LastName” and “FirstName”, from the database table called

“Persons”, use a SELECT statement like this:

SELECT LastName,FirstName FROM Persons

The database table “Persons”:

LastName FirstName Address City

Hansen Ola Timoteivn 10 Sandnes

Svendson Tove Borgvn 23 Sandnes

Pettersen Kari Storgt 20 Stavanger

The result

LastName FirstName

Hansen Ola

Svendson Tove

Pettersen Kari

Select All Columns

To select all columns from the “Persons” table, use a * symbol instead of column names, like this:

SELECT * FROM Persons

Result

LastName FirstName Address City

Hansen Ola Timoteivn 10 Sandnes

Svendson Tove Borgvn 23 Sandnes

Pettersen Kari Storgt 20 Stavanger

9.7.4 Data Control Commands

Data control commands in SQL enable you to control access to data within the database. These

Data Control Language (DCL) commands are normally used to create objects related to user access and

also control the distribution of privileges among users. Some data control commands are as follows:

· ALTER PASSWORD

· GRANT

125

· REVOKE

· CREATE SYNONYM

You will find that these commands are often grouped with other commands and might appear in a

number of lessons throughout this book. Data Administration Commands Data administration commands

enable the user to perform audits and perform analyses on operations within the database. They can also

be used to help analyze system performance. Two general data administration commands are as follows:

· START AUDIT

· STOP AUDIT

Do not get data administration confused with database administration. Database administration is

the overall administration of a database, which envelops the use of all levels of commands. Data adminis-

tration is much more specific to each SQL implementation than are those core commands of the SQL

language.

SQL-Transaction Statements

SQL-Transaction Statements control transactions in database access. This subset of SQL is also

called the Data Control Language for SQL (SQL DCL).

There are 2 SQL-Transaction Statements:

· COMMIT Statement — commit (make persistent) all changes for the current transaction

· ROLLBACK Statement — roll back (rescind) all changes for the current transaction

9.7.5 Transactional Control Commands

Transactional control is the ability to manage various transactions that may occur within a relational

database management system. When a transaction is executed and completes successfully, the target

table is not immediately changed, although it may appear so according to the output. When a transaction

successfully completes, there are transactional control commands that are used to finalize the transaction,

either saving the changes made by the transaction to the database or reversing the changes made by the

transaction.

There are three commands used to control transactions:

· COMMIT

· ROLLBACK

· SAVEPOINT

· The SET TRANSACTION Command

· Transactional control commands are only used with the DML commands INSERT, UPDATE, and

DELETE. For example, you do not issue a COMMIT statement after creating a table. When the table is

created, it is automatically committed to the database. Likewise, you cannot issue a ROLLBACK to

replenish a table that was just dropped.

· When a transaction has completed, the transactional information is stored either in an allocated

area or in a temporary rollback area in the database. All changes are held in this temporary rollback area

until a transactional control command is issued. When a transactional control command is issued, changes

are either made to the database or discarded; then, the temporary rollback area is emptied. Figure 6.1

illustrates how changes are applied to a relational database.

126

The COMMIT Command

The COMMIT command is the transactional command used to save changes invoked by a transaction to

the database. The COMMITcommand saves all transactions to the database since the last COMMIT or

ROLLBACK command.

COMMIT [WORK];

The keyword COMMIT is the only mandatory part of the syntax, along with the character or command

used to terminate a statement according to each implementation. WORK is a keyword that is completely

optional; its only purpose is to make the command more user-friendly.

The ROLLBACK Command

The ROLLBACK command is the transactional control command used to undo transactions that have not

already been saved to the database. The ROLLBACK command can only be used to undo transactions

since the last COMMIT or ROLLBACK command was issued.

The syntax for the ROLLBACK command is as follows:

rollback [work];

Once again, the COMMIT statement, the WORK keyword is an optional part of the ROLLBACK

syntax.

The SAVEPOINT Command

A SAVEPOINT is a point in a transaction when you can roll the transaction back to a certain point without

rolling back the entire transaction.

The syntax for the SAVEPOINT command is

This command serves only in the creation of a SAVEPOINT among transactional statements. The

ROLLBACK command is used to undo a group of transactions. The SAVEPOINT is a way of managing

transactions by breaking large numbers of transactions into smaller, more manageable groups.

The SET TRANSACTION Command

The SET TRANSACTION Command Establishes the isolation level of the current transaction. If

you use a SET TRANSACTION statement, it must be the first statement in your transaction. How-

ever, a transaction need not have a SET TRANSACTION statement.

127

9.8 Summary

SQL (Structured Query Language) is a database sublanguage for querying and modifying

relational databases. It was developed by IBM Research in the mid 70’s and standardized by ANSI in

1986. SQL is a version of Relational Calculus. The basic structure in SQL in the statement. Semicolons

separate multiple SQL statements.

9.9 Self-Assessment Questions

1. How DDL commands are different from DML? Explain with the help of suitable example.

2. Explain the different data types of SQL with the help of example.

3. What do you understand by sub queries? Give example and explain.

4. Explain the use of join in RDBMS with the help of example.

5. Discuss the advantages of SQL over old database software packages.

฀฀฀

128

Unit - 10 : More on SQL

Structure of the Unit

10.0 Objective

10.1 Introduction

10.2 Aggregate Functions

10.3 Group By Clause

10.4 Having Clause

10.5 Order By Clause

10.6 Join

10.6.1 Inner join

10.6.2 Outer join

10.6.3 Self join

10.7 Set Operations

10.7.1 Union

10.7.2 Union All

10.7.3 Intersection

10.7.4 Minus

10.8 Summary

10.9 Self Assessment Questions

10.0 Objective

At the end of this unit, you should be able to -

• Describe the various aggregate functions of SQL

• Describe the join in SQL

• Describe the set operations in SQL

10.1 Introduction

In previous section we have only focused on queries that refer to exactly one table. Furthermore,

conditions in a where were restricted to simple comparisons. A major feature of relational databases,

however, is to combine (join) tuples stored in different tables in order to display more meaningful and

complete information.

10.2 Aggregate Functions

SQL has a lot of built-in functions for counting and calculations.

Function Syntax

The syntax for built-in SQL functions is:

SELECT function(column) FROM table

Aggregate functions operate against a collection of values, but return a single value.

Note : If used among many other expressions in the item list of a SELECT statement, the SELECT must

have a GROUP BY clause!!

129

Five important aggregate functions: SUM, AVG, MAX, MIN, and COUNT.

They are calledaggregate functions because they summarize the results of a query, rather than

listing all of the rows.

· SUM () gives the total of all the rows, satisfying any conditions, of the given column, where the

givencolumn is numeric.

· AVG () gives the average of the given column.

· MAX () gives the largest figure in the given column.

· MIN () gives the smallest figure in the given column.

· COUNT(*) gives the number of rows satisfying the conditions.

Examples 1 :

SELECT SUM(SALARY), AVG(SALARY)

FROM EMPLOYEESTABLE;

This query shows the total of all salaries in the table, and the average salary of all of the entries in

the table.

SELECT MIN(BENEFITS)

FROM EMPLOYEESTABLE

WHERE POSITION = ‘Manager’;

This query gives the smallest figure of the Benefits column, of the employees who are Managers,

which is 12500.

SELECT COUNT(*)

FROM EMPLOYEESTABLE

WHERE POSITION = ‘Staff’;

This query tells you how many employees have Staff status.

Aggregate functions (like SUM) often need an added GROUP BY functionality.

10.3 GROUP BY Clause

GROUP BY Clause is added to SQL because aggregate functions (like SUM) return the aggregate

of all column values every time they are called, and without the GROUP BY function it was impossible to

find the sum for each individual group of column values.

The syntax for the GROUP BY function is:

SELECT column,SUM(column) FROM table GROUP BY column

GROUP BY Example

This “Sales” Table :

Company Amount

TVS 5500

IBM 4500

TVS 7100

And This SQL :

SELECT Company, SUM(Amount) FROM Sales

Returns this result :

130

Company SUM(Amount)

TVS 17100

IBM 17100

TVS 17100

The above code is invalid because the column returned is not part of an aggregate. A GROUP BY

clause will solve this problem:

SELECT Company,SUM(Amount) FROM Sales

GROUP BY Company

Returns this result :

Company SUM(Amount)

TVS 12600

IBM 4500

10.4 HAVING Clause

Having clause can also be added to SQL because the WHERE keyword could not be used

against aggregate functions (like SUM), and without HAVING, it would be impossible to test for result

conditions.

The syntax for the HAVING function is:

SELECT column,SUM(column) FROM table

GROUP BY column

HAVING SUM(column) condition value

This “Sales” Table :

Company Amount

TVS 5500

IBM 4500

TVS 7100

This SQL :

SELECT Company,SUM(Amount) FROM Sales

GROUP BY Company

HAVING SUM(Amount)>10000

Returns this result :

Company SUM(Amount)

TVS 12600

10.5 ORDER BY Clause

The ORDER BY clause is optional. If used, it must be the last clause in the SELECT statement.

The ORDER BY clause requests sorting for the results of a query.

When the ORDER BY clause is missing, the result rows from a query have no defined order (they

131

are unordered). The ORDER BY clause defines the ordering of rows based on columns from the SELECT

clause. The ORDER BY clause has the following general format:

ORDER BY column-1 [ASC|DESC] [column-2 [ASC|DESC]] ...

column-1, column-2, ... are column names specified (or implied) in the select list. If a select

column is renamed (given a new name in the select entry), the new name is used in the ORDER BY list.

ASC and DESC request ascending or descending sort for a column. ASC is the default.

ORDER BY sorts rows using the ordering columns in left-to-right, major-to-minor order. The

rows are sorted first on the first column name in the list. If there are any duplicate values for the first

column, the duplicates are sorted on the second column (within the first column sort) in the Order By list,

and so on. There is no defined inner ordering for rows that have duplicate values for all Order By columns.

Database nulls require special processing in ORDER BY. A null column sorts higher than all

regular values; this is reversed for DESC.

In sorting, nulls are considered duplicates of each other for ORDER BY. Sorting on hidden

information makes no sense in utilizing the results of a query. This is also why SQL only allows select list

columns in ORDER BY.

For convenience when using expressions in the select list, select items can be specified by number

(starting with 1). Names and numbers can be intermixed.

Example queries :

SELECT * FROM sp ORDER BY 3 DESC

sno pno qty

S1 P1 NULL

S3 P1 1000

S3 P2 200

S2 P1 200

SELECT name, city FROM s ORDER BY name

name city

John London

Mario Rome

Pierre Paris

132

SELECT * FROM sp ORDER BY qty DESC, sno

sno pno qty

S1 P1 NULL

S3 P1 1000

S2 P1 200

S3 P2 200

Orders table :

Company OrderNumber

Sega 3412

ABC Shop 5678

TVS 2312

TVS 6798

Example :

To display the company names in alphabetical order:

SELECT Company, OrderNumber FROM Orders

ORDER BY Company ASC (asending)

Result:

Company OrderNumber

ABC Shop 5678

Sega 3412

TVS 6798

TVS 2312

Example :

To display the company names in alphabetical order AND the OrderNumber in numerical order :

SELECT Company, OrderNumber FROM Orders

ORDER BY Company, OrderNumber

Result:

Company OrderNumber

ABC Shop 5678

Sega 3412

TVS 2312

TVS 6798

Example :

To display the company names in reverse alphabetical order:

SELECT Company, OrderNumber FROM Orders

133

ORDER BY Company DESC

Result:

Company OrderNumber

TVS 6798

TVS 2312

Sega 3412

ABC Shop 5678

Example :

To display the company names in reverse alphabetical order AND the OrderNumber in numerical

order:

SELECT Company, OrderNumber FROM Orders

ORDER BY Company DESC, OrderNumber ASC

Result:

Company OrderNumber

TVS 2312

TVS 6798

Sega 3412

ABC Shop 5678

Notice that there are two equal company names (TVS) in the result above. The only time you will

see the second column in ASC order would be when there are duplicated values in the first sort column, or

a handful of nulls.The ORDER BY keyword is used to sort the result.

Sort the Rows :

The ORDER BY clause is used to sort the rows.

Orders :

Company OrderNumber

Sega 3412

ABC Shop 5678

TVS 2312

TVS 6798

Example :

To display the company names in alphabetical order:

SELECT Company, OrderNumber FROM Orders

ORDER BY Company

134

Result :

Company OrderNumber

ABC Shop 5678

Sega 3412

TVS 6798

TVS 2312

Example :

To display the company names in alphabetical order AND the OrderNumber in numerical order:

SELECT Company, OrderNumber FROM Orders

ORDER BY Company, OrderNumber

Result :

Company OrderNumber

ABC Shop 5678

Sega 3412

TVS 2312

TVS 6798

Example :

To display the company names in reverse alphabetical order:

SELECT Company, OrderNumber FROM Orders

ORDER BY Company DESC

Result :

Company OrderNumber

TVS 6798

TVS 2312

Sega 3412

ABC Shop 5678

Example :

To display the company names in reverse alphabetical order AND the OrderNumber in numerical

order:

SELECT Company, OrderNumber FROM Orders

ORDER BY Company DESC, OrderNumber ASC

Result :

Company OrderNumber

TVS 2312

TVS 6798

Sega 3412

ABC Shop 5678

135

Notice that there are two equal company names (TVS) in the result above. The only time you will

see the second column in ASC order would be when there are duplicated values in the first sort column, or

a handful of nulls.

10.6 Join

The FROM clause allows more than 1 table in its list, however simply listing more than one table

will very rarely produce the expected results. The rows from one table must be correlated with the rows of

the others. This correlation is known as joining.

s Table sp Table

sno name city

S1 Pierre Paris

S2 John London

S3 Mario Rome

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

An example can best illustrate the rationale behind joins. The following query:

SELECT * FROM sp, p

Produces :

sno pno qty pno descr color

S1 P1 NULL P1 Widget Blue

S1 P1 NULL P2 Widget Red

S1 P1 NULL P3 Dongle Green

S2 P1 200 P1 Widget Blue

S2 P1 200 P2 Widget Red

S2 P1 200 P3 Dongle Green

S3 P1 1000 P1 Widget Blue

S3 P1 1000 P2 Widget Red

S3 P1 1000 P3 Dongle Green

S3 P2 200 P1 Widget Blue

S3 P2 200 P2 Widget Red

S3 P2 200 P3 Dongle Green

Each row in sp is arbitrarily combined with each row in p, giving 12 result rows (4 rows in sp X 3

rows in p.) This is known as a cartesian product.

A more usable query would correlate the rows from sp with rows from p, for instance matching on the

common column — pno:

136

SELECT *

FROM sp, p

WHERE sp.pno = p.pno

This Produces :

sno pno qty pno descr color

S1 P1 NULL P1 Widget Blue

S2 P1 200 P1 Widget Blue

S3 P1 1000 P1 Widget Blue

S3 P2 200 P2 Widget Red

Rows for each part in p are combined with rows in sp for the same part by matching on part

number (pno). In this query, the WHERE Clause provides the join predicate, matching pno from p with

pno from sp.

The join in this example is known as an innerequi-join. equi meaning that the join predicate uses =

(equals) to match the join columns. Other types of joins use different comparison operators. For example,

a query might use a greater-than join.

The term inner means only rows that match are included. Rows in the first table that have no

matching rows in the second table are excluded and vice versa (in the above join, the row in p with pno P3

is not included in the result.) An outer join includes unmatched rows in the result.

More than 2 tables can participate in a join. This is basically just an extension of a 2 table join. 3

tables — a, b, c, might be joined in various ways:

· a joins b which joins c

· a joins b and the join of a and b joins c

· a joins b and a joins c

Plus several other variations. With inner joins, this structure is not explicit. It is implicit in the nature

of the join predicates. With outer joins, it is explicit;

This query performs a 3 table join:

SELECT name, qty, descr, color

FROM s, sp, p

WHERE s.sno = sp.sno

AND sp.pno = p.pno

It joins s to sp and spto p, producing :

name qty descr color

Pierre NULL Widget Blue

John 200 Widget Blue

Mario 1000 Widget Blue

Mario 200 Widget Red

Note that the order of tables listed in the FROM clause should have no significance, nor does the

order of join predicates in the WHERE clause.

137

10.6.1 Inner Join

An inner join is a join in which the values in the columns being joined are compared using a

comparison operator.

Inner joins can be specified in either the FROM or WHERE clause.. Inner joins specified in the

WHERE clause are known as old-style inner joins..

SQL INNER JOIN Syntax

SELECT column_name(s)

FROM table_name1

INNER JOIN table_name2

ON table_name1.column_name=table_name2.column_name

The INNER JOIN keyword return rows when there is at least one match in both tables Let's assume that

we have the following two tables,

Table Store_Information

store_name Sales Date

Los Angeles $1500 Jan-05-1999

San Diego $250 Jan-07-1999

Los Angeles $300 Jan-08-1999

Boston $700 Jan-08-1999

Table Geography

region_name store_name

East Boston

East New York

West Los Angeles

West San Diego

We want to find out sales by store, and we only want to see stores with sales listed in the report.

To do this, we can use the following SQL statement using INNER JOIN:

SELECT A1.store_name STORE, SUM(A2.Sales) SALES

FROM Geography A1

INNER JOIN Store_Information A2

ON A1.store_name = A2.store_name

GROUP BY A1.store_name

Result:

STORE SALES

Los Angeles $1800

San Diego $250

Boston $700

By using INNER JOIN, the result shows 3 stores, even though we are selecting from theGeography

table, which has 4 rows. The row "New York" is not selected because it is not present in the

Store_Information table.

138

10.6.2 Outer Join

An inner join excludes rows from either table that don’t have a matching row in the other table. An

outer join provides the ability to include unmatched rows in the query results. The outer join combines the

unmatched row in one of the tables with an artificial row for the other table. This artificial row has all

columns set to null.

The outer join is specified in the FROM clause and has the following general format:

table-1 { LEFT | RIGHT | FULL } OUTER JOIN table-2 ON predicate-1

Predicate -1 : is a join predicate for the outer join. It can only reference columns from the joined tables.

The LEFT, RIGHT or FULL specifiers give the type of join:

· LEFT — only unmatched rows from the left side table (table-1) are retained

· RIGHT — only unmatched rows from the right side table (table-2) are retained

· FULL — unmatched rows from both tables (table-1 and table-2) are retained

Outer join example:

SELECT pno, descr, color, sno, qty

FROM p LEFT OUTER JOIN sp ON p.pno = sp.pno

10.6.3 Self Join

A query can join a table to itself. Self joins have a number of real world uses. For example, a self

join can determine which parts have more than one supplier :

SELECT DISTINCT a.pno

FROM sp a, sp b

WHERE a.pno = b.pno

AND a.sno<>b.sno

As illustrated in the above example, self joins use correlation names to distinguish columns in the

select list and where predicate. In this case, the references to the same table are renamed - a and b. Self

joins are often used in sub queries.

pno descr color sno qty

P1 Widget Blue S1 NULL

P1 Widget Blue S2 200

P1 Widget Blue S3 1000

P2 Widget Red S3 200

P3 Dongle Green NULL NULL

139

10.7 Set Operations

Set Operators : Set operators combines results of two queries into a single result. Set operations

are generally performed on two Lists obtained from distinct tables.

10.7.1 Union

The UNION command is used to select related information from two tables, much like the JOIN

command. However, when using the UNION command all selected columns need to be of the same data

type.

Note : With UNION, only distinct values are selected.

SQL Statement 1

UNION

SQL Statement 2

Employees_Norway :

E_ID E_Name

01 Hansen, Ola

02 Svendson, Tove

03 Svendson, Stephen

04 Pettersen, Kari

Employees_USA :

E_ID E_Name

01 Turner, Sally

02 Kent, Clark

03 Svendson, Stephen

04 Scott, Stephen

Using the UNION Command

Example :

List all different employee names in Norway and USA:

SELECT E_Name FROM Employees_Norway

UNION

SELECT E_Name FROM Employees_USA

Result :

E_Name

Hansen, Ola

Svendson, Tove

Svendson, Stephen

Pettersen, Kari

Turner, Sally

Kent, Clark

Scott, Stephen

140

Note : This command cannot be used to list all employees in Norway and USA. In the example above we

have two employees with equal names, and only one of them is listed. The UNION command only selects

distinct values.

10.7.2 Union All

The UNION ALL command is equal to the UNION command, except that UNION ALL

selects all values.

SQL Statement 1

UNION ALL

SQL Statement 2

Using the UNION ALL Command

Example :

List all employees in Norway and USA:

SELECT E_Name FROM Employees_Norway

UNION ALL

SELECT E_Name FROM Employees_USA

Result :

E_Name

Hansen, Ola

Svendson, Tove

Svendson, Stephen

Pettersen, Kari

Turner, Sally

Kent, Clark

Svendson, Stephen

Scott, Stephen

10.7.3 Intersection

The Intersect operator is used to return the rows returned by both queries. The following

command displays the rows that are common in the results of first and second queries.

SELECT member_id

FROM members

WHERE category =’F’

INTERSECT

SELECT DISTINCT member_id

FROM bookissue

ORDER BY member_id;

10.7.4 Minus

The Minus operator is used to return rows from the result of the first query that are not available in

the result of the second query.

MEMBER_I
D

2

4

5

7

141

SELECT member_id

FROM members

WHERE category =’F’

MINUS

SELECT DISTINCT member_id

FROM bookissue

ORDER BY member_id;

MEMBER_I
D

1

6

§ Set Operator combine the result of two queries into one

§ All set operators have equal precedence.

§ When multiple set operators are present in the same query they are evaluated from left to right.

§ The datatype of resulting columns should match in both queries.

§ The resultant column name would be the column name of first query.

10.8 Summary

Using different aggregate functions, joins and different set operations we can perform more complex

queries on DBMS and get desired outputs in different formats.

10.9 Self Assessment Questions

1. What do you understand by aggregate functions in SQL? Explain.

2. Explain the basic difference between where and having clause of select statement.

3. Explain the different set operations of SQL with the help of suitable example.

4. Explain the use of order by clause of select statement.

฀฀฀

pno

P1

142

Unit - 11 : Queries and Subqueries

Structure of the Unit

11.0 Objective

11.1 Introduction

11.2 Queries with join

11.2.1 Equi Joins

11.2.2 Cartesian Join

11.2.3 Outer Join

11.2.4 Self Join

11.3 Set Operators

11.3.1 Union

11.3.2 Intersect

11.3.3 Minus

11.4 Sub Queries

11.5 Summary

11.6 Self Assessment Questions

11.0 Objective

In general, a query is a form of questioning, in a line of inquiry. This unit covers the in depth of SQL

query that run on Oracle 10.

• Queries

• Joins

• Sub queries with exists. any, some and all operators.

11.1 Introduction

Tables used in queries :

EMP Contains information about the employees of the sample company

DEPT Contains information about the departments in the company

Structure of EMP Table:

 EMPNO NUMBER(4) Employee number

 ENAME VARCHAR(20) Employee name

 JOB CHAR (10) Designation

 MGR NUMBER (4) Respective manager’s EMPNO

 HIREDATE DATE Date of joining

 SAL NUMBER (9,2) Basic salary

 COMM NUMBER (7,2) Commission

 DEPTNO NUMBER (2) Department number

Structure of DEPT Table :

 Column names Types Description

 DEPTNO NUMBER(2) Department number

 DNAME VARCHAR2 (20) Name of the department

 LOC VARCHAR2 (10) Location of the department

143

11. 2 Queries with join

• Joins are used to combine columns from different tables

• The connection between tables is established through the WHERE clause

• Types of joins: Equi Joins, Cartesian Joins, Outer Joins, Self Joins

One of the most important features of SQL is the ability to define relationships between multiple

tables and draw information from them in terms of these relationship, all within a single command. With

joins, the information from any number of tables can be related.

To join two tables, the retrieval criteria will typically specify the condition that a column in the first

table (which is defined as foreign key) is equal to a column in the second table (which is the primary key

referenced by the foreign key) A join’s where clause may contain additional conditions. In a join, the table

names are listed in the FROM clause, separated by commas.

SELECT < select - list >

FROM < table1 > < table 2 >,...............< tableN >

WHERE < table1. column1> = < table2. column 2 and

< table2 column 3 = < tableN. columnN >

.....................................

additional - conditions

The variables are defined as follows:-

<select-list> is the set of columns and expressions from <table1> through <tableN>

<table1> through <tableN> are the tables from which column values are retrieved.

<column1> through <columnN> are the columns in <table> through <tableN>

Additional conditions are optional query criteria.:-

We introduce another table, INCR, which holds the information about the salary increments of the

employee. The structure of the INCR table is:

EMPNO NUMBER (4)

AMT NUMBER (7,2)

DATEINCR DATE

11.2.1 Equi Join

When two tables are joined together using equality of values in one or more columns, they make

an Equi Join. Table prefixes are utilized to prevent ambiguity and the WHERE clause specifies the col-

umns being joined.

Examples:-

List the employee numbers, names, department numbers and the department name:

SELECT empno, ename, emp. deptno, dname FROM emp, dept

WHERE emp. deptno = dept. deptno;

Here the deptno column exists in both the tables. To avoid ambiguity, the column name should be

qualified with the table name (or with an alias).

Both the table names need to be specifed (emp and dept.) The WHERE clause defines the joining

condition i.e., joining the deptno of emp table to the deptno of dept table. Here it checks for the equality

values in these columns.

144

EMPNO. ENAME EMP. DEPTNO DNAME

...............

7369 SMITH 20 RESEARCH

7499 ALLEN 30 SALES

7521 WARD 30 SALES

7566 JONES 20 RESEARCH

7654 MARTIN 30 SALES

7698 BLAKE 30 SALES

7782 CLARK 10 ACCOUNTING

7788 SCOTT 20 RESEARCH

7839 KING 10 ACCOUNTING

7844 TURNER 30 SALES

7876 ADAMS 20 RESEARCH

7900 JAMES 30 SALES

7902 FORD 20 RESEARCH

7934 MILLER 10 ACCOUNTING

7945 ALLEN 20 RESEARCH

7526 MARTIN 20 RESEARCH

7985 SCOTT 30 SALES

14 rows selected.

Using Table Aliases:-

It can be very tedious to type table mames repeatedly. Temporary labels (or aliases) can be used

in the FROM clause. These temporary names are valid only for the current select statement.Table aliases

should also specified in the select clause. Table aliases can be up to 30 character in length but the shorter

they are the better.

Note: The advantages of using table aliases in that it effectively speeds up the query.

SELECT e. empno, e.ename, e.deptno, d.dname FROM emp e, dept d

WHERE e. deptno = d. deptno;

Self Learning Exercise :-

1. Why do we need to specify the table prefix when using equi-join ?

11.2.2 Cartesian Join

When no WHERE clause is specified, each row of one table matches every row of the other table.

This results in a Cartesian product.

SELECT empno, ename, dname, loc FROM emp, dept;

If the umber of rows are 14 and 4 in emp and dept tables respectively, then the total number of

rows produced is 56.

Cartesian product is finding out all the possible combination of columns from different tables.

Example:-

Consider the following tables and the data present:

145

Tab1 : Holds the principal amount.

Tab2 : Holds year and rate of interest.

Tab1 Tab2

PRINCIPAL YEAR RATE

....................

1000 1 10

2000 2 11

3000 3 11.5

4 12

Finding the possible combinations of calculation of amount, a Cartesian join of the Tab1 and Tab2

is required. The formula for calulation of Amount is Princopal* (1+(rate/100)year

SELECT PRINCIPAL, YAER, RATE, PRINCIPAL* POWER (1+RATE/100), YEAR) FROM

TAB1, TAB2;

Will produce the following output

 PRINCIPAL YEAR RATE PRINCIPAL* POWER (1+RATE/100), YEAR)

 1000 1 10 1100

 2000 1 10 2200

 3000 1 10 3300

 1000 2 11 1232.1

 2000 2 11 2464.2

 3000 2 11 3696.3

 1000 3 11.5 2772.1959

 2000 3 11.5 2772.3918

 3000 3 11.5 4158.5876

 1000 4 12 1573.5194

 2000 4 12 3147.0387

 3000 4 12 4720.5581

11.2.3 Outer Join

If there are any values in one table that do not have corresponding values (s) in the other, in an equi

join that row will not be selected. Such rows can be forcefully selected by using the outer join symbol (+)

The corresponding columns for that row will have NULLs.

Example:-

In the emp table, no record of the employees belonging to the department 40 is present. There-

fore, in the example above for equi join, the row of department 40 from the dept table will not be dis-

played. Dispaly the list of the employees working in each department Display the department information

even if no empployee belongs to that department:

SELECT empno, ename, emp. deptno, dnamo, loc FROM emp, dept

WHERE emp. deptno (+) = demp. deptno;

146

EMPNO ENAME EMP. DEPTNDNAME

................

-

7369 SMITH 20 RESEARCH

7499 ALLEN 30 SALES

7521 WARD 30 SALES

7566 JONES 20 RESEARCH

7654 MARTIN 30 SALES

7698 BLAKE 30 SALES

7782 CLARE 10 ACCOUNTING

7788 SCOTT 20 RESEARCH

7839 KING 10 ACCOUNTING

7844 TURNER 30 SALES

7876 ADAMS 20 RESEARCH

7900 JAMES 30 SALES

7902 FORD 20 RESEARCH

7934 MILLER 10 ACCOUNTING

7945 ALLEN 20 RESEARCH

7526 MARTIN 20 RESEARCH

7985 SCOTT 30 SALES

40 OPERATIONS

14 rows selected.

If the symbol (+) is placed on the other side of the equaticn then all the employee details

with no corresponding department name and location, will be displayed with NULL values in

DNAME and LOC column.

Rules to place (+) operator:-

- The outer join symbol (+) can not be on both the side.

- We can not “outer join” the some table to more than one other table in a single SELECT

statement.

- A condition involving an outer join may not use the IN operator or be linked to another condition

by the OR operator.

11.2.4 Self Join

To join a table to itself means taht each row of the table is combined with itself and with every other

row of the table. The self join can be viewed as a join of two copies of the same table. The table is not

actually copied, but SQL performs the command as though it were.

The syntax of the command for joining a table to itself is almost the same as that for joinning two

different table. To distinguish the column names from one another, aliases for the actual the table name are

used, since both the table have the same name. Table name aliases are defined in the FROM

clause of the query.

To define the alias, one space is left after the table name and the alias.

147

Example:-

* EMP TABLE

EMPNO ENAME MGR

7839 KING

7566 JONES 7839

7876 ADAMS 7788

7934 MILLER 7782

.......

Consider the emp table shown above. Primary key of the emp table is empno. Details of each

employee’s manager is just another row in the EMP table whose EMPNO is stored in MGR column of

some other row. So every employee except manager has a Manager. Therefore MGR is a foreign key taht

reference empno. To list out the names of the manager with the employee record one will have to join

EMP with ltself.

SELECT WORKER. ename, MANAGER. ename ‘Manager’

FROM emp WORKER, emp MANAGER

WHERE WORKER. mgr = MANAGER. empno;

Where WORKER and MANAGER are two aliases for the EMP table and as a virtual

EMP TABLE

EMPNO ENAME MGR

7839 KING

7566 JONES 7839

7876 ADAMS 7788

7934 MILLER 7782

.......

WORKER MANAGER

 EMPNO ENAME MGR EMPNO ENAME MGR

 7839 KING 7839 KING

 7566 JONES 7839 7788 SCOTT 7566

 7876 ADAMS 7788 7782 CLARK 7839

 7934 MILLER 7782 7934 MILLER 7782

148

The output will be:

ENAME MANAGER

........................

SCOTT JONES

FORD JONES

ALLEN BLAKE

WARD BLAKE

JAMES BLAKE

TURNER BLAKE

MARTIN BLAKE

MILLER CLARK

ADAMS SCOTT

JONES KING

CLARK KING

BLAKE KING

SMITH FORD

13 rows selected.

Self Learning Exercise:-

2. In the previous query, only 13 rows (Not 14) have been retrieved. Why ?

3. List all employees who joined the company before their manager.

SELECT e. ename, e.hiredate, m.ename manager, m.hiredate

FROM emp e, emp m

WHERE e.mgr = m.empno

and e. hiredate < m.hiredate;

ename hiredate manager hiredate

............

ALLEN 15-AUG-83 BLAKE 11-JUN-84

WARD 26-MAR-84 BLAKE 11-JUN-84

MARTIN 05-DEC-83 BLAKE 11-JUN-84

TURNER 04-JUN-84 BLAKE 11-JUN-84

MILLER 21-NOV-83 CLARK 14-MAY-84

JONES 31-OCT-83 KING 09-JUN-84

BLAKE 11-JUN-84 KING 09-JUL-84

CLARK 14-MAY-84 KING 09-JUL-84

SMITH 13-JUN-83 FORD 05-DEC-83

149

11.3 Set Operators

• SET Operator are used to combine information of similar type from one or more than one table.

• Datatype of correponding columns must be the same

• The types of SET operator in ORACLE are :

UNION : Rows of first query plus rows of second query, less duplicate rows

INTERSECT : Common rows from all the queries

MINUS : Rows unique to the first query

SET operator combine two or more queries into one result.

Suppose we want following three details from dept table

• List of all the different designations in department 20 and 30

• List the jobs common to department 20 and 30

• List the jobs unique to department 20 :

To get these combination of information the SET operators UNION, INTERSECT and MINUS are used.

11.3.1 Union

The UNION clause merges the outputs of two of more queries into a single set of rows and columns.

The syntax of UNION operator is

select <stmt1>

union

select <stmt2>

{order-by-clause}

The variables are defined as follows:

select stmt1 and select stmt 2 are valid SELECT statement.

order-by-clause is optional and it references the columns by number rather than by name.

The queries are all executed independently, but their output is merged. Only the final query ends with a

semicolon.

Examples:-

• Dispaly the different designations in department 20 and 30:

SELECT job FROM emp

WHERE deptno = 20

UNION

SELECT job FROM emp

WHERE deptno = 30;

The output will be:

JOB

.......................

CLERK

SALESMAN

MANAGER

ANALYST

Points to be kept in mind while using UNION operator.

150

• The two select statement may not contain an ORDER BY clause; hawever, the final

result of the entire UNION operation can be ordered.

• The number of columns retrieved by first select must be equal to number of columns

retrieved by second select.

• The date types of columns retrieved by the select statements should be same.

• The optional order by clause differs from the usual ORDER BY clause an a SELECT

statement because the columns used for ordering must be reference by a number rather

than name. The reason that the columns must be referenced by number is the SQL

does not require that the column name retrieved by first select be identical to theolumns

names retrieved by second select.

Example:-

select empno, ename from emp

where deptno = 10

UNION

select empno, ename from emp

where deptno = 30

order by 1;

EMPNO ENAME

...............

7499 ALLEN

7521 WARD

7654 MARTIN

7698 BLAKE

7839 KING

7844 TURNER

7900 JAMES

7934 MILLER

11.3.2 Intersect

The intersect operator returns the rows that are common between two sets of rows.

The syntax of INTERSECT operator is same as UNION operator. Only UNION key word is

replaced by INTERSECT.

select stmt1

INTERSECT

select stmt2

{order-by clause}

Example:-

List the jobs common to department 20 and 30:

SELECT job FROM emp WHERE deptno = 20

151

INTERSECT

SELECT job FROM emp WHERE deptno = 30,

Job

...........

CLERK

MANAGER

11.3.3 Minus

Minus operator returns the rows unique to first query. The syntax using the MINUS

operator resembles the syntax for the union operator:

select stmt1

MINUS

select stmt2

{order-by clause}

The requirements and considerations for using the MINUS operator are essentially the same as

those for the INTERSECT and UNION operator. To illustrate the use of the MINUS operator, consider

the following example.

List the jobs unique to department 20:

SELECT job FROM emp

WHERE deptno = 20

MINUS

SELECT job FROM emp

WHERE deptno = 10

MINUS

SELECT job FROM emp

WHERE deptno = 30;

Job

...........

ANALYST

Classroom Exercise:-

Can we rewrite the query to find jobs that are unique to department 20 as:

SELECT job FROM emp WHERE deptno = 20

MINUS

SELECT job FROM emp WHERE deptno IN (10, 30);

11.4 Sub Queries

• The result of inner query is dynamically substituted in the condition of outer query

• There is no practical limitation to the level of nesting of queries in Oracle 9

• When using relational operators, ensure that the sub query returns a single column output

• In some cases, the DISTINCT clause cab be used to ensure single valued output

SQL has an ability to nest queries within one another. A subquery is a SELECT statement that is

152

nested within another SELECT statement and which returns intermediate results. SQL frist

evaluates the inner query (or sub query) within the WHERE clause. The inner query generates values

that are tested in the predict of the outer query, determining when it will be true. The return value of

inner query is then substituted in the condition of the outer query.

Advantages of Nested queries

• Subqueries allows a developer to build powerful commands out of simple ones.

• The nested subquery is very useful when you need to select rows from a table with a

condition that depends on the data in the table itself.

Example:-

List the employees belonging to the department of MILLER:

Here we do not know the department to which MILLER belongs. So, we have to determine the

epartment of MILLER and use that department number to find out the other employees of that

department.

SELECT deptno FROM emp

WHERE ename = ‘MILLER’;

DEPTNO

....................

10

SELECT ename FROM emp

WHERE deptno = 10;

ENAME

...........

KING

CLARK

MILLER

Combining the above two queries:

SELECT ename FROM emp

WHERE deptno = (SELECT deptno FROM emp WHERE ename = ‘MILLER’);

* list the names of the employee drawing the highest salary:

SELECT ename FROM emp

WHERE sal = (SELECT MAX (sal) FROM emp),;

Using Aggregate Functions In Subqueries

Aggregate function produces single value for any number of rows. We want to see all employee

details whose salary is greater than avarege salary of employees whose hiredata is before‘01-04-81’

For this we need to use aggregate function in inner query.

SELECT * from emp

where sal >

(select avg (sal) from emp

where hiredata < ‘01-APR- 81’);

Subqueries in Having

We can also use subqueries within the Having clause. These subqueries can use their own

153

aggregate functions as long as do not produce multiple values or use GROUP BY or HAVING

themselves.

List the employee number, name, total number of increments and total increments amount

for the employee who has got maximum number of increments:

SELECT incr. empno, ename, COUNT (*), SUM (amt) FROM emp, incr

WHERE incr. empno = emp. empno

GROUP BY incr. empno, ename

HAVING COUNT (*) = (SELECT MAX (COUNT (*) from incr

GROUP BY empno);

The output will be:

EMPNO ENAME COUNT(*) SUM (AMT)

...............

7369 SMITH 3 500

List the job with highest average salary.

SELECT job, AVG (sal)

FROM emp

GROUP BY job

HAVING AVG (sal) = (SELECT MAX (AVG (sal)

FROM emp

GROUP BY job);

The output will be:

JOB AVG (SAL)

..........

PRESIDENT 5000

The inner query first finds the average salary for each different job group, and the MAX function

picks the highest average salary. That value (5000) is used in the HAVING clause.The GROUP

BY clause in the main query is needed because the main query’s SELECT list contains both an

aggregate and non-aggregate column.

Distinct Clause with Subqueries

Distinct clause is used in some cases to force a subquery to generate a single value. Suppose we

want to find the details of the department whose manager’s empcode ‘7698’.The query for this is

shown below.

select * from dept

where deptno = (select distinct deptno from emp where mgr = ‘7698’);

The inner query will give deptno whose manager’s empcode is ‘7698’ Without distinct clause the

inner query would have returned more than one row as there are more than one employee whose

manager’s empcode is ‘7698’.

Subqueries that return more than one row

When a query returns more than one row we need to use multirow comparision operator.

154

Example:-

List the names of the employees, who have got an increment:

SELECT ename FROM emp

WHERE empno IN (SELECT empno FROM incr);

Here, the inner query returns multiple values, hence the IN operator is used instead of a relational

operator.

List the names of the employees, who earn lowest salary in each department:

SELECT ename, sal, deptno FROM emp

WHERE sal IN (SELECT MIN (sal) FROM emp GROUP BY deptno);

Here the inner query has a GROUP BY clause. This means it may return more than one value. In this

case, the IN operator must be used because it expects a list of values.

The following points should be kept in mind while writting subqueries:

1. The inner query must be enclosed in parentheses.

2. The inner query must on the right hand side of the condition.

3. The subquery may not have an order by clause.

4. The ORDER BY clause appears at the end of the main select statement.

5. Subqueries are always executed from the most deeply nested to the least deeply

nested, unless they are correlated subqueries.

Correlated Subquery

A correlated subquery is a nested subquery which is executed once for each ‘candidate row’

considered by the main query and which executed uses a value from a column in the outer query. In a

correlated subquery, the column value used in inner sub query refers to the column value present in the

outher query forming a subquery. The subquery is executed repeatedly once for each row of the main

(outer) query table.

List the employee numbers and names, who have got more than 1 increments:

SELECT empno ename FROM emp

WHERE 1 <

(SELECT COUNT (*) FROM incr

WHERE empno = emp. empno);

EMPNO ENAME

..............

7369 SMITH

7788 SCOTT

7900 JAMES

7934 MILLER

List employee details who earn salary greater than the average salary for their department.

SELECT empno, ename, sal, deptno

FROM emp e

WHERE sal > (select AVG (sal) FROM emp WHERE deptno = e. deptno);

155

EMPNO ENAME SAL DEPTNO

..............

7839 KING 5000 10

7566 JONES 2975 20

7788 SCOTT 3000 20

7902 FORD 1600 30

7698 BLAKE 2850 30

5 rows selected.

Remember, a correlated subquery is signalled by a column name, a table name or table alias in the

WHERE clause that refers to the value of a column in each candidate row ofthe outer select. Also the

correlated subquery executes repeatedly for each candidate row in the main query. Correlated subquery is

used to answer multipart questions whose answer depends on the value of each row of the parent query.

The inner select is normaly executed once for each candidate row.

Self Learning Exercise:-

4. How are nested queries different from joined queries ?

Using Special Operators in Subqureies:-

Some Special operators used in subqueries are:

EXISTS

ANY

SOME

ALL Operators

EXISTS

 This operator is used to check the existence of values

 This operator produces a Boolean result

It takes a subquery as an argument and evaluates it to True, if it produces any output or

False, if it does not

ANY, SOME and ALL

Used along with the relational operators

Similar to IN operator, but only used in subqueries

The SOME and ANY operator can be used interchangeably

EXISTS operator

The EXISTS operator is frequenly used with correlated subqueries. It tests whether a value is there (NOT

EXISTS ensure for nonexistence of values.) If the value exists it returns TRUE, if it does not exists it

returns FALSE.

NOT EXISTS operator is more relible if the subquery returns any NULL values.

Examples:-

List all employee who have atleast one person reporting to them.

SELECT empno, ename, job, deptno

FROM emp e

156

WHERE EXISTS (SELECT empno from emp

WHERE emp. mgr = e. empno)

ORDER BY empno;

empno ename job deptno

...........

7566 JONES MANAGER 20

7698 BLAKE MANAGER 30

7782 CLARK MANAGER 10

7788 SCOTT ANALYST 20

7839 KING PRESISENT 10

7902 FORD ANALYST 20

list the employee details if and only if more than 10 employees are present in department number 10:

SELECT * FROM emp

WHERE DEPTNO = 10 AND EXISTS (SELECT COUNT (*) FROM emp

WHERE deptno = 10

GROUP BY deptno

HAVING COUNT (*) > 10);

list the name of employee from the employee table where the increment amount is greater than 1000 and

the number of employees receiving the same increment is greater than 5:

SELECT ename FROM emo

WHERE empno IN (SELECT empno FROM incr

WHERE amt > 1000

AND EXISTS (SELECT COUNT (*)

FROM incr GROUP BY amt

HAVING count (*) > 5));

List all the employees datails who do not manage any one.

SELECT ename, job from emp e

where not exists (select mgr frm emp where mgr = e. empno);

The output is

ename job

...........

SMITH CLERK

ADAMS CLERK

ALLEN SALESMAN

WARD SALESMAN

MARTIN SELESMAN

TURNER SELESMAN

JAMES CLERK

MILLER CLERK

Self Learning Exercise

157

5. What will be the output if we use NOT IN operator instead of NOT EXISTS in the above query?

ANY operator

The ANY operator compares the lowest value from the set.

List the employee names whose salary is greater than the lowest of an employeebelonging to de-

partment number 20:

SELECT ename FROM emp

WHERE sal > ANY (SELECT sal FROM emp WHERE deptno = 21);

List the employee details of those employees whose salary is greater than any of the managers:

SELECT EMPNO, ENAME SAL FROM EMP WHERE SAL > ANY (SELECT SAL FROM

EMP WHERE JOB = ‘MANAGER’);

ALL Operator

In case of All operator the predicate is true if every value selected by the subquery satisfies the

condition in the predicate of the outer query.

Example:-

List the employee names whose salary is greater than the highest salary of all employee

belonging to department number 20:

SELECT ename FROM emp

WHERE sal > ALL (SELECT sal FROM emp WHERE deptno = 20);

The inner query return salary of all employees who belong to department number 20. The outer query

selects employee name of that employee whose salary is greater than all the employees’ salary who

belong to department number 20.

List the details of the employee earning more than the highest paid MANAGER:

SELECT empno, ename, sal FROM emp WHERE sal > ALL (SELECT sal FROM emp

WHERE job = ‘MANAGER’);

11.5 Summary

• Joins are used to combine columns from different tables.

• The different types of joins are: equi joins, cartesian joins, outer joins, self joins and nonequi joins.

• Joing condition is specified in the WHERE clause of the SELECT statement.

• When two tables are joined together using equality of values in one or more columns, they make an

Equi Join.

1. Without any joining condition the join becomes a cartesian join.

2. Join a table with itself is know is self join.

3. Self Join is possible by providing table name aliases for the table.

4. With joins, the names of all the table to be joined, need to be specified.

5. To select a row forcfully which cannot be selected using equi join outer join symbol (+). is used.

6. Set operator are used to combine result form different queries. the operator used are UNION,

INTERSECT and MINUS.

7. The UNION clause merges the outputs of two or more queries into a single set of rows and

columms.

158

8. The intersect operater returens tha rows thet are commen between two sets of rows.

9. Minus operator returns the rows unique to first query

10. Nested queries are used in a situation where the condition of the query is dependent on the

outcome of an inner query. Subqueries can also used within tha HAVING clause.

11. A co-related subquery is a nested subquery which is executed once for each ‘candidate row

considered by the main query and which on execution uses a value from a column in the outer query

12. The special operators used with subqueries are :EXIST, SOME ANY and ALL.

13. The EXISTS operator is used to be test for the presence of the value. lf the value exists it

returns TRUE; if it does not exist returns FALSE.

14. The ANY operator compares tha lowest value from the set.

15. ALL operator returns TRUE if every value selected by the subquery satisfise the condition in the

predicate of the outer query

11.6 Self Assessment Questions

1. Fill in the blanks

1. In a join, the connection between tables is established using the--------------clause.

2. Joining a table to itself is called---------------------join.

3. To find the rows common to two different queries, the----------------operator is used.

4. The-----------------and------------------subquery operators are identical.

5. If inner query in subquery returns more than one row then-------------------operator is used.

2. State true or false

1. The outer join symbol can appear on both sides of a relation operator.

2. All the table name need to be specified in the FROM claues of the SELECT stetement

used for joins.

3. The UNION operator displays duplicate rows also.

4. When the presence of rows needs to be tested in a subquery, the EXIST operator is used.

5. ORDER BY clause can be used in subquery.

3. Hands on Exercise

1. List the item for which no trensaction was mad.

2. Display tha item number, name, rate, quentity recived and value of each item received.

3. List the differnt unit of measurement for item, in classes ‘A’ and ’B’.

4. List the commen units of measurement aveilable in classes ‘c’ and ‘b’.

5. List the uniqe units of measuerment of item available in class ‘A’

6. List all employees, their job and department number, who are having same job as that of

any employee of department number 20.

7. List all employees, their salary and their increment, using ‘emp’ and ‘incr’ table.

8. Using self join, list all employees having salary greater than or equal to employee

number 7788.

159

9. Consider emp table. List all employee who earn less tahn the average salary of all the

employees.

10. List all employees name along with their manager’s name. Also list the name of that

who has no manager. (Employee KING has no Manager)

11. Dispaly the department that has no employee.

12. List the employee details who earn minimum salary for their job.

13. List the ename, salary, deptno for those employees who earn salary greater than average

salary for their department. Sort the output in department number order.

14. List the employee details who earn highest salary for their job.

15. List the details of those employees who are among the five highest earners of the company.

´ ´ ´

160

Structure of the Unit

12.0 Objective

12.1 Introduction

12.2 States of Transaction

12.3 Properties of Transaction

12.4 Concurrent Execution

12.4.1 Lost Update Problem

12.4.2 Inconsistent Read Problem

12.4.3 Semantics of Concurrent Transactions

12.5 Serializability

12.5.1 Precedence Graph

12.5.2 Serializability Algorithm : Read-Before-Write Protocols

12.5.3 Serializability Algorithm : Read-Only and Write Only Protocols

12.6 Recovery

12.6.1 Logs

12.6.2 Checkpoints

12.6.3 Do, Undo, Redo

12.7 Summary

12.8 Self Assessment Questions

12.0 Objective

A transaction is a program unit whose execution may change the contents of the database.

Transaction processing covers

• Transaction

• Concurrent execution

• Precedence Graph

• Serializability

• Recovery: Logs and Checkpoints

12.1 Introduction

A single DBMS operation as viewed by an user, for example, to update the grade of a student

in the relation ENROL (Student_Name, Course, Grade), involves more than one task. Since the data

resides on a secondary nonvolatile storage medium, it will have to be brought into the Volatile primary

memory for manipulation. This requires that the data be transferred between secondary storage and

primary storage. The transfer is usually performed in blocks of the implementation-specified size. The

transfer task consists of locating the blocks of in the secondary storage device containing the required

tuple (which may be preceded by searching an index), obtaining the necessary locks on the block or the

tuple involved in the update, and reading in this block. This task is followed by making the update to the

tuple in memory, which in turn is followed by another transfer task, written the tuple back to secondary

device, and releasing the locks.

Unit - 12 : Transaction Processing

161

In order to reduce the number of accesses to disk, the blocks are read into blocks of main

memory called buffers. We can thus assume that a program performs input/ output using, for example,

the get and put operations, and the system transfers the required block from secondary memory to main

memory using the read and write operations. The block read (Write) tasks need not be performed in

case the system uses buffered input (output) and the required data (space) is already in the primary

memory buffer. In such a case the get (put) operation of the program can input (output) the required

data from (to) the appropriate buffer. If the required data is not in the buffer, the buffer manager does a

read operation and obtains the required data, after which the data is input from the buffer to thte

program executing the get statement. If there is no more space left in the buffer, the put operation causes

the buffer to be writtern to the secondary storage (with a write) and then the put operation transfers the

data from main memory to the space made available in the buffer.

The above DBMS operation of changing the grade of a student in a given course initiated by a

user and appearing to her or him as a single operation actually requires a number of distinct tasks or

steps to be performed by the DBMS. This is illustrated by the skeleton program given on the next page.

In this program the comment indicates the definition of the action update ENROL of the record

for a given student in a given course; this action is being referenced later with the keywords commit and

rollback. The statements defined for the update operation are assumed to modify a temporaty copy of the

selected portion of the database (the main memory copy of the block of nonvolatile storage containing the

tuple for the relation ENROL). Here we are using error to indicate whether there are any errors during the

execution of the statements defined for the action update ENROL. If there were any errors, we want to

undo any changes made to the database by the statements defined for the update action. This involves

simply discarding the temporary copy of the affected portion of the database. The database itself is not

changed if a temporary copy of the database is being used. If there were no errors, we want the changes

made by the update operations to become permanent by being reflected in the actual database.

Figure 12.1 : Shows the successive states of the database system at different points of the execution of

this program, with the change of student smith’s grade in course Elec. from in program to A, as shown in

part d of the figure. In case there are any errors by the program, it ignores any modifications and the record

for jones rremains unchanged as shown in part e.

The Program unit change the grade given above consists of a number of statements, each of which

is executed one at a time (each of the statements is compiled into a number of machine instructions, which

are executed one at a time, sequentially). Such sequential execution can be interrupted due to errors.

(Interrupts to execute the statements of other concurrent programs can also occur, but we will ignore this

type of interruption for the time being). In case of errors, the program may be only partially executed.

However, to preserve the consistency of the database we want to ensure that the program is executed as

a single unit, the execution of which will not change the consistency of the database. Thus an interruption of

a transaction following a system detected error will return the database to its state before the start of the

transaction. Such a program unit, which operates on the database to perform a read operation or an

update operation (which includes modification, insertion, and deletion), is called a transaction.

Transaction

A transaction is a program unit whose execution may change the contents of a database. If the

database was in a consistent state before a transaction, then on the completion of the execution of the

program unit corresponding to the transaction, the database will be in a consistent state. This requires that

the transaction be consisdered atomic: it is executed successfully or in case of errors, the user can view the

transaction as not having been executed at all.

The relationship between an application program and a transaction is shown in Figure 12.2 the

application program can be made up of a number of transactions, T
i
, T

2
,................... T

n
 Each such trans-

action T
i
 starts at the time T

istart
. It commits (or rolls back) at time T

icommit
 (T

irollback
) and terminates at time

T
iend

.

162

Smith Elec. inprog

Smith Elec. inprog

Smith Elec. inprog

Smith Elec. A

Smith Elec. A

(a) (Initial state of the

database beforethe

execution of the Get

Enrol statement)

(b) After the execution of

the Get Enrol statement

(c) The temporary copy is

modified

(d) After the commit statement

the database is

permanently changed

(e) In case of errors the

rollback restores

the database to the

original state by ignoring

the temporary copy
Secondary Storage

Secondary Storage

Secondary Storage

Secondary Storage

Secondary Storage

Smith Elec. inprog

Smith Elec. A

Smith Elec. A

Smith Elec. A

Main Memory

Main Memory

Main Memory

Main Memory

Main Memory

Figure : 12.1 : Database States

163

The commit and rollback operations included at the end of a transaction ensure that the user can

view a transaction as an atomic operation, which preserves database consistency. The commit operation

executed at the completion of the modifying phase of the transaction allows the modifications made on the

temporary copy of the database items to be reflected in the permanent copy of the database. The rollback

operation (which is also called the undo operation) is executed if there was an error of some type during

the modification phase of the transaction. It indicates that any modifications made by the transaction are

ignored; consequently, none of these modifications is allowed to change the contents of the database. If

transaction T
i
 is rolled back, the logic of the application program is responsible for deciding whether or not

to execute transaction T
j
 (for i < j < n). Once committed, a transaction cannot be rolled back.

From the definition of a transaction, we see that the status of a transaction and the observation of

its actions must not be visible from outside the transaction until the transaction terminates. Any notification

of what a transaction is doing must not be communicated, for instance via a message to a terminal, until the

transacion commits. Once a transaction terminaters, the user may be notified of its success or failure.

Figure 12.2 : Application Program and transactions

12.2 States of Transaction

A transaction can be considered to be an atomic operation by the user, in reality, however, it goes

through a number of states during its lifetime. Figure 12.3 gives these states of the transaction, as well as

the cause of a transaction between these states.

Figure 12.3 : Transaction States

A transaction can end in three possible ways. It can end after a commit operation (a successful

termination). It can detect an error during its processing and decide to abort itself by performing a rollback

Start

of

Program

T
1 start

T
1end

T
1commit

T
2start

T
2rollback

T
2end

T
nstart

T
ncommit

T
nend

End

of

Program

Consistent

stateModify

Start

Commit
Commit

Okay to

Commit

No errors

Database

modified

System detects

error

Consistent

State

Error

 detected

 by transaction

Abort
End of

transaction

System initiated

Transaction

initiated

Database

unmodifiedError Rollback

164

operation (a suicidal termination). The DBMS or the operating system can force it to be aborted for one

reason or another (a murderous termination)

We assume that the database is in a consistent state before a transaction starts. A transaction starts

when the first statement of the transaction is executted; it becomes active and we assume that it is in the

modify state, when it modifies the database. At the end of the modify state, there is a transaction into one

of the following states start to commit, abort, or error. If the transaction completes the modification state

satisfactorily, it enters the start-to-commit state where it instructs the DBMS to reflect the changes made

by it into the database, the transaction is said to be in the commit state and from there the transaction is

terminated, the database once again being in a consistent state. In the interval of time between the

start-to-commit state and the commit state, some of the data changed by the transaction in the buffers

may or may not have been propagated to the database on the nonvolatile storage.

There is a possibility that all the modifications made by the transaction cannot be propagated to the

database due to conflicts or hardware failures. In this case the system forces the transaction to the abort

state. The abort state could also be entered from the modify state if there are system errors for example,

division by zero or an unrecoverable parity error. In case the transaction detects an error while in the

modify state, it decides to terminate itself (suicide) and enters the error state and then, the rollback state. If

the system aborts a transaction, it may have to initiate a rollback to undo partial changes made by the

transaction. An aborted transaction that made no changes to the database is terminated without the need

for a rollback, hence there are two paths in Figure 12.3 from the abort state to the end of the transaction.

A transaction that, on the execution of its last statement, enters the start to commit state and from there the

commit state is guaranteed that the modifications made by it are propagated to the database.

The transaction outcome can be either successful (if the transaction goes through the commit

state), suicidal (if the transaction goes through the rollback state), or murdered (if the transaction goes

through the abort state), as shown in Figure 12.3. In the last two cases, there is no trace of the transaction

left in the database, and only the log indicates that the transaction was ever run.

Any messages given to the user by the transaction must be delayed till the end of the transaction,

at which point the user can be notified as to the success or failure of the transaction and in the latter case,

the reasons for the failure.

12.3 Properties of Transaction

From the definition of a transaction, we see the status of a transaction and the observation of its

actions is not visible from outside until the transaction terminates. Once a transaction ends, the user may be

notified of its success or failure and the changes made by the transaction are accessible. In order for a

transaction to achieve these characteristics, it should have the properties of atomicity, consistency,

isolation and durability (ACID).

The atomicity property of a transaction implies that it will run to completion as an indivisible unit,

at the end of which either no changes have occurred to the database or the database has been changed in

a consistent manner. At the end of a transaction the updates made by the transaction will be accessible to

other transactions and processes outside the transaction.

The consistency property of a transaction implies that if the database was in a consistent state

before the start of a transaction, then on termination of a transaction the database will also be in a

consistent state.

The isolation property of a transaciton indicates that actions performed by a transaction will be

isolated or hidden from outside the transaction untill the transaction terminates. This property gives the

transaction a measure of relative independence.

The durability property of a transaction ensures that the commit action of a transaction, on its

termination, will be reflected in the database. The permanence of the commit action of a transaction

165

requires that any failures after the commit operation will not cause loss of the updates made by the

transaction.

12.4 Concurrent Execution

Larger computer systems are typically used by many users in a multiprogramming mode;

programs are executed concurrently.(multiple programs execute simultaneously); One reason for the

use of multiprogramming is to exploit the different characteristics of the various program to maximize

the utilization of the equipment; thus, while one program awaits the completion of an input/output

operation, the processor can be used to do the computation of another program. Another reason for

choosing multiprogramming is the need to share a resource by these different programms : a database

is such a shared resource. The primary objective of the database system (at least on a large

mainframe) is to allow many users and application programs to access data from the database in a

concurrent manner.

The sharing of the database for read-only access does not cause any problem, but if one of the

transactions runnning concurrently tries to modify some data-item, it could lead to inconsistencies.

Furthermore, if more than one transaction is allowed to simultaneously modify a data-item in the database,

it could lead to incorrect values for the data-item and an inconsistent database. Such would be the result

even if each of the transactions were correct and a consistent database would remain so if each of agents

access the airline reservations system simultaneously to see if a seat is available on a given flight; if both

agents make a reservation against the last available seat on that flight, overbooking of the flight would

result. This potential problem of leaving the database in an inconsistent state with concurrently running

transactions would be able to access only disjoint data for modificatons.

One method of enforcing mutual exclusion is by some type of locking mechanism that locks a

shared resource (for example a data-item) used by a transaction for the duration of its usage by the

transaction. The locked data-item can only be used by the transaction that locked it. The other concurrent

transactions are locked out and have to wait their turn at using the data-item. However, a locking scheme

must be fair. This requires that the lock manager, which is the DBMS subsystem managing the locks, must

not cause some concurrent transaction to be permanently blocked from using the shared restore. This is

reformed to is avoiding the starvation or livelock situation. The other danger to be avoided is that of

deadlock, wherein a number of transactions are waiting in a circular chain, each waiting for the release of

resources held by the next transaction in the chain.

In other methods of concurrency control, some form of a priori ordering with a single or many

versions of data is used. These methods are called timestamp ordering and multiversion schemes. The

optimistic approach, on the other hand, assumes that the data-items used by concurrent transactions are

most likely be disjoint.

Concurrency and Possible Problems :

In the last chapter we stressed that a correct transaction, when completed, leaves the database in

a consistent state provided that the database was in a consistent state at the start of the transaction.

Nevertheless, during the life of a transaction, the database could be inconsistent, although if the

inconsistencies are not accessible to other transactions, they would not cause a problem.

In the case of concurrent operations, where a number of transactions are running and using the

database, we cannot make any assumptions about the order in which the statements belonging to different

transactions will be executed. The order in which these statements are executed is called a schedule.

Consider the two transactions in Figure 12.4 Each transaction reads some data-item, performs some

operation on the data-item that could change its value, and then writes out the modified data-item.

In figure 12.4 and n subsequent example in this chapter, we assume that the read operation reads

in the database value of the named variable to a local variable with an identical name. Any modifications by

a transaction are made on this local copy. The modifications made by the transactions are indicated by the

166

operators f1 and f2 in Figure 12.4 These modification are not reflected in the database until the write

operation is executed, at which point the modifications in the value of the named variable are said to be

commited. in effect the write operation is a signal for committing the modifications and reflecting the changes

to the physical database.

Transaction T
1

Transaction T
2

Read (Avg_faculty_Salary) Read (Avg_Staff_Salary)

Avg_Faculty_Salary : = Avg_Staff_Salary : =

f
1
(Avg_Faculty_Salary) f

2
(Avg_Staff_Salary)

Write(Avg_Faculty_Salary) Write(Avg_Staff_Salary)

Figure 12.4 : Two concurrent transactions

Figure 12.5: Possible interleaving of concurrent transactions of Figure 12.7

Figure 12.5 gives two give two possible schedules for executing the transactions of Figure 12.4 in

an interleaved manner. Since the transactions of Figure 12.4 are accessing and modifying distinct

data-items, (Avg_Faculty_salary, Avg_staff_Salary), there is no problem in executing these transactions

concurrently. In other words, regardless of the order of interleaving of the statements of these transactions,

we will get a consistent database on the termination of these transactions.

12.4.1 Lost Update Problem

Consider the transactions of Figure 12.6 These transactions are accessing the same data-item A.

Each of the transactions modifies the data-item and writes it back. Again let us consider a number of

possible interleavings of the execution of the statements of these transactions. These schedules are given in

Figure 12.7.

Starting with 200 as the initial value of A, let us see what the value of A would be if the transactions

are run without any interleaving. In other words, the transactions are run to completion, without any

interruptions, one at a time in a seial manner. If transaction T3 is run first, then at the end of the transaction

the value of A will have changed from 200 to 210. Running transaction T
4
 after the completion of T

3
 will

change the value of A from 210 to 231 Running the transactions in the order T
4
 followed by T

3
 result in a

final value for A of 230. The result obtained with neither of the two interleaved execution schedules of

figure 12.7 agrees with either of the results of executing these same transactions serially. Obviously

something is wrong !

 Schedule - 1 Schedule - 2

Read (Avg_Faculty_Salary) Read (Avg_Staff_Salary)

Avg_Faculty_Salary := Avg_Staff_Salary : =

T f
1
(Avg_Faculty_Salary) T f

2
(Avg_Staff_Salary)

i Write (Avg_Faculty_Salary) i Read (Avg_Faculty_Salary)

m Read(Avg_Staff_Salary) m Avg_Faculty_Salary :=

e Avg_Staff_Salary := e f
1
 (Avg_Faculty_Salary)

 f
2
(Avg_Staff_Salary) Write(Avg_Faculty_Salary)

Write (Avg_Staff_Salary) Write(Avg_Staff_Salary)

167

Transaction T
3

Transaction T
4

Read(A) Read(A)

A: = A + 10 A: = A*1.1

Write(A) Write(A)

Schedule 1 Transaction T
3

Transaction T
4

Value of A

Read(A) Read(A) 200

A: = A*1.1 A: = A*1.1

Read(A) Read(A)

A: = A + 10 A : = A + 10

Write(A) Write(A) 210

Write(A) Write(A) 220

(a)

Schedule 2 Transaction T
3

Transaction T
4

Value of A

Read(A) Read(A) 200

A : = A + 10 A: = A + 10

Read (A) Read(A)

A : = A * 1.1 A : = A * 1.1

Write(A) Write(A) 220

Write(A) Write(A) 210

(b)

Figure 12.6 : Two Transactions Modifying the Same Data-Item

In each of the schedules given in Figure 12.7 we have lost the update made by one of the

transactions. In schedule 1, the update made by transaction T
3
 is lost; in schedule 2, the update made by

transaction T
4
 is lost. Each schedule exhibits an example of the so-called lost update problem of the

concurrent execution of a number of transactions.

It is obvious that the reason for the lost update problem is that even though we have been able to enforce

that the changes made by one concurrent transaction are not accessible by the other transactions until it

commits, we have not enforced the atocity requirement. This demands that only one transaction can modify

a given data-item at a given time and other transactions should be locked out from even viewing the

unmodified value (in the database) until the modifications (being made to a local copy of the data) are

committed to the database.

12.4.2 Inconsistent Read Problem

The lost update problem was caused by concurrent modifications of the same data-item. How-

ever, concurrency can also cause problems when only one transaction modifies a given set of data while

that set of data is being used by other transaction.

Transaction T
5

Transaction T
6

Read(A) Sum : = 0

A : = A-100 Read(A)

Write(A) Sum : = Sum + A

T

i

m

e

T

i

m

e

168

Read(B) Read(B)

B : = B + 100 Sum : = Sum + B

Write(B) Write(Sum)

Figure 12.8 : Two transactions; one modified while the other reads

Consider the transactions of Figure 12.8 Suppose A and B represent some data-items containing

integer valued data, for example, two accounts in a bank (or a quantity of some part X in two different

locations, etc.). Let us assume that transaction T
5
 transfers 100 units from A to B. Transaction T

6
 is

concurrently running and it wants to dind the total of the current values of data items A and B (the sum of

the balance in case A and B represent two accounts, or the total quantity of part X in the two different

locations, etc.)

Figure 12.9 gives a possible schedule for the concurrent execution of the transactions of Figure

12.8 with the intial value of A and B being 500 and 1000, respectively. We notice from the schedule that

transaction T6 uses the value of A before the transfer was made, but it uses the modified value of B after

the transfer. The result is that transaction T
6
 erroneously determines the total of A and B as being 1600

instead of 1500. We can also come up with another schedule of the concurrent execution of these

transactions that will give the total of A and B as 1400, and of course other schedules that will give the

correct answer.

Figure 12.9 : Example of Inconsistent Reads

The reason we got an incorrect answer in the schedule of Figur 12.9 was because that transaction T
6

was using values of data-items A and B while they were being modified by transaction T
5
. Locking out

transaction T
6
 from these data-items indicidually would not have solved the problem of the inconsistent read.

The problem would have been resolved in this example only if transaction T
5
had not released the exclusive

usage of the data item A after locking data-item B. We discuss this scheme, called two phase locking.

12.4.3 Semantics of Concurrent Transactions

In concurrent operations, where a number of transactions are running and modifying parts of the

database, we not only have to hide the changes made by a transaction from other transactions, but we also

have to make sure that only one transaction has exclusive access to these data-items for at least the

duration of the original transaction’s usage of the data-items. This requires that an appropriate locking

mechanism be used to allow exclusive access of these data-items to the transaction requiring them. In the

case of the transactions of Figure 12.6 no such locking was used with the consequence that the result is not

the same as the result we would have obtained had these transactions run consequently.

Schedule Transaction T5 Transaction T6 Value of Database items

A B Sum

Read (A) Read (A) 500 1000 ___

Sum : = 0 Sum : = 0 0

T Read (A) Read (A)

i A : = A - 100 A : = A - 100

m Writer (A) Writer (A) 400

e Sum :=Sum+A Sum : = Sum+A 500

Read(B) Read (B)

B : + B + 100 B : + B + 100

Write (B) Write (B)

Read (B) Read (B) 1100

Sum : = Sum + B Sum : = Sum + B

Write (Sum) Write (Sum) 1600

169

Now let us see why the results obtained when we run two transactions, one after the other, need

not be the same for different orderings. The modification operations performed by two transactions are not

necessarily commutative.

The operations A : = (A + 10) + 20 give the same result as A : = (A + 20) + 10 for the same initial

value for A (which is assumed to be an integar valued data-item); this is so because the addition operation

is commutative. Similarly, (A * 10) * 20 = (A * 20) * 10.

However, commuting the order of operations, as illustrated by the following expressions, does not

always give the same result :

Salary : = (Salary + 1000) * 1.1

Salary : = (Salary * 1.1) + 1000

In the above example we have two transformations. In the first the salary is initially modified by

adding 1000 to it and then the result is augmented by 10% to give the revised Salary. In the second the

Salary is first augmented by 10% and then 1000 is added to the result, which becomes the revised Salary.

The reasonable approach, to make sure that the intended result is obtained in all cases (i.e. to make sure

that transaction T
i
 is completed before transaction T

j
 is run), would be to code the operations in a single

transaction and not to divide the operations into two or more transactions. Thus, if the above set of

operations on Salary were written as two transactions as given below, we cannot be sure which of the

above two results would be obtained with their concurrent execution.

Transaction T
i

Transaction T
j

Read Salary Read Salary

Salary : = Salary * 1.1 Salary : = Salary + 1000

Write Salary Write Salary

In efffect, the division of a transaction into interdependent transactions run serially in the wrong

order would give erroneous results. Furthermore, these interdependent transactions must not be run

concurrently, otherwise the concurrent execution will lead to results that could be incorrect again and not

agree with the result obtained by any serial execution of the same transactions. It is logical error to divide

a single set of operations into two or more transactions. We assume hereafter that transactions are

semantically correct.

12.5 Serializability

In the above examples consider the transactions are independent. An execution schedule of these

transactions as shown in figure 12.10 is called a serial execution. In a serial execution, each transaction

runs to completion before any statements from any other transaction are executed. In Schedule A given in

Figure 12.10 a, transaction T
3
 is run to completion before transaction T

4
 is executed. In schedule B,

transaction T
4
 is run to completion before transaction T

3
 is started. If the initial value of A in the database

were 200, Schedule A would result in the value of A being changed to 231. Similarly, Schedule B with the

same mitial value of A would give a result of 230.

This may seem odd, but in a shared environment, the result obtained by independent transactions

that modify the same data-item always depends on the order in which these transactions are run; and any

of these results is considered to be correct.

170

Figure 12.10 : Two serial Schedules

If there are two transactions and if they refer to and use distinct data-items, the result obtained by

the interleaved execution of the statements of these transactions would be the same regardless of the order

in which these statements are executed (Provided there are no other concurrent transactions that refer to

any of these data-items). In this chapter, we assume that the concurrent transactions share some

data-items, hence we are interested in a correct ordering of execution of the statements of these

transactions.

A nonserial schedule wherein the operations from a set of concurrent transactions are interleaved

is considered to be serializable if the execution of the operations in the schedule leaves the database in the

same state as some serial execution of these transactions. With two transactions, we can have at most two

district serial schedules, and starting with the same state of the database, each of these serial schedules

could give a different final state of the database. Starting with an initial value of 200 for A, the serial

schedule illustrated in Figure 12.10 a would give the final value of A as 231, and for the serial schedule

illustrated in part b the final value of A would be 230. If we have n concurrent transactions, it is possible to

have n!, where n! = n * (n-1) * (n - 2) * * 3 * 2 * 1 distint serial schedules, and possibly that many

district resulting modifications to the database. For a serializable schedule, all we require is that the

schedule gives a result that is the same as any one of these possibly distinct results.

When n transactions are run concurrently and in an interleaved manner, the number of possible

schedules is much larger than n!. We would like to find out if a given interleaved schedule produces the

same results as one of the serial schedules. If the answer is positive, then the given interleaves schedule is

said to be serializable.

Definition - Serializable Schedule :

Given an interleaved execution of a set of n transactions; the following conditions hold for each

transaction in the set :

Schedule A Transaction T
3

Transaction T
4

Read (A) Read (A)

T A : = A + 10 A : = A + 10

i Write (A) A : = A + 10

m Read (A) Read (A)

e A : = A * 1.1 A : = A * 1.1

Write (A) Write (A)

(a)

Schedule B Transaction T
3

Transaction T
4

Read (A) Read (A)

T A : = A * 1.1 A : = A * 1.1

i Write (A) Write (A)

m Read (A) Read (A)

e A : = A + 10 A : = A + 10

Write (A) A : = A + 10

(b)

171

• All transactions are correct in the sense that if any one of the transactions is executed by

itselt on a consistent database, the resulting database will be consistent.

• Any serial execution of the transactions is also correct and preserves the consistency of

the database; the results obtained are correct. (This implies that the transactions are

logically correct and that no two transactions are interdependent.)

The given interleaved execution of these transactions is said to be serializable if it produces the

same result as some serial execution of the transactions.

Since a serializable schedule gives the same result as some serial schedule and since that serial

schedule is correct, then the serializable schedule is also correct. Thus, given any schedule, we can say it is

correct if we can show that it is serializable.

Algorithm given in Section 12.5.2 establishes the serializability of an arbitrarily interleaved

execution of a set of transactions on a database. The algorithm does not consider the nature of the

computations performed by a transaction nor the exact effect of each such computational operation

on the database. In effect, the algorithm ignores the semantics of the operations performed by the

transactons including the commuting property of algebraic of logical computations of the

transactions. We may conclude from the algorightm that a given schedule is not serializable, when in

effect it is, if some of the semantics and the algebraic commutability were not ignored. However the

algorithm will never lead us to conclude that a schedule is serializable, when it does not produce the

same result as some serial schedule. The computation involved in analyzing each transaction and

seeing if its operations could be safely interleaved with those of other concurrent transactions is not

justified by the greater degree of concurrency of the resulting “better” serializable schedule.

In Algorithm 12.5.2 we make the following assumptions :

• Each transaction is a modifying transaction, i.e., it would change the value of at least one database

item.

• For each such item A that a transaction modifies, it would first read the value a of the item from the

database (this is the read-before-write protocol)

• Having read the value it would transform a to f(a). where f is some transaction-dependent

computation of transformation.

• It would then write this new value to the database.

Before presenting the algorithm we present the notion of precedence graph.

Schedule Transaction T
9

Transaction T
10

Transaction T
11

Read (A) Read (A)

A : = f
1
(A) A : = f

1
 (A)

T Write (A) Write (A)

i Read (A) Read (A)

m A : = f
2
(A) A:=f

2
(A)

e Write (A) Write (A)

Read (B) Read (B)

A:=f
3
(B) B : =f

3
(B)

Write (B) Write (B)

Read (B) Read(B)

A:= f
4
(B) B:=f

4
(B)

Write (B) Write (B)

 (a)

172

Figure 12.11 : (a) A schedulue and (b) an acyclic precedence graph.

12.5.1 Precedence Graph

Precedence graph G(V, E) consists of a set of nodes or vertices V and a set of directed arcs or

edges E. Figure 12.5 gives an example of a schedule and the corresponding precedence graph. The

schedule is for three transactions T
9
 ,T

10
 and T

11
 and the corresponding precedence graph has the vertices

T
9
, T

10
, and T

11
 there is an edge from T

9
 to T

10
 and another edge from T

10
 to T

11
 if T

9
 , T

10
 and T

11

represent three transactions, the precedence graph represents the serial execution of these transactions.

In a precedence graph, a directed edge from a node T
i
 to a node T

j
. i # j, indicates one of the

following conditions regarding the read and write operations in transactions T
i
 and T

j
 with respect to some

database item A:

• T
j
 performs the operation Read(A) to read the value written by T

i
 performing the operation Write(A)

• T
j
 performs the operation Write(A) after Ti performs the operation Read(A).

If we limit ourselves to the read-before-write protocol only, we have to look for an edge

corresponding to these conditions only.

In figure 12.12 all the statements in transaction T
9
 are executed before transaction T

10
 is started.

Similarly, all the operations of T
10

 are completed before starting T
11

. The precedence graph

corresponding to the schedule of part a is given in part b.

Figure 12.12 : (a) Schedule and (b) a cyclic precedence graph.

Figure 12.12 a gives a schedule and Figure 12.12 b gives precedence graph for transactions T
12

and T
13

 in the precedence graph there is an edge from T
12

 to T
13

as well as edge from T
13

to T
12

 The edge

T
13

to T
12

 is included because T
12

 executes a write operation after T
13

 executes a write operations for the

T
9

T
10

T
11

(b)

Schedule Transaction T
12

Transaction T
13

Read (A) Read (A)

A : = f
1
(A) A : = f

1
 (A)

T Read (A) Read (A)

i A:= f
2
(A) A:=f

2
(A)

m Write (A) Write (A)

e Write (A) Write (A)

 (a)

T
12

T
13

(b)

173

same database item A. The edge T
12

to T
13

 is included because T
13

 executes a write optration after T
12

executes a read operation for the same database item A. We see that the precendence graph has a cycle,

since we can start from one of the nodes of the graph and, following the directed edges, return to the

starting node.

A precedence graph is said to be acyclic if there are no cycles in the graph. The graph of Figure

12.11b has no cycles. The graph of Figure 12.12b is cyclic, since it has cycle.

The precedence graph for serializable schedule S must be acyclic, hence it can be converted to a

serial schedule. To test for the serializability of the arbitraty schedule S for transactions T
1
,.......... T

k
 we

convert the schedule into a precedence graph and then test the precedence graph for cycles. If no cycles

are detected the schedule is serializable; otherwise it is not. If there are n nodes in the graph for schedule

S, the number of operations required to check if there is a cycle in the graph is proportional to n2.

12.5.2 Serializability Algorithm : Read-before-write Protocol :

In the read-before-write protocol we assume that a transaction will read the data-item before it

modifies it and after modifications, the modified value is written back the the database. In the Algorithm,

we give the method of testing whether a schedule is serializable. We create a precedence graph and test for

a cycle in the graph. If we find a cycle. The schedule is nonserializable; otherwise we find a linear ordering

of the transactions.

In Examples 12.1 and 12.2 we illustrate the application of this algorithm.

Example 12.1 : Consider the schedule of Figure A. The precendence graph for this schedule is given in

Figure B . The graph has three nodes corresponding to the three transactions T
14

, T
15

 and T
16

. There is an

arc from T
14

 to T
15

 because T
14

 writes data-item A before T
15

reads it. Similarly, there is an arc from

T
15

 to T
16

 because T
15

writes data-item B before T
16

 reads it. Finally, there is an arc from T
16

 to T
14

because T
16

 writes data-item C before T
14

 reads it. The precedence graph of Figure B has a cycle formed

by the directed edges from T
14

 to T
15

, from T
15

 to T
16

 and from T
16

 back to T
14

 Hence, the schedule of

Figure A is not serializable. We cannot execute the three transactions serially to get the same result as the

given schedule.

Schedule Transaction T
14

Transaction T
15

Transaction T
16

Read(A) Read(A)

Read(B) Read(B)

A: = f
1
(A) A : = f

1
(A)

Read(C) Read(C)

B: = f
2
(B) B: = f

2
(B)

Write(B) Write(B)

C: = f
3
(C) C : = f

3
(c)

Write(C) Write(C)

Write(A) Write(A)

Read(B) Read(B)

Read(A) Read(A)

A : = f
4
(A) A : = f

4
(A)

Read(C) Read(C)

Write(A) Write(A)

C: = f
5
(C) C : = f

5
(C)

Write(C) Write(C)

B : = f
6
(B) B : = f

6
(B)

Write(B) Write(B)

Figure : (A) An Execution Schedule Involving Three Transactions

174

Figure : (B) A precedence Graph with a Cycle.

Example 12.2 presents a serializable schedule.

Example 12.2 Consider the schedule given in Figure C. The execution schedule of the figure is serializable

because the precedence graph for this schedule given in Figure D, does not contain any cycles. The serial

schedule is T
17

, followed by T
18

, followed by T
19

Schedule Transaction T
17

Transaction T
18

Transaction T
19

Read (A) Read (A)

A : = f
1
(A) A : = f

1
 (A)

Read (C) Read (C)

Write (A) Write (A)

A : = f
2
(C) A : = f

2
 (C)

Read (B) Read (B)

 T Write(C) Write (C)

 i Read (A) Read (A)

 m Read (C) Read (C)

 e B : = f
3
(B) B : = f

3
 (B)

Write(B) Write (B)

C : = f
4
(C) C : = f

4
 (C)

Read (B) Read (B)

Write (C) Write (C)

A : = f
5
(A) A : = f

5
(A)

Write (A) Write (A)

B := f
6
(B) B : =f

6
(B)

Write (B) Write (B)

Figure : (C) An Execution Schedule Involving Three Transactions

175

Figure : (D) Precedence graph for schedule of Figure C.

12.5.3 Serializability Algorithm : Read-Only and Write-Only Protocols :

The Algorithm is for a set of transactions that follow the read before write protocol. Some

transactions, in addition to having a set of data-items that are read before rewritten have another set of

data-items that are only read and a further set of data-items that are only written. In such a case some

additional edges must be added to the graph.

12.6 Recovery

In designing a reliable system we try to anticipate different types of failures and provide for the

means to recover without loss of information. Some very rare failures may not be catered to for economic

reasons. Recovery from failures that are not thought of, overlooked, or ignored may not be possible. In

common practice, the recovery system of a DBMS is designed to anticipate and recover from the

following types of failure :

Failures without loss of data : This type of failure is due to errors that the transaction discovers

before it reaches the start to commit state. It can also be due to the action of the system, which resets its

state to that which existed before the start of the transaction. No loss of data is involved in this type of

failure, especially in the case where the transactions are run in a batch mode; these transactions can be

rerun later in the same sequence.

Failure with loss of volatile storage : Such a failure can occur as a result of software or

hardware errors. The processing of an active transaction is terminated in an unpredictable manner before

it reaches its commit or rollback state and the contents of the volatile memory are lost.

Failure with loss of nonvolatile storage : This is the sort of failure that can occur after the

failure of a nonvolatile storage system; for example, a head crash on a disk drive or errors in writing to

a nonvolatile device.

Failure with a loss of stable storage : This type involves loss of data stored on stable storage.

The cause of the loss could be due to natural or man-made disasters. Recovery from this type of failure

requires manual regeneration of the database. The probability of sush a failure is reduced to a vary small

value by having multiple copies of data in stable storage, stored in physically secure environments in

geographically dispersed locations.

The basic technique to implement the database transaction paradigm in the presence of failures of

various kinds is by using date redundancy in the from of logs, check-points and archival copies of the

database.

12.6.1 Logs

The log, which is usually written to stable storage, contains the redundant date required to recover

from volatile storage failures and also from errors discovered by the transaction or the database system.

For each transaction the each transaction the following data is recorded on the log:

176

• A start of transaction marker.

• The transaction identifier.

• The record identifiers, which include the identifiers for the record occurrences.

• The operation(s) performed on the records (insert, delete, modify).

• The previous value(s) of the modified data. This information is required for undoing the

changes made by a partially completed transaction; it is called the undo log. Where the

modification made by the transaction is the insertion of a new record, the previous values

can be assumed to be null.

• The updated value(s) of the modified record(s). This information is required for making

sure that the changes made by a committed transaction are in fact reflected in the database

and can be used to redo these modification. This information is called the redo part of the

log. In case the modification made by the transaction is the deletion of a record, the

updated values can be assumed to be null.

• A commit transaction marker if the transaction is committed; otherwise an abort

or rollback-transaction marker.

The log is written before any updates are made to the database. This is called the write-ahead log

strategy. In this strategy a transaction is not allowed to modify the physical database until the undo portion

of log (i.e. the portion of the log that contains the value (s) of the modified data) is written to stable storage.

Furthermore, the log write-ahead strategy requires that a transaction is allowed to commit only after the

redo portion of the log and the commit transaction marker are written to the log. In iffect, both the undo

and redo portin of the log will be written to stable storage before a transaction commit. Using this strategy,

the partial updates made by an uncommitted transaction can be undone using the undo portion of the log,

and a failure occurring between the writing of the log and the completor of updating the database

corresponding to the action implied by the log can be redone.

Let us see how the log information can be used in the case of a system crash with the loss of

volatile information. Consider a number of transaction, as shown in figure 12.13. The figure shows the

system start-up at the time t
0
 and a number of concurrent transaction T

0
, T

1
, , T

i+6
 are made on the

database. Suppose a system crash occures at time t
x

We have stored the log information for transaction T
0
 through T

i+2
 on stable storage, and we

assume that this will be available when the system comes up after.

Figure 12.13 : DBMS operation to a system crash

T
0

T
2

T
3

T
4

T
1

T
i-1

T
1

T
i+3

T
i+5

T
i+2

T
i+1

T
i+6

T
i+4

t
0

System

Start-up
Time

t
x

System

Crash

177

The crash, Furthermore, we assume that the database existing on the nonvolatile storage will also

be availble. It is clear that the transaction that were not committed at the time of the system crash will have

to be undone. The changes made by these uncommitted transactions will have to be rolled back. The

transactions that have not been committed can be found by examining the log and those transactions that

have a start of transactions marker but no commit or abort transactions marker are considered to have

been active at the time of the crash. These transactions have to be rolled back to restore the database to

a consistent state. In figure 12.13 the transactions T
i
 and T

i+6
 started before the crash, but they had not

been committed and, hence, are undone.

However, it is not clear from the log to what extent the changes made by committed transactions

have actually been propagated to the database on the nonvolatile storage. The reason for this uncertainly

is the fact that buffers (implemented in volatile storage) are used by the system to hold the modified data.

Some of the changed data in these buffers may or may not have been propagated to the database on the

nonvolatile storage. In the absence of any method of finding out the extent of the loss, we will be forced to

redo the effects of all committed transactions. For figures 12.13, this involves redoing the changes made

by all transactions from t
0
 Under such a scenario, the longer the system operates without a crash, the

longer it will take to recover from the crash.

In the above, we have assumed that the log informatin is available up to the time of the system

crash in nonvolatile storage. However, the log information is also collected in buffers. In case of a system

crash with loss of volatile information, the log information collected in buffers will also be lost and

transactions that had been completed for some period prior to the system crash may be missing their

respective end-of-transactions markers in the log. Such transactions, if rolled back, will likely be partially

undone. The write-ahead log strategy avoids this type of recovery problem, since the log information is

forced to be copied to stable storage before the transactions commits.

These problems point to the conclusion that some means must be devised to propogate to stable

storage at regular intervals all the log informaton, as well as modificatins to the database existing at a given

time. Then the recovery operation after a system crash will not have to reprocess all transactions from the

time of start-up of the system.

12.6.2 Checkpoints

In an on- line database system, for example an airline reservation system, there could be hundreds

of transactions handled per minute. The log for this type of database contains a very large volume of

information. A scheme called checkpoint is used to limt the the volume of log information that has to be

handled and processed in the event of a system failure involving the loss of volatile information. The

checkpoint scheme is an additional component of the logging scheme described above

In the case of a systeam crash the log information being collected in buffers will be lost. A

checkpoint operation, performed periodically,copies log information onto stable storage. The information

and operations performed at each checkpoint consist of the following :

• A start-of-checkpoint record giving the identification that it is a check point along with the time and

date of the checkpoint is written to the log on a stable storage device.

• All log information from the buffers in the volatile storage is copied to the log on stable storage

device

• All database udates from the buffers in the volatile storage are propagated to the physical data

base.

• An end-of-checkpoint record is written and the address of the checkpoint record is saved on a file

accessible to the recovery routine on start-up-after a system crash.

For all transactions active at checkpoint, their identifiers and their database modification actions,

which at that time are reflected only in the database buffers will be propagated to the appropriate storage.

178

The frequency of checkpointing is a design consideration of the recovery system. A checkpoint

can be taken at fixed intervals of time (say, every 15 minutes). If this approach is used, a choice has to be

made regarding what to do with the transactions that are active when the checkpoint signal is generated by

a system timer. In one alternative, called transaction-consistent checkpoint, the transactions that are

active when the system timer signals a checkpoint are allowed to be started until the checkpoint are

allowed to complete, but no new transactions (requiring modifications to bhe database) are allowed to be

started until the checkpoint is completed. This scheme, though attractive, makes the database unavailable

at regular intervals and may not be acceptable for certain online applications. In addition, this approach is

not appropriate for long transactions. In the second variation, called action consistent checkpoint, active

transactions are allowed to complete the current step before the checkpoint and no new actions can be

started on the database until the checkpoint is completed; during the chekpoint no actions are permitted on

the database. Another alternative, called transaction-oriented checkpoint, is to take a checkpoint at the

end of each transaction by forcing the log of the transaction onto stable storage. In effect, each commit

transaction is a chekpoint.

How does the checkpoint information help in recovery ? To answer this question, reconsider the set of

transactions of Figure 12.13, shown in Figure 12.14 with the addition of a checkpoint being taken at time t.

Suppose, as before, the crash occurs at time, t
x.
 Now the fact that a checkpoint was taken at time

t
c
 indicates that at that time all log and data uffers were propagated to storage. Transactions T

0
,,

T
i-1

 as well as transactions T
i+1

 and T
i+3

 were committed, and their modifications are reflected in the

database. With the checkpoint scheme these transactions are not required to be redone during the

recovery operation following a system crash occurring after time t
c
. A transaction such as T

i
(which started

before checkpoint time t
c
), as well as transaction T

i+6
 (which started after checkpoint time t

c
,) were not

committed at the time of the crash and have to be rolled back. Transactions such as T
i+4

 and T
i+5

 which

started after checkpoint time t
c
 and were committed before the system crash, have to be redone. Similarly,

transactions such as T
i+2

, which started before the checkpoint time and were committed before the system

crash, will have to be redone. However, if the commit transaction information is missing for any of the

transactions T
i+2

, T
i+4

, or T
i+5

, then they have to be undone.

Figure 12.14 : Checkpointing

T
0

T
i

T
2

T
3

T
4 T

i+1

T
1

t
0

T
c

Checkpoint

T
x

System

crash

T
i+4

T
i+1

T
i+2

T
i+3

T
i+5

T
i+6

Time---- ----

179

Let us now see how the system can perform a recovery at time tx. Suppose all transactions that

started before the checkpoint time but were not committed at that time, as well as the transactions started

after the checkpoint time, are placed in an undo list, which is a list of transactions to be undone. The undo

list for the transactions of Figure 12.14 is given below:

UNDO List (T
i
, T

i+2
, T

i+4
, T

i+5
, T

i+6
)

Now the recovery system scans the log in a backward direction from the time t
x
 of system crash.

If it finds that a transaction in the undo list has committed, that transaction is removed from the undo list and

placed in the redo list. The redo list contains all the transactions that have to be redone. The reduced undo

list and the redo list for the transactions of Figure 12.14 are given below :

REDO List; (T
i+4

, T
i+5

, T
i+2

)

UNDO List; (T
i
, T

i+6
)

Obviously, all transactions that were committed before the checkpoint time need not be consid-

ered for the recovery operation. In this way the amount of work required to be done for recovery from a

system crash is reduced. Without the checkpoint scheme, the redo list will contain all transactions except

T
i
 and T

i+6
. A system crash occurring during the checkpoint operation, requires recovery to be done using

the most recent previous checkpoint.

The recovery scheme described above takes a pessimistic view about what has been propagated

to the database at the time of a system crash with loss of volatile information. Such pessimism is adopted

both for transactions committed after a checkpoint and transactions not committed since a checkpoint. It

assumes that the transactions committed since the checkpoint have not been able to propagate their

modifications to the database and the transactions still in progress have done so.

Note that in some systems the term checkpoint is used to denote the correct state of system files

recorded explicitly in a backup file and the term checkpointing is used to denote a mechanism used to

restore the system files to a previous consistent state. However, in a system that uses the transaction

paradigm, checkpoint is a startegy to minimize the search of the log and the amount of undo and redo

required to recover from a system failure with loss of volatile storage.

Archival Database and Implementation of the Storage Hierarchy of a Database System

Figure 12.15 gives the different categories of data used in a database system. These storage types

are sometime called the storage hierarchy. It consists of the archival database, physical database, archival

log, and current log.

Physical database : This is online copy of the database that is stored in nonvolatile storage and

used by all active transactions.

Current database : The current version of the database is made up of the physical database plus

modifications implied by buffers in the volatile storage.

Figure 12.15 : Database storage hierarchy

180

Archival Database in Stable Storage :

This is the copy of the database at a given time, stored on stable storage. It contains the entire

database in a quiescent mode (i, e, no transactions were active when the database was copied to the stable

storage) and could have been made by simple dump routines to dump the physical database (which in

quiescent state would be the same as the current or online database) onto stable storage. The purpose of

the archival database is to recover from failures that involve loss of nonvolatile storage. The archiving

process is a relatively time-consuming operation and during this period the database is not accessible.

Consequently, archiving is done at infrequent intervals. The frequency of archiving is a loss of nonvolatile

data being the arbitrator. All transactions that have been executed on the database from the time of archiving

have to be redone in a global recovery operation. No undoing is required in the global recovery operation

since the archival database is a copy of the database in a quiescent state, and only the committed

transactions since the time of archiving are applied to this database.

Current log : This contains the log information (including the checkpoint) required for recovery

from system failures involving loss of volatile information

Archival log : This log is used for failure involving loss of nonvolatile information. The log contains

information on all transactions made on the database from the time of the archival copy. This log is written

in chronological order. The recovery from loss of nonvolatile storage uses the archival copy of the

database and the archival log to reconstruct the physical database to the time of the nonvolatile storage

failure.

With the above storage hierarchy of a database, we can use the following terms to denote different

combinations of this hierarchy.

The on line or current database is made up of all the records (and the auxiliary structures such as

indexes) that are accessible to the DBMS during its operation. The currrent database consists of the data

stored in nonvolatile storage (Physical database) as well as the data stored in buffers (in the volatile

storage) and not yet propagated to the nonvolatile storage.

The materialized database is that portion of the database that is still intact after a failure. All the data

stored in the buffers would have been lost and some portion of the database would be in an inconsistent

state. The log information is to be applied to the materialized database by the recovery system to restore

the database to as close a state as possible to the online database prior to the crash. Obviously, it will not

be possible in all cases to return to exactly the same state as the precrash online database. The intent is to

limit the amount of lost data and the loss of completed transactions.

12.6.3 Do, Undo, and Redo

A transaction on the current database transforms it from the current state to a new state. This is the

so-called do operation. The undo and redo operations are functions of the recovery subsystem of the

database system used in the recovery process. The undo operation undoes or reverses the actions

(Possibly partially executed) of a transaction and restores the database to the state that existed before the

start of the transaction. The redo operation redoes the action of a transaction and restores the database to

the state it would be in at the end of the transaction. The undo operation is also called into play when a

transaction decides to terminate itself (Suicidal termination). Figure 12.6(b) shows the transformation of

the database as a result of a transaction do, redo, and undo.

The undo and redo operations for a given transaction are required to be idempotent; that is, for

any transaction, performing one of these operations once is equivalent to performing it any unmber of

times. Thus :

undo (any action) = undo (undo(..undo(any action)....))

Redo(any action) = redo (redo(..redo(any action)..))

The reason for the requirement that undo and redo be idempotent is that the recovery process,

while in the process of undoing or redoing the actions of a transaction, may fail without a trace, and this

181

type of failure can occur any number of times before the recovery is completed successfully.

Transaction Undo :

A transaction that discovers an error while it is in progress and consequently needs to abort itself

and roll back any changes made by it uses the transaction undo feature. A transaction also has to be

undone when the DBMS forces the transaction to abort. A transaction undo removes all database changes,

partial of otherwise, made by the transaction.

Figure 12.6(b) Do, Undo, and redo operations

Transaction Redo :

Transaction redo involves performing the changes made by a transaction that commited before a

system crash. With the write-ahead log strategy, a commited transaction implies that the log for the

transaction would have been written to nonvolatile storage, but the physical database may or may not have

been modified before the system failure. A transaction redo modifies the physical database to the new

values for a committed transaction. Since the redo operation is idempotent, redoing the partial or complete

modifications made by a transaction to the physical database will not pose a problem for recovery.

Global Undo :

Transactions that are partially complete at the time of a system crash with loss of volatile storage

need to be undone by undoing any changes made by the transaction. The global undo operation, intiated

by the recovery system, involves undoing the partial or otherwise updates made by all uncommitted

transactions at the time of a system failure.

Global Redo :

The global redo operation is required for recovery from failures involving nonvolatile storage loss.

The archival copy of the database is used and all transactions committed since the time of the archival copy

are redone to obtain a database updated to a point as close as possible to the time of the nonvolatile

storage loss. The effects of the transaction in progress at the time of the nonvolatile loss will not be

reflected in the recovered database. The archival copy of the database could be anywhere from months to

days old and the number of transactions that have to be redone could be large. The log for the committed

transaction needed for performing a global redo operation has to be stored on stable storage so that they

are not lost with the loss of nonvolatile storage containing the physical database.

Reflecting updates to the Database and Recovery :

Let us assume that the physical database at the start of a transaction is equivalent to the current

database, i.e., all modifications have been reflected in the database on the nonvolatile storage. Under this

Original

state
DO

Transaction
New

state

New

state

?

Commit

System

crash
*

System

crash #
Suspect

state

Log

UNDO

REDO

REDO

UNDO

Previous

state

New

state

New

state

Previous

state

? suspect database state

* crash occuring after commit

crash occuring before commit

182

assumption. Whenever a transaction is run against a database, we have a number of options as to the

strategy that will be followed in reflecting the modifications made by the transaction as it is executed. The

strategies we will explore are the following :

Update in place : In this approach the modifications appear in the database in the original locations

and in the case of a simple update, the new values will replace the old values.

Concurrent execution of a number of transactions implies that the operations from these transactions

may be interleaved. This is not the same as serial execution of the transactions where each transaction is run

to completion before the next transaction is started. Concurrent access to a database by a number of

transactions requires some type of concurrency control to preserve the consistency of the database, to

ensure that the modifications made by the transactions are not lost, and to guard against transations reading

data that is inconsistent. The serializability criterion is used to test whether or not an interleaved execution

of the operations from a number of concurrent transactions is correct. The Serializability test consists of

generating a precedence graph from a interleaved execution schedule. If the precedence graph is acyclic,

the schedule is serializable, which means that the database will have the same state at the end of the

schedule as some serial execution of the transactions. In this chapter, we intruduce a number of concurrency

control schemes.

12.7 Summary

In this chapter we discussed the recovery of the data contained in a database system after failures

of various types. The aim of the recovery scheme is to allow database operations to be resumed after a

failure with minimum loss of information and at an economically justifiable cost. The checkpoint

information is used to limit the amount of recovery operations to be done following a system crash

resulting in the loss of volatile storage. The archival database is the copy of the database at a given time

stored to stable storage.

Whenever a transaction is run against a database , a number of options can be used in reflecting

the modifications made by the transactions. the options we have examined are update in place and indirect

update with careful replacement: the shadow page scheme and the update vai log scheme are two versions

of the later. In the update in place scheme, the transaction updates the physical database and the modified

record replaces the old record in the database. The write ahead log strategy is used.

12.8 Self Assessment Questions

1. Define the following terms:

i) Write ahead log strategy

ii) Transaction- consistent checkpoint

iii) Transaction oriented checkpoint

iv) Two-phase commit

2. How is the checkpoint information used in the recovery operation following a system crash?

3. What is concurrency in dbms? Explain.

4. What is lost update problem? Discuss.

5. Describe the inconsistent read problem in dbms

6. what is serializability and how it works in concurrency?

7. Write a note on precedence graph?

8. What is locking scheme and how it is utilized in database?

9. Write a note on granularity of locking

10. Describe the hierarchy of locks and intention mode locking.

´ ´ ´

183

Structure of the Unit

13.0 Objective

13.1 Introduction

13.2 Locking and Types of Locking

13.3 Granting of Locks

13.4 Two Phase Locking

13.5 Time Stamp Based Order

13.6 Summary

13.7 Self Assessment Questions

13.0 Objective

This chapter covers the basic locks such as exclusive, shared for the concurrency control of the

transactions.

* Locking: shared and exclusive locks

* Two phase locking

* Time stamp based order

* Serializable schedule

13.1 Introduction

If all schedules in a concurrent environment are restricted to serializable schedules, the result

obtained will be consistent with some serial execution of the transactions and will be considered correct.

However, using only serial schedules unnecessarily limits the degree of concurrency. Furthermore, testing

for serializability of a schedule is not only computationally expensive but it is an after-the-fact technique

and im practical. Thus, one of the following concurrency control schemes is applied in a concurrent

database environment to ensure that the schedules produced by concurrent transactions are serializable.

The schemes we discuss are locking, timestamp-based order.

The intent of locking is to ensure serializability by ensuring mutual exclusion in accessing

data-items. In the timestamp-based ordering scheme, the order of execution of the transactions is

selected a priori by assigning each transaction an unique value. This value, usually based on the system

clock, is called a timestamp. The values of the timestamp of the transactions determine the sequence in

which transactions contesting for a given data-item will be executed. Conflicts in the timestamp scheme are

resolved by abort and rollback.

13.2 Locking and types of Locking

From the point of view of locking, a database can be considered as being made up of a set of data

items. A lock is a variable associated with each such data-item. Manipulating the value of a lock is called

locking. The value of a lock variable is used in the locking scheme to control the concurrent access and

manipulation of the associated data-item. Locking the items being used by a transaction can prevent other

concurrently running transactions from using these locked items. The locking is done by a subsystem of the

database management system usually called the lock manager.

So that concurrency is not restricted unnecessarily, at least two types of locks are defined:

exclusive lock and shared lock.

Unit - 13 : Concurrency Control

184

Exclusive lock : The exclusive lock is also called an update or a write lock. The intention of this

mode of locking is to provide exclusive use of the data item to one transaction. If a transaction T locks a

data item Q in an exclusive mode, no other transaction can access Q, not even to read Q, until the lock is

released by transaction T.

Shared lock : The shared lock is also called a read lock. The intention of this mode of locking

is to ensure that the data item does not undergo any modifications while it is locked in this mode. Any

number of thansactions can concurrently lock and access a data item in the shared mode, but none of

these transactions can modify the data item. A data item locked in a shared mode cannot be locked in

the exclusive mode until the shared lock is released by all transactions holding the lock. A data item

locked in the exclusive mode cannot be locked in the shared mode until the exclusive lock on the data

item is released.

The protocol of sharing is as follows. Each transaction, before accessing a data item, requests that

the data item be locked in the appropriate mode. If the data item is not locked, the lock request is honored by

the lock manager. If the data item is already locked, the request may or may not be granted, depending on the

mode of locking requested and the current mode in which the data item is locked. If the mode of locking

requested is shared and if the data item is already locked in the shared mode, the lock request can be granted.

If the data item is locked in an exclusive mode, then the lock request cannot be granted, regardless of the

mode of the request. In this case the requesting transaction has to wait till the lock is released.

The compatibility of a lock request for a data item with respect to its current state of locking is

given in Figure 13.1. Here we are assuming that the request for locking is made by a transaction not

already holding a lock on the data item.

Current state of locking of data-item

Unlocked Shared Exclusive

Unlock yes yes

Shared yes yes no

Exclusive yes no no

Figure 13.1 : Compatibility of locking

If transaction T
x
 makes a request to lock data item A in the shared mode and if A is not locked or

if it is already locked in the shared mode, the lock request is granted. This means that a subsequent request

from another transaction, T
y
, to lock

data item A in the exclusive mode would not be granted and transaction T
y
 will have to wait until A is

unlocked. While A is locked in the shared mode, if transaction T
Z
 makes a request to lock it in the shared

mode. this request can be granted. Both T
X
 and T

Z
 can concurrently use data item A.

If transaction T
x
 makes a request to lock data-item A in the shared mode and if A is locked in the

exclusive mode, the request made by transaction T
x
 cannot be granted. Similarly, a request by transaction

T
z
 to lock A in the exclusive mode while it is already locked in the exclusive mode would also result in the

request not being granted, ant T
z
 would have to wait until the lock on A is released.

From the above we see that any lock request for a data-item can only be granted if it is compatible

with the current mode of locking of the data-item. If the request is not compatible, the requesting

transaction has to wait until the mode becomes compatible.

The releasing of a lock on a data-item changes its lock status. If the data-item was locked in an

exclusive mode, the release of lock request by the transaction holding the exclusive lock on the data-item

would result in the data-item being unlocked. Any transaction waiting for a release of the exclusive lock

would have a chance of being granted its request for locking the data-item. If more than one transaction is

Lock mode of

request

185

waiting, it is assumed that the lock manager would use some fair scheduling teachnique to choose one of

these waiting transactions.

If the data-item was locked in a shared mode, the release of lock request by the transaction

holding the shared lock on the data-item may not result in the data-item being unlocked. This is because

more than one transaction may be holding a shared lock on the data-item. Only when the transaction

releasing the lock is the only transaction having the shared lock does the data-item become unlocked. The

lock manager may keep a count of the number of transactions holding a shared lock on a data-item. It

would increase this value by one when an additional transaction is granted a shared lock and decrease the

value by one when a transaction holding a shared lock releases the lock. The data-item would then

become unlocked when the number of transactions holding a shared lock on it becomes zero. This count

could be stored in an appropriate data structure along with the data-item but it would be accessible only to

the lock manager.

The lock manager must have a priority scheme whereby it decides whether to allow additional

transactions to lock a data item in the share-mode in the following situation:

• The data-item is already locked in the shared mode.

• There is at least one transaction waiting to lock the data-item in the exclusive mode.

Allowing a higher priority to share lock requests could result in possible starvation of the

transactions waiting for an exclusive lock. Similarly, the lock manager has to deal with a situation where a

data-item is locked in an exclusive mode and there are transactions waiting to lock the data-item in the

shared mode and the exclusive mode.

13.3 Granting of Locks

In the following discussions we assume that a transaction makes a request to lock data-item A by

executing the statement Locks(A) or Lockx(A). The former is for requesting a shared lock; the latter, an

exclusive lock. A lock is released by simply executing an Unlock(A) statement. We assume that the

transactions are correct. In other words, a transaction would not request a lock on a data-item for which

it already holds a eock, nor would a transaction unlock a data-item if it does not hold a lock for it.

A transaction may have to hold onto the lock on a data-item beyond the point when it last needs it

to preserve consistency and avoid the inconsistent read problems . We illustrate this point by reworking

the example of Figure 12.7 here each transaction request locks for the data-items A and B : transaction T
5

in exclusive mode and transaction T
6
 in shared mode. The transactions with the lock requests are given in

Figure 13.2 As shown there, the transactions attempt to release the locks on the data-items as soon as

possible.

Now consider Figure 13.3 which given a possible schedule of execution of the transactions of

Figure 13.2 The locking scheme did not resolve the inconsistent read problem; the reason is that

transactions T
5
 and T

6
 are performing an operation made up of many steps and all these have to be

executed in an atomic manner. The database is in an inconsistent state after transaction T
5
 has taken 100

units from A but not added it to B. Allowing transaction T
6
 to read the vlues of A and B before transaction

T
5
 is complete leads to the inconsistent read problem.

A possible solution to the inconsistent read problem is shown in Figure 13.4 Here transactions T
5

and T
6
 are rewritten as transactions T

20
 and T

21
. The possible schedules of concurrent executions of these

transactions are shown in Figure 13.5 and 13.6 Both of these solutions extend the period of time for which

they keep some data-items locked even though the transactions no longer need these items. This extended

locking forces a serialization of the two transactions and given correct results.

186

Transaction T
5

Transaction T
6

Lockx (A) Lockx (Sum)

Read (A) Sum : = 0

A : = A - 100 Locks (A)

Write (A) Read (A)

Unlock (B) Sum : = Sum + A

Lockx (B) Unlock (A)

Read (B) Locks (B)

B : - B + 100 Read (B)

Write (B) Sum : = Sum + B

Unlock(B) Write (Sum)

Unlock (B)

Unlock (Sum)

Figure 13.2 : Two Transactions with Lock Requests

Shedule Transaction T
5

Transaction T
6

Lockx (Sum) Lockx (Sum)

Sum : = 0 Sum : = 0

Locks(A) Locks (A)

Read(A) Read (A)

Sum : = Sum + A Sum : = Sum + A

T Unlock (A) Unlock (A)

i Lockx(A) Lockx (A)

m Read(A) Read (A)

e A : = A - 100 A : = Α − 100

Write (A) Write (A)

Unlock (A) Unlock(A)

Lockx (B) Lockx (B)

Read (B) Read (B)

B : = B + 100 B : = B + 100

Write (B) Write (B)

Unlock (B) Unlock (B)

Locks (B) Locks(B)

Read (B) Read (B)

Sum : = Sum + B Sum : = Sum + B

Write (Sum) Write (Sum)

Unlock (B) Unlock (B)

Unlock (Sum) Unlock (Sum)

Figure 13.3 : A possible Schedule Causing an Inconsistent Read

187

 Transaction T
20

Transaction T
21

Lockx (A) Lockx (Sum)

Read (A) Sum : = 0

A : = A - 100 Locks (A)

Write (A) Read (A)

Lockx (B) Sum : = Sum + A

Unlock (A) Locks (B)

Read (B) Read (B)

B : = B + 100 Sum : = Sum + B

Write (B) Write (Sum)

Unlock(B) Unlock (B)

Unlock (A)

Unlock (Sum)

Figure 13.4 : Transactions Locking All Items Before Unlocking

Shedule Transaction T
20

Transaction T
21

Lockx (Sum) Lockx (Sum)

Sum : = 0 Sum : = 0

Locks(A) Locks (A)

Read(A) Read (A)

Sum : = Sum + A Sum : = Sum + A

T Locks (B) Locks (B)

i Read (B) Read (B)

m Sum : = Sum + B Sum : = Sum + B

e Write (Sum) Write (Sum)

Unlock (B) Unlock (B)

Unlock (A) Unlock (A)

Unlock (Sum) Unlock (Sum)

Lockx (A) Lockx (A)

Read (A) Read (A)

A : = A − 100 A : = A − 100

Write (A) Write (A)

Lockx (B) Lockx (B)

Unlock (A) Unlock (A)

Read (B) Read (B)

B : = B + 100 B : = B + 100

Write (B) Write (B)

Unlock (B) Unlock (B)

Figure 13.5 : A Posible Solution to The Inconsistent Read Problem

188

Some data-items locked even though the transactions no longer need these items. This extended

locking forces a serialization of the two transactions and gives correct results.

13.4 Two-Phase Locking

The correctness of the schedules of Figure 13.5 and 13.6 and of the transactions in Figure 13.4

lead us to the observation that both these solutions involve transactions whose locking and unlocking

operations are monotonic, in the sense that all locks are first acquired before any of the locks are released.

Once a lock is released; no additional locks are requested. In other words, the release of the locks is

delayed until all locks on all data-items required by the transaction have been acquired.

This method of locking is called two-pha1se locking. It has two phases, a growing phase where

in the number of locks increase from zero to the maximum for the transaction, and contracting phase

where in the number of locks held decreases from the maximum to zero. Both of these phases are

monotonic; the number of locks are only increasing in the first phase and decreasing in the second phase.

Once a transaction starts releasing locks, it is not allowed to request any further locks. In this way a

transaction is obliged to request all locks it may need during its life before it releases any. This leads to a

possible lower degree of concurrency.

Shedule Transaction T
20

Transaction T
21

Lockx (A) Lockx (A)

Read (A) Read (A)

A : = A − 100 A : = A − 100

Write (A) Write (A)

Lockx (B) Lockx (B)

T Unlock (A) Unlock (A)

i Read (B) Read (B)

m B : = B + 100 B : = B + 100

e Write (B) Write (B)

Unlock (B) Unlock (B)

Lockx (Sum) Lockx (Sum)

Sum : = 0 Sum : = 0

Locks (A) Locks (A)

Read (A) Read (A)

Sum : = Sum + A Sum : = Sum + A

Locks (B) Locks (B)

Read (B) Read (B)

Sum : = Sum + B Sum : = Sum + B

Write (Sum) Write (Sum)

Unlock (B) Unlock (B)

Unlock (A) Unlock (A)

Unlock (Sum) Unlock (Sum)

Figure 13.6 : Another Solution to The Inconcistent Read Problem.

The two-phase locking protocol ensures that the schedules involving transactions using this

protocol will always be serializable. For instance, if S is a schedule containing the interleaved operations

from a number of transactions, T
1
, T
2
,......... T

k
 and all the transactions are using the two-phase locking

protocol, schedule S is serializable. This is because if the schedule is not serializable, the precdence graph

for S will have a cycle made up of a subset of {T
1
, T
2
,,T

k
} Assume the cycle consists of

axcba
TTTTT →→→ This means that a lock operation by T

6
 is followed by an unlock

189

operation by T
a
; a lock operation by T

c
 is followed by an unlock operation by T

b
.........., and finally a lock

operation by T
a
 is followed by an unlock operation by T

x
. However this is a contradiction of the assertion

that T
a
 is using the two phase protocol. Thus the assumption that there was a cycle in the precedence graph

is incorrect and hence S is serializable.

The transactions of Figure 13.4 use the two-phase locking protocol, and the schedules derived

from the concurrent execution of these transactions given n Figures 13.5 and 13.6 are serializable.

However, the transactions of Figure 13.2 do not follow the two-phase locking protocol and the schedule

of Figure 13.3 is not serializable.

13.5 Time Stamp-Based Order

In the timestamp-based method, a serial order is created among the concurrent transaction by

assigning to each transaction a unique nondecreasing number. The usual value assigned to each transaction

is the system clock value at the start of the transaction, hence the name timestamp ordering. A variation

of this scheme that is used in a distributed environment includes the site of a transaction appended to the

system wide clock value. This value can then be used in deciding the order in which the conflict between

two transactions is resolved. A transaction with a smaller timestamp value is considered to be an “older”

transaction thann another transaction with a larger timestamp value.

The serializability that the system enforces is the chronological order of the timestamps of the

concurrent transactions. If two transaction T
i
 and T

j
 with the time stamp values t

i
 and t

j
 respectively, such

that t
i
 < t
j
, are to run concurrently, then the schedule produced by the system is equivalent to running the

older transaction T
i
 first, followed by the younger one, T

j
.

The contention problem between two transactions in the timestamp ordering system is resolved by

rolling back one of the conflicting transactions. A conflict is said to occur when an older transaction tries to

read a value that is written by a younger transaction or when an older transaction tries to modify a value

already read or written by a younger transaction. Both of these attempts signify that the older transaction

was “too late” in performing the required read/write operations and it could be using values from different

“generations” for different data-items.

In order for the system to determine if an older transaction is processing a value already read by or

written by a younger transaction, each data-item has, in addition to the value of the item, two timestamps:

a write timestamp and a read timestamp. Data-item X is thus represented by a triple X: {x, W
x
, R
x
}

where each component of the triple is interpreted as given below :

x, the value of the data-item X

W
x
, the write timestamp value, the largest timestamp value of any transaction that was allowed to

write a vlue of X.

R
x
, the read timestamp value, the largest timestamp value of any transaction that was allowed to

read the current value X.

Now let us see how these timestamp values find their way into the data structure of a data-item

and how all these values are modified. A transaction Ta with the timestamp value of t
a
 issues a read

operation for the data-item X with the values {x, W
x
, R
x
}.

• This request will succeed if t
a
 > Wx since transaction T

a
 is younger than the transaction that last

wrote (or modified) the value of X. Transaction T
a
 is allowed to read the value x of X and if the

value t
a
 is larger than R

x
, then t

a
 becomes the new value of R

x
.

• This request will fail if t
a
 < W
x
, i.e. transaction T

a
 is an older transaction than the last transaction that

wrote the value of X.

The failure of the read request is due to the fact that the older transaction was trying to read a value

that had been overwritten by a younger transaction. Transaction T
a
 is too late to read the previous outdated

value and any other values it has acquired are likely to be inconsistent with the updated value of X. It is thus

safe to abort and roll back T
a
, T
a
, is assigned a new timestamp and restarted.

190

A transaction T
a
 with the timestamp value of t

a
 issues a write operation for the data-item X with the

values {x, W
x
, R
x
}

• If t
a
 > W

x
 and t

a
 > R
x
, i.e. both the last transaction that updated the value of X and the last

transaction that read the value of X are older than transaction T
a
, then T

a
 is allowed to write the

value of X and t
a
 becomes the current value of W

x
, the write timestamp.

• If t
a
 < R
x
, it means that a younger transaction is already using the corrent value of X and it would be

an error to update the value of X. Transaction T
a
 is not allowed to modify the value of X. T

a
 is

rolled back and its timestamp is reset to the current system-generated timestamp value and

restarted.

• If R
x
 < t
a
 < W
x
. this means that a younger transaction has already updated the value of X, and the

value that T
a
 is writing must be based on an obsolete value of X and is obsolete. Transaction T

a
 is

not allowed to modify the value of X; its write operation is ignored.

The reason for ignoring the write operation in the last alternative is as follows. In the serial order of

transaction processing, transaction T
a
 with the timestamp of t

a
 wrote the value for the data-item X. This

was followed by another write operation to the same data-item by a younger transaction with a timestamp

of W
x
. No transaction read the data-item between the writing by T

a
 and the time W

x
. Hence, ignoring the

writing by T
a
 indicates that the value written by T

a
 was immediately overwritten by a younger transaction at

time W
x
.

Let us illustrate the timestamp ordering by considering transactions T
22

 and T
23

 given below in

Figure 13.7. Each of these transactions has a local variable Sum and the intent is to show a user the sum of

two data-items A and B. However, transaction T
23

 not only reads these values, it also transfers 100 units

from A to B and writes the modified values to the database. Now let us suppose that t
23

 > t
22

. This means

that transaction T
23

 is younger than transaction T
22

. Also, let the data-items A and B be stored as follows

(here the Wi’s and Ri’s have some values assumed to be less then t
22

 and t
23

) :

A : 400, W
a
, R
a
 B: 500, W

b
, R
b

Example 13.1 : Consider the transaction of Figure 13.7 in the schedule given in Figure E transaction T
22

(t
22

) and T
23

 (t
23

) run concurrently and produce the correct result. A similar serialiable schedule could have

been obtained using the two phase locking protocol.

Step Shedule Transaction T
22

Transaction T
23

1 Sum : = 0 Sum : = 0

2 Read (A) Read (A)

3 Sum : = Sum + A Sum : = Sum + A

4 Sum : = 0 Sum : = 0

5 Read (A) Read (A)

6 A : = A − 100 A : = A − 100

7 Write (A) Write (A)

8 Read (B) Read (B)

9 Sum : = Sum + B Sum : = Sum + B

10 Show (Sum) Show (Sum)

11 Sum : = Sum + A Sum : = Sum + A

12 Read (B) Read (B)

13 B : = B + 100 B : = B + 100

14 Write (B) Write (B)

15 Sum : Sum + B Sum : = Sum + B

16 Show (Sum) Show (Sum)

Figure 13.7 : Serializable schedule based on timestamp scheme

191

The steps of the schedule of Figure E cause the following modifications to the triple for A and B.

Initially A : 400, W
a
, R
2

B : 500, W
b
, R
b

After step 2 A : 400, W
a
, t
22

B : 500, W
b
, R
b

After step 5 A : 400, W
a
, t
23

B : 500, W
b
, R
b

After step 7 A : 300 t
23

, t
23

B : 500, W
b
, R
b

After step 8 A : 300, t
23

, t
23

B : 500, W
b
, t
22

After step 10 the value displayed will be 900

After step 12 A : 300, t
23

, t
23

B : 500, W
b
, t
23

After step 14 A : 300, t
23

, t
23

B : 500, t
23

, t
23

After step 14 the value displayed will be 900

In the following example we illustrate a schedule where the older transaction is rolled back.

Example 13.2 : In the example illustrated in Figure G, we have three transactions. T
24

, T
25

, and T
26

 with

timestamp value of T
24

, T
25

 and T
26

 respectively (t
24

<t
25

< t
26

). Note that transactions T
24

 and T
26

 are

write-only with respect to data-item B.

Step Shedule Transaction T
24

Transaction T
25

Transaction T
26

1 Read (A) Read (A)

2 A : = A + 1 A : = A + 1

3 Write (A) Write (A)

4 Read (C) Read(C)

5 C : = C * 3 C : = C * 3

6 Read (C) Read (C)

7 Write (C) Write (C)* cause a rollback

of transaction T
25

8 C : = C * 2 C : = C * 2

9 Write (C) Write (C)

10 B : = 100 B : = 100

11 Write (B) Write (B)

12 B : = 150 B : = 150

13 Write (B) Write (B)** cause the write operation to

be ignored

14 Read (C) Read (C)

15 C : = C * 3 C : = C * 3

16 Write (C) Write (C)

Initially A : 10, W
a
, R
a

B : 50, W
b
, R
b

C : 5, W
c
, R
c

After step 1 A : 10, W
a
, t
24

B : 50, W
b
, R
b

C : 5, W
c
, R
c

After step 3 A : 11, t
24

, t
24

B : 50, W
b
, R
t

C : 5, W
c
, R
c

After step 4 A : 11, t
24

, t
24

B : 50, W
b
, R
t

C : 5, W
c
, t
25

After step 5 A : 11, t
24

, t
24

B : 50, W
b
, R
t

C : 5, W
c
, t
25

After step 6 A : 11, t
24

, t
24

B : 50, W
b
, R
b

C : 5, W
c
, t
26

192

At step 7 transaction t
25

 with a timestamp value of t25 attempts to write the value of C : however, since

the read timestamp value of is t26, which is greater than t25, transaction T25 would be rolled back; the

transaction would be reassigned a timestamp value of, say, t25 (>t26) and rerun at step 14.

After step 9 A : 11, t
24

, t
24

B : 50, W
b
, R
b

C : 10, t
26

, t
26

After step 11 A : 11, t
24

, t
24

B : 100, t
26

, R
b

C : 10, t
26

, t
26

At step 13, the attempt by transaction T
24

 to write a value of B is ignored since t
24

 the timestamp of T
24

,

is less than the write timestamp (t
26

) of B, and greater than the read timestamp value (R
b
) of B.

After step 14 A : 11, t
24

, t
24

B : 100, t
26

, Rb C : 10, t
26

, t
25

’

After step 16 A : 11, t
24

, t
24

B : 100, t
26

, Rb C : 30, t
25

’, t
25

’

Figure 13.9 : Another serializable schedule.

It is obvious from the above examples that the timestamping scheme ensures serializability without

waiting but causes transactions to be rolled back. Since there is no waiting there is no possibility of a

dedlock. However, when transactions are rolled back, a cascading rollback may be needed. For instance,

if transaction T22 had written a value for a data-item Q before it was rolled back, this data-item value must

be restored to its old value. If another transaction, T’, had used the modified value of the data-item Q,

transaction T’ has to be rolled back as well.

Transaction T
22

Transaction T
23

Sum =0; Sum=0;

Read(A) Read(A)

Sum:= Sum + A A= A - 100

Read(B) Write(A)

Sum = Sum +B Sum = Sum +A

Show(sum) Read(B)

B: = B + 100

Write(B)

Sum = Sum + B

Show(Sum)

tep Shedule Transaction T
22

Transaction T
23

1 Sum : = 0 Sum : = 0

2 Sum : = 0 Sum : = 0

3 Read (A) Read (A)

4 A : = A − 100 A : = A − 100

5 Write (A) Write (A)

6 Read (A) Read(A)* causes a rollback of T
22

7 Sum : = Sum + A Sum : = Sum + A

8 Read (B) Read (B)

193

9 B : = B + 100 B : = B + 100

10 Write (B) Write (B)

11 Sum : = Sum + B Sum : = Sum + B

12 Show (Sum) Show (Sum)

13 Sum : = 0 Sum : = 0 with a timestamp t
22

’ (> t
23

)

14 Read (A) Read (A)

15 Sum : Sum + B Sum : = Sum + A

16 Read (B) Read (B)

17 Sum : = Sum + B Sum : = Sum + B

18 Show (Sum) Show (Sum)

Figure 13.8 : Serializable Schedule Produced After a Rollback

Consider the schedule shown in Figure F. Transacation T
22

 is rolled back and rerun after step 6. When

it is rolled back, a new timestamp value t
22

’ which would be greater than t
23

, is assigned to it. The

sequence of changes is given below :

Initially A : 400, W
a
, R
a

B : 500, W
b
, R
b

After step 3 A : 400. W
a
, t
23

B : 500, W
b
, R
b

After step 5 A : 300, t
23

, t
23

B: 500, W
b
, R
b

After step 6 A : 300, t
23

, t
23

B : 500, W
b
, R
b
*

(*cause a rollback of T
22

 which would be reassigned a new timestamp (t
22

1, > t
23

) and would

be reesecuted)

After step 8 A : 300. t
23

, t
23

B : 500, W
b
, t
23

After step 10 A : 300, t
23

, t
23

B: 600, t
23

, t
23

After step 12 the value displayed will be 900

After step 14 A : 300. t
23

, t
22

B : 600, t
23

, t
23

After step 16 A : 300, t
23

, t
22

B: 600, t
23

, t
23

After step 18 the value displayed will be 900

13.6 Summary

The concurrency control scheme ensures that the schedule that can be produced by a set of

concurrent transactions will be serialable. The locking protocol, timestamp based ordering, optimizing

scheduling, and multiversion technique are used in concurreny control. In the locking protocol, before a

transaction can access a data-item, it is required to lock the data-item in an appropriate mode. It releases

the lock onthe data-item once it no longer needs it. In the locking scheme, the two-phase locking protocol

is usually used. The principle characteristic of the two-phase locking protocol is that all locks are acquired

before a transaction starts releasing any locks. This ensures seriazability; however, deadlock is possible.

In timestamp-based ordering, each transaction is assigned an unique idetified, which is usually

based on the system clock. This identifier is called a timestamp and the value of the time-stamp is used to

schedule contending transactions.

194

13.7 Self Assessment Questions

1. What is shared locks?

2. Explain two phase locking

3. What is concurrency control?

4. Explain time-stamp based ordering

5. How is granting locks?

6. What is the role of exclusive locks in two phase locking

7. Explain the growing phase of locking.

8. How timestamp ordering ensure concurrency control?

´ ´ ´

195

Structure of the Unit

14.0 Objective

14.1 Introduction

14.2 Introduction to Distributed Databases

14.3 Distributed Database Architecture

14.4 Object Oriented Database Management System

14.5 Client Server Systems

14.6 Failure and Recovery

14.7 Summary

14.8 Self Assessment Questions

14.0 Objective

At the end of this unit, you should be able to -

• Describe the concepts of distributed databases

• Describe the concepts of object oriented DBMS

• Describe the client server systems

• Describe the failure and recovery

14.1 Introduction

Database management systems are standard tools that enable the storage and retrieval of

data within modern information systems. Applications in domains such as Multimedia, Geographical

Information Systems, and digital libraries demand a completely different set of requirements in terms of the

underlying database models. The conventional relational database model is no longer appropriate for these

types of data. Furthermore the volume of data is typically significantly larger than in classical database

systems. Finally, indexing, retrieving and analyzing these data types require specialized functionality.

14.2 Introduction to Distributed Databases

A Distributed database system is a database in which the data is stored at several computers that

are located at geographically distributed locations connected through a network. Each site or node has its

own database management system, transaction management software which also includes local logging,

logging and recovery. The characteristics of distributed databases are:

• The computers are connected through some communication media.

• Such systems do not share the disks or memory.

• The applications can access data stored at local as well as at remote locations.

• Distributed databases show data independence that is the user can specify the query without

specifying the location at which data is stored.Distributed transaction atomicity is also a

characteristic of distributed databases as all the changes to the database are made permanent

only if the transaction commits and no changes are made if the transaction aborts.

The computers at one site are connected to the computers located at various other sites as shown

in Figure 14.1

Unit - 14 : Emerging Trends in Database Management System - I

196

Figure 14.1: A Distributed Network

The distributed databases are of following types :

• Homogeneous Distributed Databases : Such kind of databases serve the purpose of location

transparency i.e. all the sites have identical DBMS software and all the clients are aware of one

another. Also the clients cooperate with each other

• Heterogeneous Distributed Databases : In a heterogeneous distributed database, different

sites have different DBMS and may use different schemas and software. Such sites may not be

aware of one another and have cooperation to only some extent. Such a system is also known as

multi-database system or federated database system.

Computer Network

Sit A
Sit B

Sit C Sit D

Computer Network

Sit A
Sit B

Sit C
Sit D

197

Figure 14.2: Heterogeneous v/s Homogeneous Distributed Databases

A distributed database must have some additional capabilities as compared to a centralized

system. Some of these capabilities are as follows:

• Network Transparency : The user must not be concerned about the details of the locations

where data is stored. This is further categorized into Location Transparency in which data is

retrieved independent of the location and Naming transparency which indicates that once a name

has been specified, the data can be accessed from anywhere.

• Replication Transparency : Refers to the fact that multiple copies of the data may be stored at

several locations and the user is unaware of the details.

• Fragmentation Transparency : This can be further classified into :

1. Horizontal fragmentation: where the database tuples or rows are distributed.

2. Vertical fragmentation: where the database columns are distributed.

3. Hybrid fragmentation includes an intermix of the above two types of fragmentation.

• Local Autonomy and Independence : The data stored at one location must be independent of

the data stored at other locations.

• Distributed Query Processing and Transaction Management : The data stored at various

locations is synchronized so as to maintain the integrity of the database. A distributed database

must be independent of the hardware, operating system, network and DBMS that is used.

• Distributed Catalog Management : The directory or catalog contains metadata about the

entire database.

• Security : Since a distributed database contains several computers connected at several

locations, it should be secure enough. Also, access and authorization to the database must be

checked.

Because of its distributed nature and its capability to store and access data at several locations,

a distributed database has several advantages and disadvantages. The advantages include, sharing of

data resulting into increased availability, efficiency and performance. Due to its extensible nature, a

distributed database is also scalable. On the contrary it suffers from the disadvantage that recovery

from failure becomes more complex due to its distributed nature. Again there can be breach of security

due to increased transparency. Other disadvantages include increased cost, increased overhead of

creation and maintenance of the database and lack of proper standards for synchronizing various sites.

A distributed database may have a varied architecture. Some of the architectures that are

Computer Network

Sit A
Sit B

Sit C Sit D

198

available in distributed databases are client/server architecture, collaborating server and middleware

systems. The client server architecture has a collection of clients connected to a server that fulfils the

requests of the clients. The clients provide the user interface and server is responsible for managing data

and executing transactions as shown in Figure 14.3.

Figure 14.3: Client Server Architecture

The client server architecture is relatively simple in implementation and is comparatively less

expensive but an increase in the number of client computers may increase the cost and complexity of the

system. This architecture also suffers from the drawback that if the server breaks down then the entire

system becomes difficult to manage. To overcome this problem, the architecture of Collaborating server

systems may be used. In this architecture several servers may cooperate with each other to solve the

client requests.

Another architecture that may be used for distributed databases is middleware systems. In this

architecture, a layer of software called the middleware is used that coordinates the execution of queries

and transactions across multiple servers as illustrated in Figure 14.4.

Figure 14.4: Middleware Architecture

Computer Network

Sit A
Sit B

Sit C
Sit D

Application Application Application Application

Middleware

Server Server Server Server

199

Due to the distributed nature of the database several concurrency related problems arise. For

example if one site fails, its database must be recovered to the state it was earlier in. Similarly, if a

communication link fails then two or more sites may be disconnected from each other. In an extreme

case the network may be partitioned into two. Another problem that arises in distributed databases is

distributed commit i.e. if a site wants to commit a transaction that is stored at multiple locations and

some of the participating sites fail. Two-phase commit protocol or three-phase commit protocol may be

used to solve this problem. Two-phase commit (2PC) protocol has two phases: voting phase and

decision phase. In the voting phase, the coordinator asks all the participating sites whether they wish to

commit and in the decision phase, a decision whether to commit or abort all the sites is made. This

protocol suffers from the drawback that if the coordinator fails then all the sites are blocked. Three

phase commit protocol (3PC) is an extension of 2PC.This protocol postpones the decision to commit

until a specified number of sites commit the transaction. 3PC has an additional phase of pre-commit in

which even if the coordinator fails, the new coordinator checks if one of the site has the decision of the

old coordinator.

14.3 Distributed Database Architecture

A distributed database may access data from remote or local databases. A Homogeneous

distributed database system may have the same database whereas a heterogeneous distributed database

may have different databases on different systems.

A distributed homogeneous database has the same database installed on different computers that

are available on one or more machines. A single application may access different databases simultaneously

in the distributed environment. The location and other details are transparent to the clients connected to the

distributed databases. A single copy of all the database objects may be stored at distributed locations or in

some cases replication of data may be done. The term replication refers to the fact that multiple copies of

the data are maintained and stored at several locations. Replication may be done to ensure availability of

data even if one site fails and thus improves the performance of the database. In such a case the replicated

data remains available in case a site fails.

In a heterogeneous database, at least one of the databases is of different type as opposed to other

sites in the distributed environment. In such cases, a gateway may be required to access databases of

different types.

Some more issues that need to be addressed in a distributed environment include network

authentication so that only valid users can access the network. There may be a global user that can access all

the databases in the distributed environment, or there may be local users accessing the data at local sites. In

case of global users, authentication needs to be done so that it can be checked which databases the user can

access, what are the roles corresponding to the databases and what schema the user can connect to.

14.4 Object Oriented Database Management System

Several database models like hierarchical, network and relational models were suggested.

However due to the increased complexity and the need of flexibility led to the development of Object

oriented data model (OODM) and Object-relational data model (ORDM) (or Extended relational data

model). These models support the concept of object oriented programming. Apart from providing the

capabilities of traditional databases like persistence, concurrency control, recovery, querying, atomicity,

durability etc., Object oriented databases support the properties of Object oriented programming like

encapsulation, inheritance, polymorphism etc. As opposed to relational databases that support simple data

types, Object based models support complex data types.

Object Oriented Database Management System (OODBMS) is designed to manage the Object

oriented database (OODB). Some of the popular OODBMS include Orion, IRIS, Versant and Vbase.

An OODBMS must have several features to support Object oriented design. These features include,

200

support for encapsulation, classes and object. Such classes must also provide inheritance. The Object

identity indicates the existence of the object. An object may show its identity as:

• Intra-procedure. The object exists in a particular procedure only

• Intra-program. Such an object exits throughout the program

• Inter-program. Such an object is accessible across several programs

• Persistent. These object persist even after the completion of the program

Object Data Management Group (ODMG) was a consortium developed for object oriented

DBMSs. This standard provides the object model, Object Definition Language (ODL) and Object Query

Language (OQL). This standard was designed to provide portable applications that could store objects in

any database management system. The Object Definition Language designed in a manner similar to the

Data definition Language of RDBMs is independent of any kind of programming language. Object Query

Language is the query language defined for ODMG binding with programming languages like SmallTalk,

Java and C++.

14.5 Client Server Systems

Apart from the general requirements of a computer system like the network software and the

operating system, a client server system also has following components:

• Client, the resource user and

• Server, the resource and service provider

The applications are deployed on the client whereas the database management system resides on

the server. The applications residing on the client make requests for services while the database on the

server processes those requests and sends the results back to the client. The client server system can be

scaled horizontally by adding or removing clients or vertically by migrating to a larger and faster server

machines. Sometimes more than one server may be added to the architecture.

A Client server system consists of clients that are intelligent workstations through which the user

can interact with the system, the server processing the requests, the communication networks connecting

the clients and the server and several applications interacting with the clients and the server. The general

architecture of the client server system is shown in Figure 14.5. Often, but not always several clients may

be connected to a single server.

Figure 14.5 : Client Server System

Database Server

Clint
Clint

Database Database Database

201

The clients have their own operating system and run one or more applications using the client

machine’s CPU, memory etc. The application communicates with the database system residing on the

server using the database driver which acts as the middleware to establish a connection with the DBMS

over the network.

The server machines are characterized by the database management system. These systems also

have a listening daemon that accepts connections from the clients. Apart from the client and the server, the

middleware plays an important role. The middleware is a small portion of software that sits between the

client and the server, establishes the connection and sends requests and responses between the two. Such

kind of architecture is described as two-tier architecture.

Sometimes, an application server is added to the client-server architecture to make it

three-tier architecture. Some of the advantages of such architecture include scalability, flexibility,

reduced cost, improved services to the clients and competitive advantage. The middleware may interact

through Remote Procedure Calls (RPC) or Message oriented middleware (MOM). Several commonly

used client-server middleware include application program interface (API), Open database connectivity

(ODBC), java database connectivity (JDBC), common object request broker architecture (CORBA)

and Distributed Component Object Model (DCOM). Remote procedure calls provide a transparent

mechanism such that a client communicates as if it is directly communicating with the server. Whereas

message oriented middleware allows many to many communication via message queues as shown in

Figure 14.6.

Figure 14.6: Message Oriented Middleware

Different types of software tools that are included in the development of client-server database

systems include client builders used to develop the clients, database programming and administration tools

that are used to develop and maintain the database and CASE/data modeling tools that help in the design

and implementation of the database.

Like any other system, client server system also has its own advantages and drawbacks. Some of

the advantages of the client server system include:

• Increased modularity

• Simple to implement

• Economy of communication

• In most of the cases it is hardware and software independent

• Improved functionality and efficiency

• Improved performance

202

• Due to the maintenance of the database on the server, it is more robust

The disadvantages of such a system are as follows:

• Difficult failure detection due to increased modularity

• Security issues may arise with the increase in the number of clients

• Network traffic may cause problems when the number of clients is large

Some of the commonly used database management systems like Oracle Server, Oracle

Developer, Sybase Adaptive Server RDBMS utilize the functionality of client server systems.

14.6 Failure and Recovery

The database may fail due to several reasons. And the failure may affect part of the database or the

entire database. This results into a short-term or long-term loss to the valuable information. Some of the

common types of failure that may affect the database system include:

• Hardware failures including memory errors, disk crashes, bad disk sectors, system crash

etc.

• Software failures that include failure of the software that may the failure of system software

or application software

• System crashes are due to hardware or software problems and the entire system may stop

functioning altogether. In client server architecture, failure of a single client may affect only

the system concerned whereas failure of the server may affect the processing of all the

systems connected to the server.

• Network failures may affect the network resulting into loss of communication between the

database and the systems connected to the network.

• Application software errors cause logical errors in the application software

• Natural disasters such as flood, fire, earthquake may affect the functioning of the entire

system or even the entire network

• Deliberate attacks include failures due to intentional corruption of the data, software or

hardware of the system. Such attacks may be made to intentionally cause damage to the

system.

• Media failure such as damage to the primary or secondary storage may cause loss of data.

Some types of failures are easy to fix and take less time to recover. One of the important aspects

of failure and recovery is maintenance of backup. Depending upon the type of failure, the type and

frequency of backups may vary. Frequent backups may be required when database changes are frequent

such as addition and deletion of tables, insertions and deletions of rows or columns in existing tables and

frequent updates are done to the database.

Recovery algorithms are techniques to ensure transaction atomicity and durability despite failures.

A recovery algorithm is used, that ensures atomicity by undoing the actions of transactions that do not

commit and durability by making sure that all actions of committed transactions survive even if failures

occur. Such an algorithm takes the database back to the most recent consistent state that was available

before the failure. In order to restore the database to the consistent state, the current state may be

reconstructed by applying the changes again or any changes made to the database may be reversed so

that the state of the database is maintined. The system log or trail or journal is a useful tool that maintains

the information about the changes that were made to the database. The basic unit of recovery of the

database is a transaction. It should be ensured that either all the changes are made to the database or none

are made. Two types of transaction recovery are as follows :

• Forward Recovery or REDO

203

• Backward Recovery or UNDO

Forward recovery or roll-forward is a technique in which the intermediate results of the

transactions are stored in the buffers in the main memory. From the main memory, this data may be

transferred to the secondary storage whenever required.

Two of the commonly used techniques for recovery techniques include log-based recovery and

shadow paging.

The recovery techniques are as discussed below :

1. Deferred Update Techniques :

This technique defers the update to the database until the transaction commits. Till the commit, all

the updates are stored in buffers or the local transaction workspace. These updates are recorded in the log

and then written to the database. In case the transaction fails before commit, no UNDO is required as the

changes have not been saved to the database. But in case of a crash, it may be essential to REDO the

committed transactions from the log in order to record their effects on the database. This technique is also

known as NO-UNDO/REDO algorithm.

2. Immediate Update Techniques :

Before committing, the database may be updated by some operations. In order to perform

recovery, the changes must be written to the log. If a transaction fails before commit, it must be rolled

back to the consistent state by performing UNDO on the database. Also it may be required to REDO

some of the transactions. This technique is also known as UNDO/REDO algorithm. A variation of the

algorithm requires only REDO and is known as UNDO/ NO-REDO algorithm.

Database recovery restores the database to the most consistent state that existed before the

failure. The consistent state is achieved by either completing all the transactions or aborting the

transactions that cannot be completed. Maintaining a database backup is essential for recovery of the

database. This backup can be achieved on secondary storage devices such as CDs, tapes etc. Also,

backup may be local or situated at a remote place. The level of backup required may also vary from one

scenario to another. Full system backup may be required to maintain a copy of the entire system database.

But due to the cost involved in the entire system backup, differential backup, differential backup may be

done that maintains a copy of only some part of the database.

Forward Recovery (REDO) :

The database recovery is achieved by flushing the data to the database buffers. This data is further

transferred from the buffers to the secondary storage. The update operation becomes permanent only

when this data is transferred to the secondary storage. The failure may occur before writing the updates to

the database or after the COMMIT operation. If the transaction has already committed, the redo

operation writes the transaction updates to the database. This operation is called forward recovery or

REDO or roll forward.

Backward Recovery (UNDO) :

This type of recovery occurs when an error occurs in between the normal operation of the

database. Such recovery is called Backward Recovery, REDO or roll-backward. For instance

backward recovery may be required on abnormal termination of the program or due to some

wrongly entered value. Such a recovery is essential to maintain the atomicity of the transactions.

The transaction is started from the current state and is traversed in the backward direction. During

the traversal the changes made to the database are undone.

14.6.1 Shadow Paging :

An alternative to log-based recoveries is shadow paging. It was introduced in 1977 by Lorie. In

this technique, the database is considered to be made up of logical units of storage of fixed size blocks or

pages. The virtual or logical blocks are mapped onto the physical blocks of same size. This mapping is

204

done with the help of a page table. To page tables are maintained, the current page table and shadow page

table. During the initial stages both the page tables are the same and point to the same blocks of physical

storage.

14.7 Summary

Database Administration is the function of manging and maintaining database management

system (DBMS) software.

Client/Server Computing is the logical extension of modular programming. Modular programming

has as its fundamental assumption that sepration of a large piece of software into its constituent parts creats

the possibility for easier development and better maintainbility.

Distributed computing system consists of a number of processing elements, not necessarily

homogeneous that are interconnected by a computer network, and that cooprate in performaing certain

assigned task.

14.8 Self Assessment Questions

1. How client/server databases are different from distributed databases?

2. Explain the working of CASE tools with the help of example.

3. What do you understand by repositories explain?

4. Explain the different types of failures of databases with the help of example.

5. Discuss the concept of databases security by giving example of any practical database.

´ ´ ´

205

Structure of the Unit

15.0 Objective

15.1 Introduction

15.2 Spatial Database

15.3 Temporal Database

15.3.1 Temporal Database Introduction

15.3.2 Different Forms of Temporal Database

15.4 Knowledge Database

15.5 Data Warehouse

15.5.1 Goals of Data Warehousing

15.5.2 Characteristics of Data in Data Warehouse

15.5.3 Data Warehouse Architectures

15.5.3.1 Data Mart

15.5.3.2. Meta data

15.5.4 Data Warehouse Design

15.5.5 Classification of Data Warehouse Design

15.5.5.1 Logical Design

15.5.5.2 Physical Design

15.5.6 The User Interface

15.5.6.1 Traditional Query and Reporting Tools

15.5.6.2 OLAP Tools

15.5.6.3 Data-Mining Tools

15.5.6.4 Data-Visualization Tools

15.6 Difference Between Database and Data Warehouse

15.7 Summary

15.8 Self Assessment Questions

15.0 Objective

At the end of this unit, you should be able to -

• Describe the concept of spatial and temporal databases

• Describe the concept of knowlege database

• Describe the data warehouse

• Describe the difference between database and data warehouse

15.1 Introduction

Databases function in many applications, spanning virtually the entire range of computer software.

Databases have become the prefrred method of storage for large multi-user applications, where coordination

between many users is needed. Even individual users find the them convenient, and many electronic mail

programs and personal organizes are based on standard databases technology. Software database drivers

Unit - 15 : Emerging Trends in Database Management System - II

206

are available for most database platforms so that applications software can use a common API to retrieve

the information stored in a database.

15.2 Spatial Database

Modern applications are both data and computationally intensive and require storage and

manipulation of voluminous traditional (alphanumeric) and nontraditional (images, text, geometric objects,

etc.). Examples of such application domains are Geographical Information Systems (GIS), Multimedia

Information Systems, CAD/CAM applications, Medical Information Systems. Spatial database

management systems store data like points, lines, regions, volumes, and aim at supporting queries that

involve the space characteristics of these data. In order to handle such queries, special techniques and

tools enhance a spatial database system. These include new data types and models, sophisticated data

structures and algorithms for eûcient query processing that diûer from their counterparts in a conservative

alphanumeric database. When a spatial database is enhanced by temporal characteristics we get

spatiotemporal database system. In such a system, the time of insertions, deletions, and updates is of

great importance, since it must be able to store and manipulate the evolution of spatial objects. Spatial

database systems are database systems for the management of spatial data.

Spatial data are point objects or spatially extended objects in a 2D or 3D space or in some

high-dimensional vector space. Knowledge discovery becomes more and more important in spatial

databases since increasingly large amounts of data obtained from satellite images, X-ray crystallography

or other automatic equipment are stored in spatial databases.

In various ûelds there is a need to manage geometric, geographic, or spatial data, which means

data related to space. The space of interest can be, for example, the 2D abstraction of (parts of) the

surface of the earth that is, geographic space, the most prominent example like the layout of a VLSI

design, a volume containing a model of the human brain, or another 3D space representing the arrangement

of chains of protein molecules. At least since the advent of relational database systems there have been

attempts to manage such data in database systems. Characteristic for the technology emerging to address

these needs is the capability to deal with large collections of relatively simple geometric objects, for example,

a set of 100,000 polygons. This is somewhat diûerent from areas like CAD databases (solid modeling,

etc.) where geometric entities are composed hierarchically into complex structures, although the issues are

certainly related.

A spatial database system is a database system which oûers SDTs in its data model and query

language. It supports SDTs in its implementation, providing at least spatial indexing and eûcient algorithms

for spatial join.

15.3 Temporal Database

Temporal database stores data relating to time instances. It offers temporal data types and stores

information relating to past, present, and future time, for example, the history of the stock market or the

movement of employees within an organization. Thus, a temporal database stores a collection of time

related data.

15.3.1 Temporal Database Introduction : A temporal database is formed by compiling, storing temporal

data. The difference between temporal data and non-temporal data is that a time-period is appended to

data expressing when it was valid or stored in the database. The data stored by conventional databases

consider data valid at present time as in the time instance “now.” When data in such a database is modified,

removed, or inserted, the state of the database is overwritten to form a new state. The state prior to any

changes to the database is no longer available. Thus, by associate time with data, it is possible to store the

different database states. In essence, temporal data is formed by time-stamping ordinary data (type of

data we associate and store in conventional databases). In a relational data model, tuples are

time-stamped and in an object-oriented data model, objects/attributes are time stamped. Each ordinary

data has two time values attached to it, a start time, and an end time to establish the time interval of the

207

data. In a relational data model, relations are extended to have two additional attributes, one for start time

and another for end time.

15.3.2 Different Forms of Temporal Databases: Time can be interpreted as valid time (when data

occurred or is true in reality) or transaction time (when data was entered into the database). A historical

database stores data with respect to valid time. A rollback database stores data with respect to transaction

time. A bitemporal database stores data with respect to both valid and transaction time – they store the

history of data with respect to valid time and transaction time.

15.4 Knowledge Database

The concepts of Knowledge Base Management System (KBMS) and the Knowledge Warehouse

(KW) are analogues of Database Management System (DBMS) and Data Warehouse. To arrive at a

standard practice on the KBMS, and a standard definition of the Knowledge Warehouse, it’s reasonable

to begin with “straw man” definitions of both these concepts, next develop a general concept of This paper

is a working paper, or “straw man,” circulated for purposes of collaboration within the Knowledge

Management Consortium International’s (KMCI) Artificial Knowledge Management Systems Committee

(AKMSC). It is intended that this paper be used by the Committee, along with contributions of other

committee members to arrive at a collaborative.

Standard Recommended Practice on Artificial Knowledge Base Management Systems, a product

of the Committee and the KMCI.2 what a standard practice might encompass, and then subject these

products to vigorous criticism and analysis by the AKMSC. To produce this straw man is the purpose of

this paper. I will proceed by considering some basic distinctions among data, information, and knowledge,

then discuss DBMSs, the DW, DW evolution, and Data Warehousing as a process, and then move from

there to develop the analogous concepts in the knowledge and knowledge management sphere.

15.5 Data Warehouse

A Data Warehouse (DW) is a database that stores information oriented to satisfy decision-making

requests. It is a database with some particular features concerning the data it contains and its utilization. A

very frequent problem in enterprises is the impossibility for accessing to corporate, complete, and integrated

information of the enterprise that can satisfy decision-making requests. A paradox occurs: data exists but

information cannot be obtained. In general, a DW is constructed with the goal of storing and providing all

the relevant information that is generated along the diûerent databases of an enterprise. A data warehouse

helps turn data into information. In today’s business world, data warehouses are increasingly being used to

make strategic business decisions.

15.5.1 Goals of Data Warehousing :

Data warehousing technology comprises a set of new concepts and tools, which support the

knowledge worker like executive, manager, and analyst with information material for decision making.

The fundamental reason for building a data warehouse is to improve the quality of information in the

organization. The key issues are the provision of access to a company-wide view of data whenever it

resides. Data coming from internal and external sources, existing in a variety of forms form traditional

structural data to unstructured data like text ûles or multimedia is cleaned and integrated into a single

repository. A data warehouse is the consistent store of this data which is made available to end users in

a way they can understand and use in a business context. The need for data warehousing originated in

the mid-to-late 1980s with the fundamental recognition that information systems must be distinguished

into operational and informational systems. Operational systems support the day-to-day conduct of the

business, and are optimized for fast response time of predeûned transactions, with a focus on update

208

transactions. Operational data are a current and real-time representation of the business state. In contrast,

informational systems are used to manage and control the business. They support the analysis of data

for decision making about how the enterprise will operate now and in the future. They are designed

mainly for ad hoc, complex, and mostly read-only queries over data obtained from a variety of sources.

Information data are historical, i.e., they represent a stable view of the business over a period of time.

Limitations of current technology to bring together information from many disparate systems hinder the

development of informational systems. Data warehousing technology aims at providing a solution for

these problems.

15.5.2 Characteristics of Data in Data Warehouse :

Data in the Data Warehouse is integrated from various, heterogeneous operational systems like

database systems, ûat ûles, etc. Before the integration, structural and semantic diûerences have to be

reconciled, i.e., data have to be “homogenized” according to a uniform data model. Furthermore, data

values from operational systems have to be cleaned in order to get correct data into the data warehouse.

Since a data warehouse is used for decision making, it is important that the data in the warehouse be

correct. However, large volumes of data from multiple sources are involved; there is a high probability of

errors and anomalies in the data. Therefore, tools that help to detect data anomalies and correct them can

have a high payoû. Some examples where data cleaning becomes necessary are: inconsistent ûeld lengths,

inconsistent descriptions, inconsistent value assignments, missing entries, and violation of integrity constraints.

The need to access historical data are one of the primary incentives for adopting the data warehouse

approach. Historical data are necessary for business trend analysis which can be expressed in terms of

understanding the diûerences between several views of the real-time data. Maintaining historical data

means that periodical snapshots of the corresponding operational data are propagated and stored in the

warehouse without overriding previous warehouse states. However, the potential volume of historical data

and the associated storage costs must always be considered in relation to their business beneûts.

Data warehouse contains usually additional data, not explicitly stored in the operational sources,

but derived through some process from operational data. For example, operational sales data could be

stored in several aggregation levels in the warehouse.

15.5.3 Data Warehouse Architectures :

Data warehouses and their architectures vary depending upon the speciûcs of an organization’s

situation. Three common data warehouse architectures which are discussed in this section are:

Basic Data Warehouse Architecture

(a) Data Warehouse Architecture with a Staging Area

(b) Data Warehouse Architecture with a Staging Area and Data Marts

(c) Basic Data Warehouse Architecture

Data warehouses contain consolidated data from many sources, augmented with summary

information and covering a long time period. Warehouses are much larger than other kinds of databases;

sizes ranging from several gigabytes to terabytes are common. Typical workloads involve ad hoc, fairly

complex queries and fast response times are important. These characteristics differentiate warehouse

applications from OLTP applications, and different DBMS design and implementation techniques must be

used to achieve satisfactory results. A distributed DBMS with good scalability and high availability (achieved

by storing tables redundantly at more than one site) is required for very large warehouses.

209

Figure 1. A Typical Data Warehousing Architecture

A typical data warehousing architecture is illustrated in Figure 1. An organization’s daily operations

access and modify operational databases. Data from these operational databases and other external sources

(e.g., customer profiles supplied by external consultants) are extracted by using gateways, or standard

external interfaces supported by the underlying DBMSs. A gateway is an application program interface

that allows client programs to generate SQL statements to be executed at a server. Standards such as

Open Database Connectivity (ODBC) and Open Linking and Embedding for Databases (OLE-DB) from

Microsoft and Java Database Connectivity (JDBC) are emerging for gateways.

15.5.3.1 Data Mart

 Data marts are complete logical subsets of the complete data warehouse. Data marts should be

consistent in their data representation in order to assure Data Warehouse robustness. A data mart is a set

of tables that focus on a single task. This may be for a department, such as production or maintenance

department, or a single task such as handling customer products.

15.5.3.2 Meta Data

 In general metadata are deûned as “data about data” or “data describing the meaning of

data.” In data warehousing, there are various types of metadata. For example information about the

operational sources, the structure and semantics of the data warehouse data, the tasks performed during

the construction, maintenance and access of a data ware house, etc. A data warehouse without adequate

metadata are like “a ûling cabinet stuûed with papers, but without any folders or labels.” The quality of

metadata and the resulting quality of information gained using a data warehouse solution are tightly

linked. In a data warehouse metadata are categorized into Business and Technical metadata. Business

metadata describes what is in the ware house, its meaning in business terms. The business metadata lies

above technical metadata, adding some more details to the extracted material. This type of metadata

are important as it facilitates business users and increases the accessibility. In contrast, technical metadata

describes the data elements as they exist in the ware house. This type of metadata are used for data

modeling initially, and once the warehouse is erected this metadata are frequently used by warehouse

administrator and software tools.

Implementing a concrete Data Warehouse architecture is a complex task comprising of two major

phases. In the conûguration phase, a conceptual view of the ware house is ûrst speciûed according to user

requirements which are often termed as data warehouse design. Then the involved data sources and the

way data will be extracted and loaded into the warehouse is determined. Finally, decisions about persistent

storage of the warehouse using database technology and the various ways data will be accessed during

analysis are made.

EXTRACT

CLEAN

TRANSFORM

LOAD

REFRESH

Metadata Repository

Visualization

Data Warehouse

SERVES
OLAP

Operational Databases Data Mining

External Data Sources

210

15.5.4 Data Warehouse Design :

Data warehouse design methods consider the read-oriented character of warehouse data and

enables the eûcient query processing over huge amounts of data. The core requirements and principles that

guide the design of data warehouses are summarized later:

Data Warehouses Should be Organized Around Subject Areas :

Subject areas are similar to the concept of functional areas like sales, project management,

employees, etc. Each subject areas are associated with a conceptual schema and these can be represented

using one or more entities in the ER data model or by one or more object classes in the object oriented

data model. For example: In company database the relations like employee, sales, and project management

are represented as entities in ER data model or object classes in object oriented data model.

Data Warehouses Should have some Integration Capability :

A common database should be designed and used so that all the diûerent individual

representations can be mapped to it. This is particularly useful if the warehouse is implemented as

multidatabase or federated database.

Data should be Nonvolatile and Mass Loaded :

Data in Data Warehouses should be nonvolatile. For this data extraction from current database

to DW requires that a decision should be made whether to extract the data using standard relational

database techniques at the row or column level or specialized techniques for mass extraction. Data

cleaning techniques are required to maintain data quality, similarly data migration, data scrubbing, and

data auditing. Refresh techniques propagate updates on the source data to base data and derived data

in the DW. The decision of when and how to refresh is made by the DW administrator and depends on

user needs (e.g., OLAP needs) and existing traûc to the DW.

Data Tends to Exist at Multiple Levels of Dimensions :

Data can be deûned not only by time frame but also by geographic region; type of product

manufactured or sold type of store and so on. The complete size of the databases is a major problem in the

design and implementation of data warehouses, especially for certain queries and updates and sequential

backups. This decides whether to select relational databases or multidimensional database for the

implementation of a data warehouse.

Data Warehouse Should be Flexible Enough to Meet Changing Requirements Rapidly :

Insertion, updating, and retrieval of data should be very eûcient and ûexible to achieve good and

eûcient decision.

Data Warehouse Should have a Capability for Rewriting History, that is, Allowing for “what-if”

Analysis :

Data Warehouse should allow the administrator to update historical data temporarily for the

purpose of “what-if” analysis. Once the analysis is completed, the data must be correctly rolled back.

This assumes that the data must be at the proper dimension in the ûrst place.

Good DW User Interface Should be Selected :

The interface should be very user friendly for eûcient use of DW. The leading choices of today are SQL.

Data Should be Either Centralized or Distributed Physically :

The DWshould have the capability to handle distributed data over a network. This requirement

will become more critical as the use of DWs grows and sources of data expand.

15.5.5 Classification of Data Warehouse Design :

The data warehouse design can be broadly classiûed into two categories

(1) Logical design and (2) Physical design.

211

15.5.5.1 Logical Design :

 The logical design is more conceptual and abstract than physical design. In the logical design,

the emphasis is on the logical relationship among the objects. One technique that can be used to model

organization’s logical information requirements is entity-relationship modeling. Entity-relationship modeling

involves identifying the things of importance (entities), the properties of these things (attributes), and

how they are related to one another (relationships). The process of logical design involves arranging

data into a series of logical relationships called entities and attributes. An entity represents a chunk of

information. In relational databases, an entity often maps to table. An attribute is a component of an

entity that helps deûne the uniqueness of the entity. In relational databases, an attribute maps to a

column. Whereas entity-relationship diagramming has traditionally been associated with highly normalized

models such as OLTP applications, the technique is still useful for data warehouse design in the form of

dimensional modeling.

In dimensional modeling, instead of seeking to discover atomic units of information and all the

relationship between them, the focus is on identifying which information belongs to a central fact table and

which information belongs to its associated dimension tables. In a nutshell, the logical design should result

in (a) a set of entities and attributes corresponding to fact tables and dimension tables and (b) a model of

operational data from the source into subject-oriented information in target data warehouse schema. Some

of the logical warehouse design tools from Oracle are Oracle Warehouse Builder, Oracle Designer, which

is a general purpose modeling tool.

Data Warehousing Schemas :

A schema is a collection of database objects, including tables, views, indexes, and synonyms. The

arrangement of schema objects in the schema models

Figure 2. Star Schema

designed for data ware house can be done in a variety of ways. Most data warehouses use a dimensional

model.

Star Schema :

The star schema is the simplest data warehouse schema. It is called a star schema because the

diagram resembles a star, with points radiating from the center. The center of the star consists of one or

more fact tables and the points of the star are the dimension tables as illustrated in Figure2. A star schema

optimizes performance by keeping queries simple and providing fast response time. All the information

about each level is stored in one row. The most natural way to model a data warehouse is star schema,

only one join establishes the relationship between the fact table and any one of the dimension tables.

212

Another schema that is sometimes useful is the snowûake schema, which is a star schema with normalized

dimensions in a tree structure.

Data Warehouse Objects :

Fact and dimension tables are the two types of objects commonly used in the dimensional data

warehouse schemas. Fact tables are the large tables in warehouse schema that store business measurements.

Fact tables typically contain facts and foreign keys to the dimension tables. Fact tables represent data,

usually numeric and additive that can be analyzed and examined. Dimension tables, also known as lookup

or reference tables; contain the relatively static data in the warehouse. Dimension tables stores the information

that is normally used to contain queries. Dimension tables are usually textual and descriptive.

Fact Tables :

A fact table typically has two types of columns: those that contain numeric facts and those that are

foreign keys to dimension tables. A fact table contains either detail-level facts or facts that have been

aggregated. Fact tables that contain aggregated facts are often called summary tables. A fact table usually

contains facts with the same level of aggregation. Though most facts are additive, they can also be

semiadditive or nonadditive. Additive facts can be aggregated by simple arithmetical addition. Semiadditive

facts can be aggregated along some of the dimensions and not along others.

Dimension Tables :

A dimension is a structure, often composed of one or more hierarchies, that categorizes data.

Dimensional attributes help to describe the dimensional value. They are commonly descriptive, textual

values. Several distinct dimensions, combined with facts, enable one to answer business questions.

Dimensional data are typically collected at the lowest level of detail and then aggregated into higher level

totals that are more useful for analysts. These natural rollups or aggregations within a dimension table are

called hierarchies.

Hierarchies :

Hierarchies are logical structures that use ordered levels as a means of organizing data. A hierarchy

can be used to deûne data aggregation. For example, in a time dimension, a hierarchy might aggregate data

from the month level to the quarter level to the year level. A hierarchy can also be used to deûne a

navigational drill path and to establish a family structure. Within a hierarchy, each level is logically connected

to the levels above and below it. Data values at lower levels aggregate into the data values at higher levels.

A dimension can be composed of more than one hierarchy.

Hierarchies impose a family structure on dimension values. For a particular level value, a value at the next

higher level is its parent, and values at the next lower level are its children. These familial relationships

enable analysts to access data quickly.

15.5.5.2 Physical Design

 During the physical design process the data gathered during the logical design phase is converted

into a description of the physical database structure. Physical design decisions are mainly driven by query

performance and database maintenance aspects. Figure3. oûers a graphical way of looking at the diûerent

ways of logical and physical designs.

Physical Design Structures :

Some of the physical design structures that are going to be discussed in this section include (a)

Table spaces (b) Tables and Partitioned Tables (c) Views (d) Integrity Constraints, and (e) Dimensions

Table Spaces :

A table space consists of one or more data ûles, which are physical structures within the operating

system. A data ûle is associated with only one table space. From the design perspective, table spaces are

containers for physical design structures. Table spaces need to be separated by diûerences. For example,

213

tables should be separated from their indexes and small tables should be separated from large tables.

Table spaces should also represent logical business units.

Tables and Partitioned Tables :

Tables are the basic unit of data storage. They are the container for the expected amount of raw

data in the data warehouse. Using partitioned tables instead of nonpartitioned ones addresses the key

problem of supporting very large data volumes by allowing you to decompose them into smaller and

more manageable pieces. The main design criterion for partitioning is manageability.

Data Segment Compression :

Disk space can be saved by compressing heap-organized tables. A typical type of heap-organized

table that one should consider for data segment compression is partitioned tables. Data segment

compression can also speed up query execution. There is, however, a cost in CPU overhead. Data

segment compression should be used with highly redundant data, such as tables with many foreign keys.

Views :

A view is a tailored presentation of the data contained in one or more tables or other views. A view

takes the output of a query and treats it as a table. Views do not require any space in the database.

Integrity Constraints :

Integrity constraints are used to enforce business rules associated with the database and to

prevent having invalid information in the tables. Integrity constraints in data warehousing diûer from

constraints in OLTP environments. In OLTP environments, they primarily prevent the insertion of

invalid data into a record, which is not a big problem in data warehousing environments because

accuracy has already been guaranteed. In data warehousing environments, constraints are only used

for query rewrite. NOT NULL constraints are particularly common in data warehouses. Under some

speciûc circumstances, constraints need space in the database. These constraints are in the form of

the underlying unique index.

Indexes and Partitioned Indexes :

Indexes are optional structures associated with tables or clusters. In addition to the classical

B-tree indexes, bitmap indexes are very common in data warehousing environments. Bitmap indexes

are optimized index structures for set-oriented operations. Additionally, they are necessary for some

optimized data access methods such as star transformations.

Figure 3. Logical and Physical design of data warehouse design

214

Dimensions :

A dimension is a schema object that deûnes hierarchical relationships between columns or

column sets. A hierarchical relationship is a functional dependency from one level of a hierarchy to the

next one. A dimension is a container of logical relationships and does not require any space in the

database. A typical dimension is city, state (or province), region, and country.

15.5.6 The User Interface

In this section, we provide a brief introduction to contemporary interfaces for data warehouses. A

variety of tools are available to query and analyze data stored in data warehouses. These tools can be

classiûed as follows:

a) Traditional query and reporting tools

b) On-line analytical processing, MOLAP, and ROLAP tools

c) Data-mining tools

d) Data-visualization tools

15.5.6.1 Traditional Query and Reporting Tools

 Traditional query and reporting tools include spreadsheets, personal computer databases,

and report writers and generators.

15.5.6.2 Olap Tools

 On-Line Analytical Processing is the use of a set of graphical tools that provides users with

multidimensional views of their data and allows them to analyze the data using simple windowing

techniques. The term on-line analytical processing is intended to contrast with the more traditional

term on-line transaction processing. OLAP is a general term for several categories of data warehouse

and data mart access tools. Relational OLAP (ROLAP) tools use variations of SQL and view the

database as a traditional relational database, in either a star schema or other normalized or denormalized

set of tables. ROLAP tools access the data warehouse or data mart directly. Multidimensional OLAP

(MOLAP) loads data into an intermediate structure usually a three or higher dimensional array.

15.5.6.3 Data-Mining Tools

Data mining is knowledge discovery using a sophisticated blend of techniques from traditional

statistics, artiûcial intelligence, and computer graphics. As the amount of data in data warehouses is

growing exponentially, the users require automated techniques provided by data-mining tools to mine

the knowledge in these data.

15.5.6.4 Data Visualization Tools

Data-visualization is the representation of data in graphical and multimedia formats for human

analysis. Beneûts of data visualization include the ability to better observe trends and patterns, and to

identify correlations and clusters.

15.6 Difference Between Database and Data Warehouse

A Computer Database is a structured collection of records or data that is stored in a computer

system. The structure is achieved by organizing the data according to a database model. The model in

most common use today is the relational model. Other models such as the hierarchical model and the

network model use a more explicit representation of relationships (see below for explanation of the various

database models). A computer database relies upon software to organize the storage of data. This software

is known as a database management system (DBMS). best examples are Mysql, Oracle etc.

A data warehouse is a repository of an organization’s electronically stored data. Data warehouses

are designed to facilitate reporting and analysis. However, the means to retrieve and analyze data, to

extract, transform and load data, and to manage the data dictionary are also considered essential components

215

of a data warehousing system. Many references to data warehousing use this broader context. Thus, an

expanded definition for data warehousing includes business intelligence tools, tools to extract, transform,

and load data into the repository, and tools to manage and retrieve meta data.

It’s important to note as well that Data Warehouse could be sourced zero to many databases.

15.7 Summary

Developes and administrators define the database in the form of tables. They then create forms

and reports on the application server. Users run the application and enter data or make choices.

15.8 Self Assessment Questions

1. What do you understand by spatial database? Explain.

2. What is data warehouse? Explain.

3. Explain the classification of Data warehouse Design.

4. What do you understand by user interface? Explain.

Data Warehouse

Used for Online Analytical Processing

(OLAP). This reads the historical data for

the Users for business decisions.

The Tables and joins are simple since they

are de-normalized. This is done to reduce

the response time for analytical queries

Data-Modeling techniques are used for the

Data Warehouse design

Optimized for read operations

High performance for analytical queries, is

usually a Database

Database

Used for Online Transactional Processing

(OLTP) but can be used for other purposes

such as Data Warehousing. This records the

data from the user for history.

The tables and joins are complex since they

are normalized (for RDMS). This is done to

reduce redundant data and to save storage

space

Entity - Relational modeling techniques are

used for RDMS database design

Optimized for write operation

Performace is low for analysis queries

