" Course Development Commitee
Chairman
Prof. (Dr.) Naresh Dadhich

Vice-Chancellor
Vardhaman Mahaveer Open University, Kota

Co-ordinator/Convener and Members

Convernor/Coordinator Member Secretary/Coordinator
Prof. (Dr.) D.S. Chauhan Sh. Rakesh Sharma
Depariment of Mathematics Assistant Professor (Computer Application)
University of Rajasthan, Jaipur V.M. Open University, Kota
Members '
1. Prof. (Dr.) D.S. Chauhan 2. Prof. (Dr.) M.C. Govil
Department of Mathematics Govt. Engineering College, Ajmer
University of Rajasthan, Jaipur e ' '
3. Prof. (Dr.) A K. Nagawat 4. Dr. (Mrs.) Madhavi Sinha
University of Rajasthan, Jaipur BITS, Jaipur

Editing and Course Writing

Editor Writers
Dr. Vijay Singh Rathore 1. Sh. Ashish Swami 2. Dr. Leena Bhatia
Director Shree Karni College, Subodh P.G.. College : Subodh P.G.. College
Jaipur Jaipur ' _ Jaipur
3. Ms. Manisha Sharma 4. Sh. Sanjeev Sharma
AIM & ACT Agra University, Agra
Banasthali Uniyersity, Jaipur :
5. Mrs. Poonam Kshatriya.
AIM & ACT

Banasthali University, Jaipur

Academic and Administrative Management

Prof. (Dr.) Naresh Dadhich Prof. (Dr.) M.K. Ghadoliya Mr. Yogendra Goyal
" Vice-Chancellor : Director (Academic) ' Incharge :
Vardhaman Mahaveer Open University, Vardhaman Mahaveer Open University M.P.&D.
Kota Kota .

Course Material Production

Mr. Yogendra Goyal
Assistant Production Officer
Vardhaman Mahaveer Open University
Kota

Production : Feb. 2011, ISBN No. : 13/978-81-8496-265-9

All rights reserved. No part of this book may be reproduced in any form by mimeograph or any other
means, without permission in writing from the V.M. Open University, Kota.

Printed and published on behalf of Registrar V. M. Open University, Kota.

Printed By : Kanchan Offset Printers, Kota. Qty. 500 Books

BCA-08 06

Programming in C

Unit Number ~ Units | Page Number
Unit 1 : Introducton te programming Language . 1-15
Unit 2 | - | ‘Data Types and Keywords 16 - 28
Unit3 - Input and Output 29 -36
Unit4 Decision Making & Conditions | 37-51
Unit 5 Looping 52 - 60
U.nité'll ' Arrays . ' 61 -173
_Unit 7 | Introduction to Functions 74 - 85
Unit 8 B Structures & Unions 86 - 100.
Unit9 . Pointers | 101 - 114
Unit 10 " C Preprocessor 115-137
Unit 11 FileHandling . 138 - 168

Unit 12 ' Additional features of C _ 169-194

Unit 1 : Introduction

1.1 Introduction
1.2 LowLevel Language
| 1.2.1 First Generation

1.2.2 Second Generation
1.2.3 Examplesof Low Level Lunguage

1.3 MiddleLevel Language

14 HighLevel Language

15 Alodtm
1.5.]1 ExpressingAlgorithms
1.5.2 Computer Algorithms -
1.5.3 Implementation

1.6 Flowchart
i.6.1 History
1.6:2 Flowchart Buildiqg Blocks
1.6.3 Types of Flowchart

Aﬁer completing this chapter 'you will be able to understand the following:
1. Introduction '
2. LowLevel Programming Language

Middle Level Pro gramming Language

High Level Programming Language

Algdlithm

Flowcharts

1.1 Introduction)

S o s W

The first large computers, such as the ENIAC, incorporated logic that was part of the circuitry;
therefore, they could anly be “programmed” to a small extent by chaniging wiring, These were followed by
programmable computers with von Neumann architecture. Instructions were independent of the circuitry.
Early programs were entirly written in machine language; that is, each instruction gave the central processing
unit (CPU) a specific task to do, typically one such as “move a word from one specified location to
another” or “change a bit in aspecified location fromaltoa 1 unless 1 already.” During the 1940s and the
early 1950s;all-computers were programmed in this kind of machine code. Such programming was a
difficult and tedious task, requiring good knowledge of how the hardware of a computer works. -

The introduction of interpreters was a major bréakthrough. hlfcrpreters translate a program “ﬁttén
in an easter programming language into machine language. Particular locations in the CPU did not have to

(1]

be specified, and commands weré more closely connected to operations. A big disadvantage of such an
interpreter is that it translates the program line by line into machine language, slowing down execution.

_ Acompiler offers a bétter method for translating programming language into machine language. A
compiler translates a whole program into machine language first. When the compiled program is run on the
computer, execution time is shortened since there is no translation step going on. Grace Murray Hopper
. developed one of the first such compilers during the early 1950s.

During World War I, Hopper had been working with Howard Aiken at the Bureau of Ordnance
~ Computation Project at Harvard. Aiken had built the Mark I computer, a huge electromechanical calculator.
" Hopper designed programs for that computer so that it performed complex calculations for.the military. In
- 1945 she and the team at Harvard started developing Mark 11, It was in this computer that a moth, in the
-~ words-of Hopper, “had been beaten to death” by a relay, stopping the computer. The moth ended up
Scotch-taped in their lab logbook, with the note “First actual case of bug being found.” Even then the word
bug denoted something that caused the computer to fail or to produce incorrect caleulations.

Hopper created the first compiler for UNIVAC. Hopper’s compiler turned programs ‘written in
simple English into machine code. Saying that she was going to communicate with a computer in plain
English produced general disbelief. Managers had aceepted that computers understand numbers; but
computers that understand English seemed inconceivable. Although it made the work of programmers
much easier, convincing them to use the compiler was not an easy task. They had gotten used to writing

- machine code. Hopper developed distaste for the phrase “but we’ve always done it that way.”

During the 1950s several experimental and mostly mathematically oriented languages appeared.

The first one that gathered wide success was FORTRAN (FORmula TRANSslator). Developedin 1956, it

underwent several changes and is still used today in technical and scientific applications.

_ Several other languages with different orientations appeared. One of them, COBOL, was developed

in 1959 by Grace Hopper for business applications, BASIC, a programming language developed by the
mathematicians John Kemeny and Thomas Kurtz at Dartmouth University in 1965, was first used
as an educational tool, but became in the late 1970s the most popular language for the personal
cornputer. :

BASIC, and to a lesser degree FORTRAN, was often criticized because of the use of loops and
branches. These produced the inconveniencé that when a program grew to any length, it became more and
more entangled, a phenombnon called spaghetti. A minor change anywhere in the program could have
uncontrollable repercussions in the whole program, requiring tedious searches and rewriting, a process
called debugging. '

Languages that allow structured programming were a solution to the spaghetti problem, ALGOL,

developed by an international committee, and Pascal, written by Niklaus Wirth, are such languages. These
- languages require that the coding be organized in logical groups, making reading and amending programs
much easier. ' '

.1.2 Low Level Language

In computer science, a low-level programming language is a programming language that provides
little or no abstraction from a computer s instruction set architecture. The word “low” refers to the small or
nonexistent amount of abstraction between the language and machine language; because of this, low-level
languages are sometimes described as being “close to the hardware.” -

A low-level language does not need a compiler or interpreter to run; the piocessor for which the
language was written is able to run the code without using either of these.

[2]

By comparison, a high-level programming language isolates the execution semantics of a computer
architecture from the specification of the program, making the process of developing a program simpler
and more understandable. ' -

Low-level programming languages are sometimes divided into two categories: first generation,
and second generation. : .

1.2.1 FKirst Generation

The first-generation programming language, or /GL, is machine code. It is the only language a
microprocessor can process directly without a prévious transformation. Currently, programmers almost
never write programs directly in machine code, because it requires attention to numerous details which .
high-level language would handle automatically, and also requires memorizing or looking up aumerical
codes for every instruction that is used. For this reason, second genetation programming languages provide
one abstraction leve! on top of the machine code. - : :

_ _Examplt_::'A_function in 32-bit x86 machine code to calculate t_be..nth_ Fibonacci number:
8B542408 83FA0077 06380000 0000C383 '
.FAQ27706 B8O]-OOQO 00C353BB 01000600 . -
© B9010000 008D0419 83FAO376078BD9SB
C84AEBF15BC3 -
122 Second generation _

* The second-generation programming language, o 2GL, is assembly language. It is considered a
second-generation language because while it is nota microprocessor’s native language, an assembly language
programmer must still understand the microprocessor s unique architecture (such as its registers and
instructions), These simple instructions are then assembled directly into machine code, The assembly
code can also be abstracted to another layer in-a similar manner as machine code is abstracted into
assembly code. - o R o)

Exarhple: The same Fibonacci number calculator as above, but in x86 assembly langué.ge using
MASM syntax: ' I
fib:
‘mov edx, [espt8]
compedx,0
ja@f
mov eax, ()
ret

@
cempedx,2
@t
moveax, 1 .
ret
@@
- push ebx
mov ebx, 1
mov ecx, 1

[3]

@@:
lea eax, [ebx+ecx]
cmp edx, 3
jbe @f
mov ebx, ecx
mov €cx, eax
dec edx

S jmp@b

- popebx
-ret ..

'1.2.3 Examples of Low Level Language _

The “machine language” and “assenibly langtiage” for cach CPU architecture are the lowest-level
programming languages. S e

The “Forth language” and the “C programming language™ are perhaps the most popular non-
CPU-specific low-level programming languages. They were once considered high-level programming
languages, and certainly they are at a higher level than assembly language, but now they are considered

low-level programming languages when compared to the much higher-level languages available today
(Python, Java, C++, etc). .

Low-level programming languages provide little or no abstraction _ﬁ'é_l_l__l th_eICPU’s_. instruction set
architecture; typically they interact with the hardware divectly. '
1.3 Middle Level Language | : - .

e -Lariguage which supports inline aésembly language programs as well ashigh level lénguage features
is Middle Level Language. Middle Level Langtiage are closely related to machine as well as human being.
It is more user fiendly as compared to previously available low level language. R

o Examjilés of MiddIt_; Level Language aré C, C-++. PHP etc.
1.4 High Level Langunage

A high-level programming language is a programming language with strong abs_traction from
the details of the computer. In comparison to low-level programming languages, it may use natural language
elements, be easier to use, or be more portable across platforms. Such languages hide the details of CPU

‘operations such as memory access models and management of scope.

Starting a development effort at 2 high level of abstraction often leads to shorter development time
since it retains opportunities to specialize the design, e. g. toadapt it to unforeseen insights into the Application
Doinain or to incorporate changing requirements. It is usually harder to generalize a specific design than to
specialize or extend the design, since unanticipated generalization may force the re-exarnination of many
existing relations between the constituents of the system to identify hard-coded design decisions that may
have been invalidated. However see Premature Generalization. :

Working at a high level of abstraction does not necessarily preclude runtime efficiency of the
implementation. Many modern languages (e. g CeePlusPlus, CommonLisp, AdaLanguage)aim to provide
access to low level elements of the implementation while retaining means to develop at a high level of
abstraction. Most language implementations allow to drop out to adifferent language to implement specific
parts of a system at a lower level of abstraction. "

[4]

The termn “High Level Language” was originally used to distinguish things like Fortran Language
* from things like assembly language. Therefore, originally “high level language” very much included Fortran,
Basic, COBOL, PL/L, and a little later, C. e

~ Observing that such languages aré not very high Jevel compared withe.g. Prolog, YACC, Lex,
ML, Haskell, etc, some people started calling the older high level languages “low level languages”, or
qualifying them as “higher level languages”, etc. This is isoften erroneously thoughi to be revisionism but is
the very basis of much of Computer Science, and such terminology while not universally accepted among
all programmers, is at least understood by those with a broad understanding of the relevant foundations of
~ the topic at hand. ' : .

This greater abstraction and hiding of details is generally intended to make the language user-

friendly, as it includes concepts from the problem domain instead of those of the machine used. A high-level
language isolates the execution semantics ofacomputer architecture from the specification of the program,
making the process of developing a program simpler and more understandable with respectto a low-level
' language, The amount of abstraction provided c}eﬁpes how “high-level” aprogramming language is.

The first high—ievel programming language to be designed for a computer was Plankalkl, created
by Konrad Zuse. However, it was not implemented in his time and his original contributions were isolaied
from other developments. ~ - N T
‘Features

The term “high-level language” does not imply that the language is superior to low-level programming
languages—in fact, in terms of the depth of knowledge of how computers work recuired to productively
program in a given language, the inverse may be true. Rather, “high-level language” refersto the higher level
of abstraction from machine language. Rather than dealing with registers, memory addresses and call
stacks, high-level languages deal with variables, arrays, objects, complex arithmetic or boolean expressions,
subroutines and functions, loops, tﬁreads, locks, and other abstract éom’pﬁter science concepts, with a

focus on usability over optimal program efficiency.-Unlike low-level assembly languages, high-level
languageshave few, if any, language elements that translate directly ifito amachine’s native codes. Other
features such as string handling routines; object-oriented language features and file input/output may also
bepresent. - .- - - N
‘Abstraction penalty _

Stereotypically, high-level languages make complex programiming simpler, while low-level langnages
tend to produce more efficient code. Abstraction penaity is the barrier that prevents high-level programming
techniques from being applied in situations where computational resources are limited. High-level
programming features like more generic data structures, iun-time interpretation and intermediate code files
often result in slower execution speed, higher memory consumption and larger binary program size. For
this reason, code which needs to run particularly quickly and efficiently may require the use of a lower-level
language, evenifa higher-level language would make the coding easier.

" However, with the growing complexity of modern microprocessor architectures, well-designed
compilers for high-level languages frequently produce code comparable in efficiency to what most low-
level pfogrammers can produce by hand, and the higher abstraction may allow for more powerful techniques

providing better overall results than their low-level counterparts in particular settings.
Relativé meaning. |

_ The terms high-level and low-level are inherently relative. Some decades ago, the C language,
and similar languages, were most often considered “high-level”, as it supported concepts such as expression
evaluation, parameterised recursive functions, and data types and structures, while assembly language was
considered “low-level”. Many programmers today might refer to C aslow-level, as it lacksalarge runtime-

151

system (no garbage collection etc.), basically supports only scalar operations, and provides direct memory
addressing. It therefore readily blends with assembly language and the machine level of CPUs and
microcontrollers. S -

Also note that assembly language may itself be regarded as a higher level (but often still one-to-one
if used without macros) representation of machine code, as it supports concepts such as constants and
(limited) 'expressions, sometimes even variables, procedures, and data structures. Machine code, in its
turn, is inherently at a slightly higher level than the microcode or micro-operations used internally in many
PrOCESSOTS. : : : - -

Execution models

There are three models Qf_executidn for mOderh_hig{h—igizél languages: .
Interpreted .
' Interpreted languages are read and then executed directly, with no com_p_iléit_ion stage. A program
called an interpreter reads the program liné by line and executes the lines as they are read. '
Compi]éd '_ | _ _' o o . o _

Compiled languages are transformed into an executable form betore running. There are two types
of compilation; '

Machine code generation S _ _ _ .

Some compilers compile source code directly into machine code; This is the original mode of-
. compilation, and languages that are directly and completely transformed to machine-native code n'this

way may be called “truly compiled” languages. LU
o I1_1teﬂhéd_iate mpre'seritat_idhs _ | _ | o _ _ o L

Whena language is compiled to an intermediate representation, that representation can be optimized
or saved for later execution without the need to re-read the source file. Whenthe intermediate representation
is saved it is often represented as byte code. The intermediate representation must then be interpreted or
further compiled to execute it. Virtual machines that execute byte code directly of transform it further into
machine code have blurred the once clear distinction between intermediate representations and truly compiled
languages. ' ' '
Translated S L
A language may be translated into alow-level programming language for whichnative code compilers
are already widely available. The C programming language is a common target for such translators, -
1.5 Algorithm S T

6]

" This is an algorithm that tries to figure out why the lamp doesu’t tirn.on and tries to fix it using the
steps. Flowcharts are often used to represent algorithms graphically, '

. Inmathematics, computer science, and related subjects, an algorithm is an effective method for
solving a problem expressed as a filnite sequence of steps. Algorithms are used for calculation, data
processing, and many other fields. (Inmore advanced or abstract settings, the instructions do not necessarily
constitute a finite sequence, and even not necessarily a sequence; see, e.g., “nondeterministic algorithm”.)

Fach algorithm is a list of well-defined instructions for completing a task. Starting from an initial
state, the instructions describe a computation that proceeds throught a well-defined series of successive
states, eventually terminating in a final ending state, Thetransition from one state to the next is not necessatily
deterministic; some algorithms, known as randomized algorithms, incorporate randomness.

" The adjective “continuous” when applied to the word “algorithm” can mean:

~1).. An algorithm operating on data that represents continuous quantities, even though this datais
represented by discrete approximations — such algorithms are studied in numerical analysis,

or

on an analog computer

~ 2) Analgorithm in the form of a differential equation that operates continuously on the data, running
Algorithms are essential to the way computers process information. Many computer programs
contain algorithms that specify the specific instructions a computer should perform (in a specific order) to
catry out aspecified task, such as calculating employees’ paychecks or printing students’ report cards.
Thus, an algorithm can be considered to be any sequence of operations that can be simulated by a Turing-
~ complete system. ' .
~ Typically, when an algorithm is a.éso'_ci_étéd \ndﬂl'prpceSs_i'ﬁg information, data is read from an input
source, written to an output device, and/or stored for further processing. Stored data is regarded as part of
the intérnal state of the entity performing the algorithm. In practice, the state is stored in one or more data
structures.” - o S : _ :

.- Forsome such compiltational process, the algorithm must be rigorously defined specified in the
way it applies in all possible circumstances that could arise. That is, any ¢onditional steps must be
systematically dealt with, case-by-case; the criteria for each case must be clear (and computable).

" Because an algorithm is a precise list of precise steps, the order of computation will always be
crifical to the functioning of the algorithm. Instructions are usually assumed to be listed explicitly, and are
described as starting “from the top” and going “down to the bottom”, an idea that is described more
formally by flow of control. - :

So far, this discussion of the formalization of an algorithm has assumed the premises of imperative
programming. This is the most common conception, and it attempts to describe a task in discrete,
“mechanical” means. Unique to this conception of formalized algorithms is the assignment operation, sefting
the value of a variable. It derives from the intuition of “memory” as a scratchpad. There is an example
below of such an assignment. o o

1.5.1 Expressing Algorithms

Algorithms can be expressed in many kinds of notation, including natura) languages, pseudocode,
flowcharts, programming languages or control tables (processed by interpreters). Natural language
expressions of algorithms tend to be verbose and ambiguous, and are rarely used for complex or technical
algorithms. Pseudocode, flowcharts and control tables are structured ways to express algorithms that
avoid many of the ambiguities common in natural language statements, while remaining independent of a

(7]

particular implementation language. Programming languages are primarily intended for expressing algorithms
ina form that can be executed by a computer, but are often used as a way to define or document algorithms,

- ‘There is a wide variety of representations possible and one can express a given Turing machine
program as a sequence of machine tables, as flowcharts, or as a form of rudimentary machine code or-
assembly code called “sets of quadruples”. . - . : x S

' Sometimes it is helpful in the description of an algorithm to supplement small “flow charts” (state
diagrams) with natwal-language and/or arithmetic expressions written inside “block diagrams™ to summarize
what the “flow charts” are accomplishing, L . : =
~Representations of algorithims are ge'nferally_ classed into three accepted levels of Turing l_nachine'

1 High-level description;

- “..prose to describe an algofithm, ignoring the impleﬁientat_idn details. Atthis level we donot need
to mention how the machine manages its tape or head.” R ' .

» 2 Implementation description: "
- .. prose used to define the way the Tufing machiné uses its head and the way that it stores data on

its tape. At this level we do not give details of states or transition function.” * -
« - 3Formal description: e e L
Mos_t: défailed, :‘fIOWést _le-vel_”; gives the Turing m achine’s G ‘Sté.t'e. tab.le”__'
1.5.2 - ComputerAlgorithms ' L S

Incomputer systems, an algorithm is basically an instance of logic written in software by sofiware
developers to be effective for the intended “target” computer(s), in order for the software on the target
- machinesto do something. For instance, if a person is writing software that is supposed to printouta PDF
docurnent located at the operating system folder “/My Docuuments” at computer drive “D:> every Friday at
- 10 pm, they will write an algorithm that specifies the following actions: “If today’s date (computer time) is
‘Friday’, openthe document at ‘D:/My Documents” and call the ‘print” function”. While this sitaple algorithm
 does not ook into whether the printer has enough paper or whether the document has been moved into a
different location, one can make this algorithm morerobust and anticipate these problems by réwriting it as
aformal CASE statementorasa (carefully crafted) sequence of IF-THEN-ELSE staternents. For example

the CASE statement n‘?ight"appéai' as follows (there are'_d_tller_prSibiIﬁ;gs):’: o) o
~ CASE I: IF today’s date is NOT Friday THEN exit this CASE instruction ELSE.

CASE 2:1F today’s date is Friday-AND the document is located at ‘D.IF’M)’ Documents” AND

~ there is paper in the printer THEN print the deeument (and exit this CASE instruction) ELSE
CASE 3:IF today’s date is Friday AND the document is NOT located at ‘D:/My Documents’

- THEN display *document not found” errof message (and exit this CASE instruction) ELSE
CASE 4:IF today’s date is Friday AND the document is tocated at *D:/My Documents’ AND
there is NO paper in the printer THEN (i) display ‘out of paper’ error message and (ii) exit.

Note that CASE 4 includes two possibilities: (i) the document is NOT Iocated at ‘D:/My Documents’
AND there’s paper in the printer OR (ii) the document is NOT located at ‘D:/My Documents’ AND
there’s NO paper in the printer. A ' '

_Thé sequence of IF -THEN-ELSE fests mi ght look like this:
- TEST 1.1F today’s date is NOT Friday THEN done ELSE TEST 2:

[8)

TEST 2: IF the document is NOT located at ;D:My Documents” THEN display ‘document not
found’ error message ELSE TEST 3:

TEST 3: IF there is NO paper in the printer THEN display ‘out of pzipe__r’ error message ELSE
print the document. ' ' .

These examples’ logic grants precedence to the instance of “NO document at ‘D/My Documents™.

Also observe that in a well-crafted CASE statement or sequence of IF-THEN-ELSE statements the

aumber of distinct actions—4 in these examples: do nothing, print the document, display ‘document not -

found”, display ‘out of paper’—equals the number of cases.

Given unlimited memory, acompustational machine with the ability to execute either aset of CASE
statements or a sequence of IF-THEN-ELSE statements is Turing complete. Therefore, anything that is
computable can be computed by this machine. This form of algorithim is fundamental to compurtey programming
inallits forms. R ce

Implementation

. Most algorithms are intended to be implemented as computer programs. However, algorithms are

also implemented by other means, such as in a biological neural network (for example, the human brain
hnplementing_ arithmetic or an insect 109king_fq; food), in an electrical circuit, or ina mechanical device.

Example - _ _
" Ananimation of the quicksort algorithm sorting an array of randomized values. The red bars mark
the pivot element; at the start of thc'animatio_n, the element farthest to the right hand side is chosen as the
pivol. - T o
One of the simplest algorithms is to find the largest number in an (unsorted) list of numbers. The
solution necessarily requires looking at every number in the list, but only once at each. From this follows a

simple algorithm, which can be stated in ahigh-level description English prose, as:
}ligh;level d.escription: o ' " ' '
1. Assumethe irstitemislrgest. o
2 Look at each of thé rémaiﬁing items in the list and if it is larger than the largest item sb far, make a
not'ec)fit,. Sl L e AR
3. Thé_l_ﬁst’hdt’editém is the'_.l.a'rg'es '_ m the list when t_hg.pi'qé.ess is complété; |
.. (Quasi-)formal descr.'i.pti".ohj:- Written in prose but much-closer to the high-level lénguage of 5
computer ptogram, the following is the more formal coding of the algorithm in pseudocode orpidgin code:
Algorithm LargestNumber o
InputA non-empty listof nuh}bgrs L -
(juti:»ut: Thé Iargésr number iﬁ the. list-L. :
largestot L, -
for each ifem in ‘_che.list"("Lefz;grh(L)e”I), .do"_ o
if the item > ldrgest, then |
 largest o! the item

return largest

91

e “al”isaloose shorthand for “changes to”. For instance, “largest o\ item” means that the value of
largest changes to the value of item. " _ o
e “return” terminates the algorithm and outputs the value that follows.
Classification o] . S .
| - There are various ways o claséify algorithms, each with its own merits, . o
By implementation - ' - o
One wayto classify algorithms is by implementation means. o | _
e Recursion or it_ei_'atii)_h: Arecursive algorithm is one that invokes (makes reference to) itself
- repeatedly until acertain condition matches; whichis a method commonito functional programming,
Iterative algorithms use repetitive constructs like loops and sometimes additional data structures
like stacks to solve the given problems. Some problerns are naturally suited for onel-i_mple_:men’rz_;t_ion_
or the other. For example, towers of Hano is well understood in recursive implementation, Every
- Tecursive version has an equivalent (but possibly more or less complex) iterative version, and vice
‘e Logical: An algorithm may be viewed as controlled logical deduction. This notionmay be expréssed
as: Algorithm =logic + control. The logic component expresses the axioms that may be used in
the computation and the control component determines the way in which-dg_duct:ion_ is applied to
the axioms. This is the basis for the logic programming paradigm. In pure logic programming
languages the control component is fixed and algorithms are specified by supplying only the logic
component. The appeal of this approach is the ¢legant semantics: a change in the axioms has a well
_defined change in the algorithm. - : - ; T

"o Serial or parallel or distributed: Algorithing are usually discussed with the assumption that
computers execute one instruction of an algorithm at a time: Those computers are sometimes
called serial computers. An algorithm designed for such an environmentis called a serial algorithm;
as opposed to parallel algorithms or distributed algorithms. Parallel algorithms take advantage of
computer architectures where several processors can work on aproblem at the same timeé, whereas
distributed algorithms utilize multiple machines connected with a network. Parallel or distributed
algorithms divide the problem into more symmetrical or asymmetrical subproblems and collect the
resuilts baclk together. The resource consumption in such algorithms is not only processor cycleson
each processor but also the communication overhead between the processors. Sorting algorithms
can be parallelized efficiently, but their communication overhead is expensive. Iterative algorithms

- are generally parallelizable. Some problems have no paralle] algorithms, and are called inherently
serial problems. '

* Deterministic or non-deterministic: Deterministic algorithms solve the problem wﬂh exactdecision
atevery step of the algorithm whereas neén-deterministic algorithms solve problems via guessing
although typical guesses are made more accurate through the use of heuristics, - S

* Exactorapproximate: While many algoriths reach an exact solution, approximation algorithms
seek an approximation that is close to the true solution. Approximation may use eithera deterministic
or arandom strategy. Such algorithms have practical value for many hard problerns.

By design paradigm

Another way of classifying algorithms is by their design methodo]ogy or paradi'gm. There is a
certain number of paradigms, each different from the other. Furthermore, each of these categories will

« .

include many different types of algorithms. Some commeonly found paradigims include:

[10]

‘Brute-foree or exhaustive search. This is the naive method of trying every possible solution to
see which is best. C

Divide and conquer. A divide and conquer atgorithm repeatedly reduces an instance of a problem
to one.or more simalier instances of the same problem (usually récursively) until the instances are
small enough to solve easily. One such example of divide and conquer is merge sorting. Sorting can
be done on each segment of data after dividing data into segments and sorting of entire data can be
obtained in the conquer phase by merging the segments. A simnpler variant of divide and conquer is
called a decrease and conquer algorithm, that solves an identical subproblem and uses the
solution of this subproblem to solve the bigger problem. Divide and conquer divides the problem
into multiple subproblems and so the conquer stage will be more complex than decrease and

' conquer algorithms. An example of decrease and conquer algorithm is the binary search algorithm.

‘Dynamic programming, When aproblem shows optimal substructure, meaning the optimal solution
" {o a problem can be consiructed from optimal solutions'to subproblems, and overlapping
. subproblems, meaning the same subprobleins are used to solve many tifferent problem instances,
. aquickerapproach called dynamic programming avoids recomputing solutions thathave already
been computed, For example, Floyd-Warshall algorithm, the shoitest path to a goal from a vertex
ina weighted graph can be found by using the shortest path to the goal from all adjacent vertices.
Dynamic programming and memoization go together. The main difference between dyhamic
programming and divide and conquer is that subproblems are more or less independent individe
 and conguer, whereas subproblems overlap in dynamic programming,. The difference between
~ dynamic programming and straightforward recursion is in caching or memoization of recursive
calls, When subprobléms are independent and there is no repetition, memeization does not help;
hence dynamic programming is nota solution for all complex problems. By using memoization or
 maintaining atable of subproblemsalready solved, dynarnic programming reduces the exponential
nature of many problems to polynomial complexity. .~ R

-: The g’reédy meﬂlod. A
difference is that solutions to the subproblems do not have to be known at each stage; instead a

“greedy” choice can be made of what looks best for the moment. The greedy method extendsthe

solution with the best possible decision (not all feasible decisions) at an algoritlnnic stage based on
* the currerit Jocal opfimum and the Best decision (not all possible decisions) made ina previous

" stage. Tt is not exhaustive, and does not give accurate answer fo many problems. But when it
works, it will be the fastest method. The most popular greedy algorithm is finding the minimal

spanniing tree as given by Huffinan Tree, Kruskal, Prim, Sollin.

_ _I:Ji:il_e_a_r__'prb'gramming. When solvinga problem using linear programming, specific inequalities
involving the inputs are found and then an attempt is made to maximize (or minimize) some linear .

fynction of the inputs. Many problems (such as the maximum flow for directed graphs) can be
stated in a linegr programming way, and then be solved by a“ generic’ algorithm such as the simplex
algorithm. A more complex variant of tinear programming is called integer programming, where the
solution space is restricted to the integers.

Reduction. This technique involves solving a difficult problem by transforming it into a better
known problem for which we have (hopefully) asymptotically optimal algorithms. The goal is to
find areducing algorithm whose complexity isnot dominated by the resulting reduced algorithm’s.
For example, one selection algorithm for finding the median in an unsorted list involves first sorting
the list (the expensive portion) and then pulting out the middle element in the sortedlist (the cheap
portion). This technique is also known as trarisform and conquer.

" Search and enumeration. Many problems (such as playing chess) can be modeled as problems

on graphs. A graph exploration algorithm specifies rules for moving around a graph and is useful for -

[11]

gréedy algornhm is similar to a dynamic programming algorithm, but the-

- such problems. This category also includes search algorithms, branch and bound enumeration and
- backtracking.

1.6 quwchart

+ Aflowchart isa type of diagram, that represents an algorithm or process, showing the steps as
boxes of various kinds, and their order by connecting these with arrows. This diagrammatic representation
can give a step-by-step solution to a given problem. Data is represented in these boxes, and arrows
connecting themrepresent flow / direction of flow of data. Flowcharts are used in analyzing, designing,
documenting or managing a process or program in various fields. - S
L6l Hisry o

- The first siructured method for documenting process flow, the “flow process chart”, was introduced
by Frank Gilbreth to members of the American Society of Mechanical Engineers (ASME) in 1921 in the
presentation “Process Charts—First Steps in Finding the One Best Way”. Gilbreth’s tools quickly found

— ——thei;r%ay—i_nto-indﬁstrial--epginecring"gmfricuta. Trrthe early 1930s, an industrial engineer, Allan H. Mogensen
--began training business people in the use of some of the tools. of industrial engineering at his Work

Simplification Conferences in Lake Placid, NewYork. . = L _

A 1944 graduate of Mogensen’s class, Art Spinanger, took the tools back to Procter and Gamble
where he developed their Deliberate Methiods Change Program. Another 1944 graduate, Ben S. Graham,
Director of Formeraft Engineering at Standard Register Corporation, adapted the flow process chart to
information processing with his development of the multi-flow process chart to display multiple documents
and their relationships. In 1947, ASME adopted a synibol set derived from Gilbreth's original work as the
ASME Standard for Process Charts by Mishad, Ramsan & Raiaan. I

~ Douglas Hartree explains that Herman Goldstine and John von Neumann developed the flow
chart (originally, diagram) to plan computer programs. His contemporary account is endorsed by IBM
engineersand by Goldstine’s personal recollections The original programming flow charts of Goldstine and
von Neumann can be seen in their unpublished report, “Planning and coding of problems for an
electronic computing instrument, Part I, Volume 17 (1947), which is reproduced in von Neumnann’s collecied
works. L L e
- Flowcharts used to be a popular means for describing computer algorithms and are still used for
this pirpose. Modern techniques sitch as UML activity diagrams can be considered to be extensions of the
flowchart. In the 1970s the popularity of flowcharts as an ownmethod decreased when interactive computer
terminals and third-generation programming languages became the common tools of the trade, since
algorithms can be expressed much more concisely and readably as source code in such a Janguage. Often
pseudo-code isused; which uses the'common idioms of such languages without strietly adhering to the
details of a particularone, - T o

[12]

1.6.2 _Flow_chartBuildingBlocks _ |

Examples

I

ISR T e

~ Asimple ﬂowéhart for computing factorial N (10!)

A flowchart for computing factorial N (101) where Nt = (1¥2*3*4*5*6*7* 8+9*¥10), see image.
This flowchart represents a“loop and a half* —asituation discussed in introductory programming textbooks
that requires either a duplication of a component (to be both inside and outside the loop) or the component
to be put inside a branch in the loop. o o

‘Basic Flowchart Symbols

 Basic Flowchart

[13]

Flowcharts are the ideal diagrams for visually representing business processes. For example, if you
need to show the flow of a custom-order process through various departments within your organization,
you canuse a flowchart. This paper provides a visual representation of basic flowchart symbols and their
proposed usage in communicating the structure of a well-developed web site, as well as their correlation in
developing on-line instructional projects. A typical flowchart from older Computer Science textbooks may
have the following kinds of symbols: '

» Startand end symbols, representéd as 'l\ozénges, ovals or rounded rectangles, usually confaining
the word “Start” or “End”, or another phrase signaling the start or end of a process, such as
“submit enquiry” or “receive product”, - -

‘o Arrows, showing what’s called “flow of control” in computer science. An arrow coming from one
symbol and ending at another symbol represents that control passes to the symbol the arrow points
fo. '

¢ Processing steps, represented as rectangles. Examples: “Add 1to X”; “replace identified part”; -

“save changes” or similar.
¢ Input/Output, represented asa parallglogram. Examples: Get X from the user; display X,

¢ Conditional (or decision), repreéented as a diamond (rhombus). These typically contain a Yes/
No question or True/False test. This symbol is unique in that it has two arrows coming out of it,
usually from the bottom point and right peint, one corresponding to Yes or True, and one
-corresponding to No or False. The arrows should always be labeled. More than two arrows can
be used, but this is normally a clear indicator that a complex decision is being taken, in which case
it may need to be broken-down further, or replaced with the “pre-defined process™ symbol,

e . Anumberof other symbols that have less universal currency, suchas:
“ 0 ADocument représented as a rectangle witha wavy baseﬁ

0 A Manual input represented by rectangle, with the top irregularly sloping up from left to right.
Anexample would be to signify data-entry from a form; ' T

- 0 AManual operation represented by a trapezoid with the longest parallel side upmost, to
represent an.operation or adjustment to process that can only be made manually.

o A DataFile represented by a cytinder

Flowcharts may-contain other symbols, such as connectors, usually represented as circles, to
represent converging paths in the flowchart. Circles will have more than one artow coming into them but
only one going out. Some flowcharts may just have an arrow point to another arrow instead. These are
useful to represent ar iterative process (what in Computer Science is called a loop). A loop may, for
example, consist of a cormector where control first enters, processing steps, a conditional with one arrow
exiting the loop, and one going back to the connector. Off-page connectors are often used to signify a
connection to a (part of another) process held on another sheet or screen. It is important to remember to
keep these connections logical in order. All processes should flow from top to bottom and left to right.

1.6.3 Types of flowchart -

Stemeckeﬁ {2003) suggested that flowcharts can be modelled from the perspective of different
user groups (such as managers, system analysts and clerks) and that there are four general types:

* Document flowcharts, showing controls over a document-flow through a system

¢ Data flowcharts, showing controls over a data flows in a system

[14]

o Systemflowcharts showing controls at a physical or resource Jevel
o Programflowchart, showing the controls in a program within a system

Notice that every type of flowchart focusses on some kind of control, rather than on the particular
flow itself. '

However there are several of these classifications. For example Andrew Veronis (1978) named
three basic types of flowcharts: the system flowchart, the general flowchart, and the detailed flowchart.
That same year Marilyn Boht (1978) stated “in practice, two kinds of flowcharts aré used in solution
planning: system flowcharts and program fowcharts...”. More recently Mark A. Fryman (2001) stated
that there are more differences: “Decision flowcharts, logic flowcharts, systems flowcharts, product
flowcharts, and process flowcharts are just a few of the different types of flowcharts that are used in
business and government” :

Summery

Inthis unit we have learnt about the basic programming languages structures and their development..

- We have discussed regarding the development of programming languages from Low level to Middle Level

to High level programming languages. We have also discussed regardirig the use of algorithms in computer
programming. After that we have tearnt about the use of flow charts in the programming. We also have
learnt that what are the symbols that are used in flow charts and how to prepare flow chargs for the
Self Assignments

What do you mean by programming language?

What is Low level programming language?

Name few low level programming language?

‘What is Middle level programming language?

Why High level programing language is more use these days?

What is the use of algorithms in computer programming?

Explain the symbols used in flow charts.

Prepare a flow chart to'substract higher number from smaller number.

S0 NS R W N

[15]

Unit 2: Data Types and Keywords

2.1 Introduction -
2.1.1 Firstexample
N 212 '_S__econd exél_n].\)_l'e _
2.2 : Easic]jataTyﬁés o
221 Types
222 Constants
2.2.3 Declarations
2124 Variable Names |
23 CKeywords
24 CStandard Library (Headerfiles) .~ -

: Aﬁer co.mpléti.ng this ﬁnit .you Would Be éblé to uﬁdei*siahd the. following pbints We will léarﬁ
following topics in this unit:
‘e Introduction to C Programming
* Basic Data Types
¢ Keywords
" Header Files
2.1 Introduction

C - Programming Language is a relatively small language, but one which wears well. C’s small,
unambitious feature set is a real advantage. There’s less to learn. There isn’t excess baggage in the way
when you don’t need it. It can also be a disadvantage, since it doesn’t do everything for you, there’s alot
you haveto do yourself. (Actually, this is viewed by many as an additional advantage: anything the language
doesn’tdo for you, it doesn’t dictate to you, either, so you’re free to do that something however you want.)

Cis sometimes referred to as a “High-Level Assembly Language”. Some people think that’s an
insult, but it’s actually a deliberate and significant aspect of the language. If you have programmed in
assembly language, you'll probably find C very natural and comfortable (although if you continue to focus
too heavily on machine-level details, you’ll probably end up with unnecessarily nonportable programs). If
youhaven’t programmed in assembly language, you may be frustrated by C’s lack of certain higher-level
features. In either case, you should understand why C was designed this way so that seemingly simple
constructions expressed in C would not expand to arbitrarily expenstve (in time or space) machine language
constructions when compiled. If you write a C program simply and succinctly, it is likely to resultin a
succinet, efficient machine language executable. If you find that the executable program resulting from a C
program is not efficient, it’s probably because of something silly you did, not because of something the
compiler did behind your back which you have no control over. In any case, there’s no point in complaining
about C’s low-level flavor C is what it s, o

A programming language is a tool, and no tool can perform every task unaided. If you’re building
-ahouse, and I’m teaching you how to use a hammer, arid you ask how to assemble rafters and trucses into
gables, that’sa legitimate question, but the answer has fallen out of the realm of “How do Iuse a hammer?”

16

and into “How do I build ahouse?”. In the same way, we’ll see that C does not have built-in features to
perform every function that we might ever need to do while programming. B ' :

- As mentioned above, C imposes relatively fewbuilt-in ways of doing things on the programmer.
Some common tasks, such as manipulating strings, allocating memory, and doing input/output (I/0), are
performed by calling on library functions. Other tasks which you might want to do, such as creating or
listing directories, or interacting with a mouse, or displaying windowsor other user-interface elements, or
doing color graphics, are not defined by the C language at all. You can do these things from a C program,
of course, but you will be calling on services which are peculiar to your programming environment (compiler,
processor, and operating system) and which are not defined by the C standard. Since this course is about
portable C programming, it will also be steering clear of facilities not provided in all C environments.

C does not, in general, try hard to protect a programmer from mistakes. If you write a piece of
code which will (through some oversight of yours) do something wildly different from what you intended it
to do, up to and including deleting your data or trashing your disk, and ifit is possible for the compiler to
compile it, it generally will. You won’t get warnings of the form “Do youreally mean to...7” or “Are you
sure you really want to...?”. C is often compared to a sharp knife: it can do a surgically precise job on some
exacting task you have in.mind, but it can also doa surgically precise job of cutting off your finger. It’s up
to youto use it carefully. _

. ThisaspectofCis very widely criticized it is also used (justitiably) to argue that Cisnot a good
teaching language because it means that C does not try toprotect them from themselves when they know
what they’re doing, even if it’s risky or obscure, they can do it. Students of C hate this aspect of C because
it often seemns as if the language is some kind of a conspiracy specifically designed to lead them into booby
wapsand “gotchals™.

- Thisisanother aspect of the language, which it’s fairly pointless to complain about. If you take care
and pay attention, you can avoid many of the pitfalls. These notes will poitit out many of the obvious (and
not so obvious) trouble spots. o =

2.1.1 First Example

The best way to learn programming is to dive right in and start writing real programs. This way,
concepts, which would otherwise seem abstract, make sense, and the positive feedback you get from
getting even a stnall program to work gives you a great incentive to improve it or write the nextone..

Diving in with “real” programs right away has another advantage, if only pragmatic if youw’re using
& conventional compiler, you can’t run'a fragment of a program and see what it does nothing will run until
you have a complete (if tiny or trivial) program. You can’t leam everything you’d need to write a complete
program all at once, so you’lt have to take some things *on faith” and parrot them in your first programs
before you begin.to understand them. (You can’t learn to program just one.expression of statement ata
time any more than you.can learn to speak a foreign language-one word at a time. Ifall youknow isa
‘handful of words, you can’t actually say anything: you alsoneed to know something about the language’s
word order and gramumar and sentence structure and declension of articles and verbs.} - -

Besides the occasional necessity to take things on faith, there is a more serious potential drawback
of this “dive in and program” approach it’s a small step from learning-by-doing to leatning-by-trial-and-
error, and when you learn programming by trial-and-esror, you can very easily learn many errors. When
you’re not sure whether something will work, or you’re noteven sure what you could use that might work,
and you try something, and it does work, you do #ot have any guarantee that what you tried wotked for
the right reason. You might just have “learned” something that works only by accident or only on your
compiler, and it may be very hard to un-learn it later, when it stops working. . o

17

Therefore, whenever you’re not sure of something, be very careful before you go offand try it “just
to seeifit will work.” Of course , you can never be absolutely sure that somethmg is gotng to work before
you try it, otherwise we’d never have to try things. But you should have an expeotatlon that something is
going to work before you try it, and if you can’t predict how to do something or whether something would
work and find yoursel{having to determine it experimentally, make 4 note in your mmd that whatever
you ve Jl.lSt leamed (based on the outcome of the expemment) 15 suspect : :

. The ﬁrst example plogram in any language print or dxeplay a 31mple strmg, and exnt Here I8 my
vemlon of “hello, wor’ ld”plogram .

“Hinclude <stdio.b> "
e ;
. prntf{“Hello, world!\n”);
return 0; -
Ifyou have aC oompller the first ‘thmg to do is ﬂglue out how to type thls program in and complle
rtand run it and see where its output went. (Ifyou don’t have a C comp;ler yet, the ﬁrst thmg todois to find
one.)

 The first line is practically boilerplate it will appear in almost ail progm.ms we write. It asks that
some deﬁmtlons having to do with the “Standard /O Library” be mcluded in our program these deﬁmtlons
are needed if weare to call the 11brary ﬁmcuon prmtf comectly

The second line says that we are deﬁnmg a function named 1 main. Most of e hme, we can name
our fnctions anything we want, but the function name main is special: it is the funchion that will be “called”
“first when our program starts running. The empty pair of parentheses mdicmes that our main function
-accepts no arguments, that is, there isn’t any information which needs to be passed in when the funct:on is
called. : :

The braces {and} surround a list of statements in C. Here, they surround the list of statements
making up the function main.

Theline -
pnntf(“HeIlo World'\n”) |

is the ﬁrst statement in the program It asks that the. function prlntf be ca.lled prmtf is.alibrary

ﬁmetlon which prints formatted output. The parentheses surround printfs argument list the information that

1s handed toit, whlch it should act on. The semlcolon at the end of the line terminates the statement,

(pnntf’ s name reflects the fact that C was first developed when TeJetypes and other printing telmmals
were still in widespread use. Today, of coutse, video displays are far more common. printf’s “prints” to the
standard output, that is, to the default location'for program otitput to go. Nowadays, that” 's almost always
a video green or a window on that sereen. If youdo have a prmter you’'ll typically have to' do something
extra to get a program to print to it.) . o :

. printf’s first (and, in this case, only) argument isthe string whlch it should print, The string, enclosed
indouble quotes “ , consists of the words “Hello, world!” followed by a special sequence \n. In strings,
any two-character sequence beginning with the backslash \ represents a single special character, The

sequence \n represents the “new line” character, which prints a carriage return or line feed or whatever it

takes to end one line of output and move down to the next. (Tlus program only pnnts one lme of output but
i’s still importantto terminateit.) - - :

The second line in the main function is

18

return 0;

In general, a function may return value to its caller, and main is no exception. When main refutns
(that is, reaches its end and stops functioning), the program is at its end, and the return value from main tells
the operating system (or whatever invoked the program that main is the rmain function of) whether it succeeded
or not. By convention, a returm value of indicates success.

This program may kook so absolutely trivial that it seems as if it’s not even worth typing itin and
trying to run it, but doing so may be a big (and is certainly a vitat) first hurdle. On an unfamiliar computer, it
can be arbitrarily difficult to figure out how to enter a text file containing program source, or how to compile
and link it, or how to invoke it, or what happened after (if?) it run. The most experienced C programmers
irmediately go back to this one, simple program whenever they’re trying out a new system ora new way
of entering ot building programs or a new way of printing output from within programs. As Kernighan and
Ritchie say, everything else is comparatively easy.

How you compile and run this (or any) program is a function of the compiler and operating system
you’re using. The first step is to type it in, exactly as shown this may involve using atext editor to creatc a
file containing the program text. You’ll have to give the file a name, and all C compilers (that I've ever heard
of) require that files containing C source end with the extension .. So you might place the program text in
afilecalled hello.c. : ' :

_ The second step is to compile the program. (Strictly speaking, compilation consists of two steps,

compilation proper followed by i nking, but we can overlook this distinction at first, especially because the
compiler often takes care of initiating the linking step automatically.) On many Unix systems, the command
to compile a C program from a source file hello.cis

cc -0 hello hello.c

You would type this command at the Unix shell prompt, and it requests that the cc (C compiler)
program be run, placing its output (i.e. the new executable program it creates) in the file hello, and taking its
input (i.e. the source code to be compiled) from the file hello.c.

The third step is to ran (execute, invoke) the hewly—built hello program. Again ona Unix system, -

this is done simply by typing the program’s name:

hello _

Depending on how your system is set up (in particular, on whether the current directory is searched
for executables, based on the PATH variable), you may have to type '

Jhello.

o indicate that the hello program is in the current directory (as opposed to some “bin” directory full
of executable programs, elsewhere).

You may also have your choice of C compilers. On many Unix machines, the cc command is an
older compiler which does not recognize modern, ANSI Standard C syntax. An old compiler will accept
the simple programs we’ll be starting with, but it will not accept most of our later programs. If you find
yourself getting bafiling compilation errors on programs which you’ve typed in exactly as they’re shown, 1t
probably indicates that you’re using an older compiler. On many machines, another compiler called acc or
gee is available, and you’ll wantto use it, instead. (Both acc and gee are typically invoked the same as cc;
that is, the above cc command would instead be typed, say, gee -0 hello helloc.)

Don’t name your test programs test, because there’s already a standard command called test, and

you and the command interpreter will get badly confused if you try to replace the system’s test conmmand
with your own, not least because your own almost certaitily does something conpletely different.)

19

Under MS-DOS, the compilation procedure is quite similar. The name of the command you type
will depend on your compiler (e.g. cl for the Microsoft C compiler, tc or bee for Borland’s Tarbo C, ete,),
You may have to manually perform the second, linking step, perhaps with a command named link or tlink.
The execttable file which the compilet/linker creates will have aname ending in .exe (orpethaps .com), but
you can still invoke it by typing the base name (e.g. hello). See your compiler documentation for complete
 details; one of the manuals should contain a demonstration of how to enter, compile, and run a small
program that prints some simple output, just as we’re trying to describe here.

In an integrated or “visual” progamming environment, such as those on the Macintosh or under
various versions of Microsoft Windows, the steps you take to enter, compile, and run a program are
somewhat different (and, theoretically, simpler). Typically, there is a way to open a new source window,
type source code into it, give it a file name, and add it to the program {or “project”) you’re building. If
necessary, there will be a way to specify what other source files (or “modules™) make up the program.
Then, there’s a bution.or menu selection that compiles and runs the program, all from within the programming
environment. (There will also be a way to create a standalone executable file, which you can run from
outside the environment.) In a PC~compatible environment, you may have to choose between creating
DOS programs or Windows programs. (I'you have troubles pertaining to the'printf function, try specitying

atarget environment of MS-DOS. Supposedly, some compilers which are targeted at Windows environments
won'tlet you call printf, because until you call some fancier finctions to request that a window be created,
there’s no window for printf'to print to.) Again, check the introductory or tutorial manual that came with the
programming package. It should walk you through the steps necessary to get your first program running,

212 Second Example

_ Our second example is of little more practical use than the first, but it introduces a few more
programming language elements: :
#include <stdio.h> _
/* print a few numbers, to illustrate a simple loop */
main()
{
inti;
for(i=0;i<10;i=i+1)
printf{(*iis Yodwn”, i);
return §;

}

- As before, the line #include <stdio.> is boilerplate which is necessary since we're calling the printf
function, and main() and the pair of braces {} indicate and delineate the function named main we’re {again)
The first new line i the line
/* print a few numbers, to illustrate a simple loop */

which is a comment. Anything between the characters /* and */ is ignored by the compiler, but
may be useful to a person trying to read and understand the program. You can add comments anywhere
you want to in the program, to document what the program is, what it does, who wrote it, how it works,
what the various functions are forand how they work, what the various variables are for, ete.

The second new line, down within the function main, is

inti;

20

which declares that our function will use a variable named i. The variable’s type is int, which isa
plain integer. '

Next, we setup a loop:
for(i=0;i<10;i=1i+ 1)

The keyword for indicates that we are settingupa “for loop.” A for loop is controlled by three
expressions, enclosed in parentheses and separated by semicolons. These expressions say that, in this
case, the loop starts by setting i to 0, that it continues as long as iis less than 10, and that after each iteration

ofthe loop, i should be incremented by 1 (that s, have 1 added to its value) details will be discussed in later
chapters. h

Finally, we have acall to the print{ function, as before, but with several differences. First, the call to
printfis within the body of the for loop. This means that contro} flow does not pass once through the printf
call, but instead that the call is performed as many times as are dictated by the for loop. Inthis case, print
will be called several times: once when 1is 0, once wheniis 1, once wheniis2; and soonuntiliis 9, fora
total of 10 times. '

A second difference in the printf call is that the string to be printed, “iis %d”, contains a percent
sign. Whenever printf sees a percent sign, it indicates that printfis not supposed to print the exact text of the
string, but s instead supposed to read another one of its arguments to decide what to print. The letter after
the percent sign tells it what type of argument to expect and how to print it. Inthis case, the letter d indicates
that printfis to expect an int, and to print it in decimal. Finally, we see that printfis in fact being called with
another argument, for a total of two, separated by commas. The second argument is the variable i, which
isin factan int, as required by %d. The effect of all of this is that each time it is called, printf will print a line
containing the current value of the variable i: -

iisQ

iis1

iis2

After several trips through the loop, will eventually equal 9. After that trip through the loop, the
third control expressioni=i+ 1 will increment its value to 10. The conditioni < 10 is no longer true, so no
more trips through the loop are taken. Instead, control flow jumps down to the statement following the for
loop, which is the return statement. The main fnction returns, and the program is finished. '

22 Basic Data Types

The fype of a variable detexmines what kinds of values it may take on, An operator computes new
values out of old ones. An expression consists of variables, constants, and operators combined to perform
some useful computation. In this chapter, we’ll learn about C’s basic types, how to write constants and
declare variables of these types, and what the basic operators are. ‘ :

As, “The type of an object determines the set of values il can have and what operations can be
performed on it.” This is a fairly formal, mathematical definition of what a type is, but it is traditional (and
meaningful). There are several implications to remember:

1. The “setof values” is finite. C’s int type can not represent e/ of the integers; its float type cannot
represent 4/l floating-point numbers.

2. When you’re using an object (that is, a variable) of some type, you may have to remember what
values it can take on and what operations you can perform on it. For example, there are several
operatots which play with the binary (bit-level) representation of integers, but these operators are
pot meaningful for and may not be applied to floating-point operands.

21

3. When declaring a new variable and picking a type for it, you have to keep in mind the values and
operations you’ll be needing.

In other words, picking a type for a variable is not some abstract academic exercise; it’s closely
connected to the way(s) you’ll be using that variable.

22.1 Types
2.2.2 Constants
223 Declarations
2.2.4 Variable Names
2.2.1 Types
There are only a few basic data types in C. The first ones we’ll be encountering and using are:

“Char” a character :

“int” an integer, in the range -32,767 to 32,767

“long” int a larger integer (up to +-2,1 47,483,647)

“float” afloating-point number _

“double” a floating-point number, with more precision and perhaps greater range than float

* 2 & & @

fyoucanlook at this list of basic types and say to yourself, “Oh, how simple, there ate only a few
types, I won’t have to worry much about choosing among them,” you’ll have an easy time with declarations,
(Some masochists wish that the type system were more complicated so that they could specify more things
about each variable, but those of us who would rather not have to specify these exira things each time are
 gladthat we don’thaveto.) '

The ranges listed above for types int and long int are the guaranteed minimum ranges: On some
systems, either of these types (or, indeed, any C type) may be able to hold larger values, but a program that
depends on extended ranges will not be as portable. Some programmers become obsessed with knowing
exactly what the sizes of data objects will be in various situations, and go on to write programs which
depend on these exact sizes. Determining or controlling the size of an object is occasionally important, but
most of the time we can sidestep size issues and letthe compiler do most of the worrying.

(From the ranges listed above, we can determine that type int must be at least 16 bits, and that type
long int must be at least 32 bits, But neither of these sizes js exact; many systens have 32-bitints, and some
systems have 64-bit long ints.)

You might wonder how the computer stores characters, The answer involves a character set,
which is simply a mapping between some set of characters and some set of small numeric codes. Most
machines today use the ASCII character set, in which the letter A is represented by the code 65, the
ampersand & is represented by the code 38, the digit 1is represented by the code 49, the space character
is represented by the code 32, etc. (Most of the time, of course, you have no need to know or even worry
about these particular code valués. They’re automatically translated into the right shapes on the screen or
printer when characters are printed out, and they’re automatically generated when you type characters on
the keyboard. Eventually, though, we’ll appreciate, and even take some control over, exactly when these
translations—from characters to their numeric codes—are performed.) Character codes are usually smal—
the largest code value in ASCILis 126, which is the ~ (tilde or circumflex) character, Characters usually fit
inabyte, which is usually 8 bits. In C; type char is defined as occupying one byte, so it is usually 8 bits.

Most of the simple variables in most programs are of typesint, long int, or double. Typically, we’ll
use int and double for most purposes, and long int any time we need to hold integer values greater than
32,767. As we’ll see, even when we’re manipulating individual characters, we’ll usually use an int variable,

29

for reasons to be discussed later. Therefore, we'll rarely use individual variables of type char, although
we’1l use plenty of arrays of char. '-

2.2.2 Counstants

A constant is just an immediate, absolute value found in an expression. The simplest constants are
decimal integers, e.g. 0,1,2,123. Occasionally it is useful to specify constants in base 8 or base 16 (octal
or hexadecimal); this is done by prefixing an exira 0 (zero) for octal, or Ox for hexadecimal. The constants
100, 0144, and 0x64 all represent the same number. (If you’re not using these non-decimal constants, just
remember not to use any leading zeroes. If you accidentally write 0123 intending to getone hundred and
twenty three, you’ll get 83 instead, which is 123 base 8.) :

We write constants in decimal, octal, or hexadecimal for our convenience, not the compiler’s. The
compiler doesn’t care. It always converts everything into binary internally, anyway. (There is, however, no-
good way to specity constants in source code in binary.)

_ A constant can be forced to be of type long int by suffixing it with the letter L (inupper or lower
case, although upper case is strongly recommended, because a lower case 11looks too mruch like the digit

1).
A constant that contains a decimal poini or the letter € (or bothy is a floating-point constant: 3.14,

10.,.01, 123e4,123.456¢7 . The e indicates multiplication by a power of 10. 123.456e7 is 123.456 times
10 to the 7th, or 1,234,560,000. (Floating-point constants are of type double by default.) :

We also have constants for specifying characters and strings. (Make sure you understand the
difference between a character and a string a character is exactly one character; a siring is a set of zero or
more characters a string containing one character is distinct froma lone character.) A.character constant is
~ simply a single character between single quotes: ‘A’ <", ‘%’ The numeric value of a character constant is,
naturally enough, that character’s value in the machine’s character set. (In ASCIL, for example, ‘A’ has the
value 65.)

Astring is represented in C as a sequence or array of characters. (We’ll have more to say about
arrays in general, and strings in particular, later.) A string constant is a sequence of zero or more characters
enclosed in double quotes: “apple”, “hello, world™, “this is atest”.

Within character and string constants, the backslash character \is special, and is used o represent
characters not easily typed on the keyboard or for various reasons not easily typed in constants. The most
common of these “character escapes™ are:

Code Character Description

At Vo Backslash

v <o Single Quote

v “ Double Quote

\? ? : Question Mark

\0 N Binary 0

a <BEL> - Bell (Audible alert)
\b <BS> Back Space

¥ <FF> . - Form Feed

\n <NL> New Line

23

\r <CR> Carriage Return
' <HT> Horizontal Tab
LY <VT> Vertical Tab

Notes:

* These escape sequences can be used only within character or String literal constants. They each
represent a single character. :

For example, “he said\ “hi\” “ i a string constant which contains two double quotes, and “\”is a
character constant consisting ofa (single) single quote. Notice once again that the character constant *A’js
very different from the string constant “A”, '

2,2.3 Declarations

Informally, avariable (also called an object) is a place you can storea value, So that you can refer
fo it unambiguously, a variable needs a name. You can think of the variables in your program-as a set of
‘boxes or cubbyholes, each with a label giving its name; you might imagine that storing a value “in” a variable
consists of writing the value on a slip of paper and placing it in the cubbyhole, :

A declaration tells the compiler the name and type of a variable you’ll be using in yquf
program. In its simplest form, a declaration consists of the type, the name of the variable, and a terminating
semicolon: - o '

charc;
nti;
floatf
' You canalso declare several variables of the sam type in one declaration, separating them with
commas: - ' '
mt i1, i2; _
Later we’ll see that declarations may also contain initializers, qualifiers and storage classes, and
that we can declare arrays, Junctions, pointers, and other kinds of data structures.

The placement of declarations is significant, You can’t place them just anywhere (i.e. they cannot
be interspersed with the other statements in your program). They must either be placed at the beginning of
a function, or at the beginning of a brace-enclosed block of statements (which we’ll learn about in the next
chapter), or outside of any function, Furthermore, the placement ofa declaration, as well as its storage
class, controls several things about its visibiliry and lifetime, as we’ll see later, -

You hiay wonder why variables must be declared before use. There are two reasons:

L. Itmakes things somewhat easier on the compiler it knows rightaway what kind of storage to
allocate and what code to emit to store and manipulate each variable; it doesn’t have to try to intuit
the programmer’s intentions. -

2. Itforcesa bit of useful discipline on the Programmer you cannot introduce variables willy-nilly; you
must think about them enough to pick appropriate types for them. (The compiler’s error messages
to you, telling you that you apparently forgot to declare 4 variable, are as often helpful as they are
anuisance they’re helpful when they tell you that you misspelled a variable, or forgot to think about
exactly how you were going to use it). ‘ '

24

Although there are a few places where declarations can be omitted (in which case the compiler will
assume an implicit declaration), making use of these removes the advantages of reason 2 above, so 1
recommend always declaring everything explicitly. '

Most of the time, [recommend writing one declaration per line. For the most part, the compiler

Joesn’t care what order declarations are in. You can order the declarations alphabetically, or in the order

that they’re used, or to put related declarations next to each other, Collecting all variables of the same type
together on one line essentially orders declarations by type, which isn’t a very useful order (it’s only slightly
more useful than random order). ' :

A declaration for a variable can also contain an initial value. This initializer consists of anequals

sign and an expression, which is usually a single constant:

mi=1;
intil =10,i12=20;

2.2.4 Variable Names

Within limits, you can give your variables and functions any names you want. These names (the
formal term is “identifiers”) consist of letters, numbers, and underscores. For our purposes, names must

begin with a letter. Theoretically, names can be as long as you want, but extremely long ones get tedious to-

type after a while, and the compiler is not required to keep track of extremely long ones perfectly. (What
this means is that if you were to name a variable, say, supercalafragalisticespialidocious, the compiler might
get tazy and pretend that you’d named it supercalafragalisticespialidocio, such that if you later misspetled it
supercalafragalist icespialidociouz, the compiler wouldn’t catch your mistake. Nor would the compiler
necessarily be able to tell the difference if for some perverse reason you deliberately declared a second
variable named supercalafragatistice spialidociouz.)

* The capitalization of names in C is significant the variable names variable, Variable, and VARIABLE

(aswell assilly combinations like variAble) are all distinct.

A final restriction on names is that you may not use keywords (the words such as int and for which
are part of the syntax of the language) as the names of variables or functions (or as identifiers of any kind).

Deep sentence:
o Don’tbegin variable names with underscore, however, since library routines often use such names.

_ If you happen to pick a name which “collides” with (is the same as) a name already chosenby a
{ibrary routine, either your code or the library routine (or both) won’t work. Naming issues become very
significant in large projects, and problems can be avoided by setting guidelines for who may use which
pames. One of these guidelines is simply that user code should not use names beginning with an underscore,
vecause these names are (for the most part) “reserved to the implementation” (that is, reserved for use by

the compiler and the standard library).

Note that case is significant. Assuming that case is ignored (asitis with some other programming
languages and operating systems) can lead to real frustration.

The convention that all-upper-case names are used for symbolic constants (i.e. 28 created with the
#define directive) is arbitrary, but useful. Like the various conventions for code layout, this conventionisa
good one to accept (i.¢. not get too creative about), until you have some very good reason for altering it.

Deep sentence:

e Keywords likeif, else, int, float, etc., are reserved you can’t use them as variable names.

25

23 C Keywords

C makes use of only 32 keywords or reserved words which combine with the formal syntax to the
form the C programming language. Note that all keywords in C are written in lower case, Akeyword may
- not be used as a variable name. -

auto double int struct
break else long switch
case enum - register typedef
char exfem return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do i static while

24 Cstandard library (Header Files)

_ The Cstandard library consists of a set of sections of the ISO C standard which describe a
collection of headers and library routines used to implement common operations, such as input/output and
string handling, in the C programming language. The C standard library is an interface standard described
by a document. It is not an actyal library of software routines available for linkage to C programs. No such
implementation is properly called C standard library. '

Note that there is also the term C library, which may refer either to an informal synonym for C
standard library (e.g. “malloc is the name of a function in the C library™), a reference to a particular
implementation which provides the C standard library features and other features (e, g. “this compiler
comes with a very reliable C library for ISO C and POSIX programming™), or a generic term fora library
which has an interface for linking to C programs (e.g. “this software company offers a C library of fast
Fourier transform functions™). : : :

The term C runtime library is used on some platforms to refer to a set of base libraties, which may
be distributed in dynamically linkable form with an operating system (with or without header files), or
distributed with a C compiler. Another term sometimes used is libe, Not just any library is calied the run-
time library run time in this context means the run-time support package associated with a compiler which
is understood to make a language complete. The run-time support provides not only the C standard library
functions, but possibly other material needed to create an environment for the C program, such as initialization
priorto the invocation of the main function, or subroutines to provide arithmetic operations missing from
the CPU that are needed by code generated by the C compiler. - : '

Clibrary headers files

Name Description

<assert.h> Contains the assert macro, used to assist with detecting logical errors and other types

of bug in debugging versions of a program.

<complex.h> - A setof functions for m&rﬁpulating coniplex numbers.
<ctype.h> Contains functions used to classify characters by their types or to convert between

upper and lower case in.a way that is independent of the used character set (typically
ASCil or one of its extensions, although implementations utilizing EBCDIC are also
known).

26

<errno.h> For testing error codes reported by library functions.

<fenv.h> For controlling floating-point environment.

<float.h> Contains defined constants specifying the implementation-specific properties of the
floating-point library, such as the minimum difference between two different floating-
point numbers (_EPSILON), the maximum number of digits of accuracy (_DIG) and
the range of numbers which can be represented (MIN, MAX),

<inttypes.h> For precise conversion between integer types.

<is0646.h> For programming in ISO 646 variant character sets,

<limits.h> - Contains defined constants specifying the implementation-specific properties of the
integer types, such as the range of numbers which can be represented (MIN, MAX).

<docale.h> For setlocale and related constants. This is used to choose an appropriate locale.

<mathb> For computing common mathematical functions.

<setjmp.h> Declares the macros setjimp and longjmp, which are used for non-local exits.

<signal k> For controlling various exceptional conditions.

<stdarg h> For accéssiug avarying number of arguments passed to functions. |

<stdbool.h> For a boolean data type. |

<stdinth> For defining various integer types.

<stddef.h> For defining several useful types and macros.

Sstdio b Provides the core input and output capabilities of the C language This file includes the
venerable printf function.

<stdlib> For performing a variety of operations, including conversion, pseudo-random numbers,
memory allocation, process control, enwronment 31gnallmg, searching, and sorting,

<string.h> For mampulatlng several kinds of strings.

<tgmath.h> For type-generic mathematical functions.

<time > For converting between various time and date formats.

. <wcharh> For manipulating wide streams and several kinds of strings using wide cilamcters -key
' to supporting a range of languages.
<wetype.h> For classifying wide characters.
Summary

In this unit we have learnt about the basic concepts of C-Programming Language. We. have

discussed basic programming style in this unit through examples, Then we have learnt about the use'of. .

basic data types in C- Programming. After that we have discussed regarding various reserve keywords of
C-Programming. Then we have learnt the use of header files and different types of header files available in

C- Programming language.

27

Self - Assignments
1. WAPtoread a number and calculate its factorial.
. WAPtoread témperature in Celsius and convert it into Fahrenheit.
. WAP to read three numbers and calculate average.

. WAP o calculate the percentage of 5 subjects marks provided by user.

2

3

4. WAP to swap two numbers without using third variable.
) _

6

. WAP o calculate the area of circle.

28

Unit 3 : Input and Output

3.0 | Console Input/Output Functions
3.1 Formatted VO Functions

3.2 Escape Sequences

33 Scanset([]) Specifier

| 3.4 Unformatted /O Functions

Console Input/ Qutput Functions

The screen and keyboard together are called a console. The functions that are used to get data
from user through keyboard or display output on the screen are called Console I/O functions. Console
functlons can be divided as follows: :

/O Functions

-]

Formatied 1I/0 : Unformatted
_ Functions ' IIIO Fuanctions
Quiput Input function: Output . Input function;
function: - scanf(} function(s): getch()
putch() getche()
putchar() getchar()
puts) gets()
Formatted 1/O ,functiohs

These functions allow us to supply the input in a fixed format and letus obtain the output in the
specified format. There are a number of related functions used for formatted ¥/O, each one determining the
format of the I/O from a format string.

For output, the format string consists of plain text, which is output unchanged, and embedded

Jormat specifications which call for some special processing of one of the remaining arguments to the
function.

On the other hand on input, the plain text must match what is seen in the input stream; the format

specifications again specify what the meaning of remaining arguments is, Each format specnﬁca‘non isintroduced
by a % character, followed by the rest of the specification.

printf()

_ printf(}) is used to print or display data on the console in a formatted form. It returns the number of
characters written or a negative value if an error occurs. The printf() function is declared in stdio.h.

Syntax:

int printf (“control string”, list of variables)

[29]

The control string can contain:
e Characters that are simply printed as they are.

¢ Convetsion specifications (format specifies for different data types) that specify the data types of
variables being printed (starts with % sign)

s Escape sequences that begin with \ sign.
‘C’ Program to demonstrate use of printf() function:

/¥Purpoese: Print Hello! */
void main()

{
printf(“Hello! From C”);

}

In the above example, we are displaying Hello! From C. which is a string that has to be-displayed
as such that’s why we have enclosed that in double quotes.

How to print vaiues of variables:

To print value of a variable or variables, we need to specify format specifier in control string and
then list of variables whose values has to be displayed (separated by commas).

Example(s):

To print value of character variable:
charch="A’; _ :
printf{*“The value of chis %c” ch);

output: The value of chis A

To print value of integer variable:
int mum=10; '
printf{*The value of num is %d” num);

output: The value of numis 10

- %c specifier is used to print individual characters whereas, %d is used for integer variable. Value
would be replaced at the position of format specifier. To print values of more than one variable:

charch="A’;
int nurm=10;
printf{“Thevalue of num is %d and ch is %c” ,num, ch);

output: The value of numis 10 and chis A

Format Specifiers:
Data Type ,) Format String
Char %c
unsigned char %c
shortorint %i or %d
unsigned int ' : ‘ You

Long Yeld
unsigned long Yolu
Float %t or Yog
double lf
long double %lf
‘Scientific Notation
(E in capital used with float or double 1ype varlables) Yk
Scientific Notation
(e in lower case used with Float or double type variables) Yoe
Octal Number (used with integer) %0
Hexadecimal (used with integer) %X
To print % sign %%
Print String o%s
/*Purpose: Printf() example*/

void maing)
{

float num=798.54;

it nmumz=1941;

charch="%";

clrser();

printf{*\nNumber in Signed integer:%d” num?2);
printf{*\nNumber in Unsigned integer:%on”,;num2);
printf*“‘nNumber in floatinf point:%ef",num);

printf(‘”\anﬁber in Scientific notation(E small case).%ee”,numy);

printf(*‘\nNumber in Scientific Notation (E caps) %E”,num)

printf{*\nNumber in octal:%0”,num?2);
printf{*\nNumber in Hexadecimal :%X” num?2);
printf“nASCH value of character$:%d”,ch),
getch();

Output
Number in Signed integer:1941
Number in Unsigned integer:1941
Number in floatinf point:798.539978

Number in Scientific notation(E small case) 7.985400e+02

Number in Scientific Notation (E caps):7.985400E+02
Numberinoctal:0 '
Nurmber in Hexadecimal :0

ASCIIvalue of character$:36

[31]

Othier optional Specifiers:

Specifier Description
Dd Digits specifying field width _
Dd Digits specifying precision (number of digits after decimal) used with doublc

or float. Minus sign is used for left justifying output.

/*Purpose: Printf() example with width and precision*/

void main()

{

float num=100.5665; - | ,
int num2=12;

char st1[{201="Hello!”;

clrser(); '

printf{*Float Value with precision 3 Number : %.3fin\n” num);
printf{(*“The value of Integer with precision : %.3dwn\n” nun2);
printf{(“%s String with precision: %10.2s\n\n”,st1 st1);
printf{“Right Justified Number : %12.2finn”,num);

. printf{*Lefit Justified Number : %-12.2fin\n”,num);

Output:
Float Value with precision 3 Number : 100.566
The value of Integer with precision : 012

Hello! String with precision: = He
Right Justified Number: 100.57
Left Justified Number : 100.57

3.2 Escape Sequences:

These are mainly used for screen formatting of the output. They are always start from backslash
(V). Since \is considered as “escape character” these statements are called as escape sequences. They
cause an escape from the normal interpretation of astring, so that the next character (after\) is recognized
as having a special meaning. For example: ' E

printf{“Life\tis\tvery shortn&\ntheresitno time\n”);

output would be:
Life is very short
%

there’s notime. -

[32]

Escape sequences

Code | _ Meaning.

b _ | ..Backspace

Al S F;:;fm._Feed

n . o New Line

\r : Carriage Return
i T Horizontal Tab
Voo Double quotes
Y Single quote

\0 | o Null

\ . Backslash -

W Vertical tab

scanf{)

It is general-purpose console input routine, It canread all the built-in data types and converts
numbers into proper internal format. scanf() returns the number of data items which have successfully been
assigned a value. In case of an exror, it returns EOF.

Syntax:
scanf{ “control_string”,argument_list);

control_string determines how values are read into the variables pointed to in the argument list.
The control_string consists of format specifier, white space characters and non-whlte space characters.
The format specifiers-are same as in case of printf{). -

Important points to be remembered while using scanf() -

o The a.mpérsand (&) sign precedes the variable to be read. This is compulsory while operating on
the basic data types and optional while operating on arrays, strings etc.

o scanf() does not take any escape sequences such as \n in its first argument.

¢ We can specify the separator while getting values in more than one variable at a same time. For
example if we want to use, as separator;
scanf{“%d,%d”,&nl,&n2); /* , is separator*/
“0od%d”,&nl,&n2); /* space is default separator*/

» ltdoesn’tallow ant text to be printed in its control_statement. For example the following would be
Wrong:.
scanf(* Enter character:%c”,&ch);

To input character value

char ch;
printf(“Enter values for character”);

[33]

scani"Yoc’ &ech);
To input integer value
int num=0;
printf{“Enter a nurnber™);
scanf{*%d” &nunt);

3.3 Scanset {{]) Specifier:

It defines a set of characters that may be read by scanf() and aséigiled to the corresponding
character array. It is defined by putting the characters to be scanned for, inside the square brackets ([]).
The beginning [must be prefixed with % sign. For example the following scanset would allow scanf{) to

read only the characters aband c.

printf{(*‘Enter First Number:™;

scanf{(*%d” &num1);

Example:
void main()
{
charch;
clrser();
printf{“Enter any Character(a,bor¢).™)
 scanf{*%[abc]”.ch);
puts(ch);
getch);
}
.Example:
/* C Program: Sum of two Numbers */
void main{)
{
' intnumt,oum?2,sum=0;
| clrser();

pl‘iIltﬁ“Entef Second Number:);

scanf{“Yod”,&num?2);

sum=num-+num2;

getch();
}
34 Unformatted I/O Functions

getch(), getche() and getchar():

ail these are input functions but used for single character only. We can use these fiunctions when we

want to get one character from the user.

printf(‘l‘The sum of %d and %ad 1s %d” ,num 1 ,num?2,sumy;

[34]

Eetch() — [getche) T getchar()
Accepts Single character only | Accepts Single character only | Accepts Single character only

[t does not echo the character | It echoes the character being | It echoes the character being
being entered by user. | entered by uset. entered by user.

bt does not wait for enter key to | It doesnot wait for enter key to | It waits for enter key to-be
be pressed. be pressed. pressed. '

Fxample: char ch;ch=getch(j; Example: char chich=getche(); | Example: char chich=getchar();

gets() |
Tt is also unformatted input function but used with strings. When we want to get string from user
then we use this fimetion. '

Syntax : gets(<chatacter atray>);

When we give this command, It starts reading characters and stores in character array and terminates
when user presses entet key. Spaces are also stored while using gets() but with scanf(*%s”,<array name>)
spaces are not stored i atray.

Example:
char nm[20];
gets(nm);
or o
- scanf(“%[™Mn]”,nm); /¥ to store spaces t00*/

Example: .
/% C program forﬂgetch(),getche() and getchar(), gets() */
void main()
{
char ch,nm|20];
clrser(); |
printf(“Enter character geteh():”);
ch=getch();

printf(“Enter character getche():");

' chxgétch e();
printf{“Enter Character getchar():”);
ch=getchar();
printf(“Enter Name gets():”);
gets(nm); |
printf(*Your Name is:%0s” nm);
getch(); | ‘

{357 .

pits(}, putchar(), putch()

putchar() and putch() print a character on the screen whereas puts is used to ptint string on the
screen. : :

Syntax : putchar(<character variable>);
putch(<character variable>),
puts(<character atray> or “constant string™>);
void main()
{)
char ch,nm[20};
clrscr();
puts(“Enter character getch():”);
ch=getch();
puts(“the character you typed:™);
putchar(ch);
puts(“Enter Name gets():™);
gets(nm);
puts(“Your Name is:”)i
puts(umy;
. getch();
h
 Summary

e There are basically two types of Console Input/output functions in ‘C’ i. e., Formatted and-
Unformatted I/O/ finetions.

e printf() and scanf() functions are examples of Formatted I/O,
J géts(), getch(), getche(), getchar(), puts() and putchar() are examples of unformatted I/O..

o printf(} is used to disblay data on the screen whereas scanf() is used to read data from the user, .
‘Both functions can be used with any datatype.

* getch(), getche() and getchar() functions are used to read one character and gets() function is used
to read character array from the user.

» putch() and putchar() are used to print one character on the screen whereas to print character
array puts() function can be used.

Questions:
1. . Ditferentiate between
a. scanf() and gets()
b. formatted and unformatted /O fumctions
c. printf{) and puts()
2. Wrile a C program to demonstrate formatted and unformatted I/O functions.
- Differentiate among getch(), getche() and getchar().

(36]

Uit 4 : Decision Making & Conditions

40 Introduictioh

41 Overview of compiler and Ititerpreters

43 CProgram Structufe

43 Control Instructionsin C
43.1 Sequeilce Cortrol Instrictions
432 Selection or Decision Control Instructions
4.3.3 - Loop Coritrel litsttuctions

4.0 Introdiictiot _

“C” was developed by Dennis Ritcltie at the Bell Laboratoties isi the early 1970’s. Tt was initially
implemented on a system that tsed the UNIX operatitig System. C was the result of a development
process, which started with an oldet laigtiage BCPL, developed by Martin Richards. BPCL influenced 2
language B, Written by Ken Thottipsot, which was the predecessor of C. BPCL and B were typeless
languages wheteas C provides a variety of data types. Though, it has been closely associated with the
UNIX system, C is not tied to atily ohe operating systeii or miachine. It has been used equally well to write
major programs in many diffetesit dotiialiis. ' ,

C- AMiddle Level Language

Cis thought of as armiddle level language because it combines elements of high level languages with
functionalism of assemble language. C allows mianipulation of bits, byie and addresses-the basic elements
with which computer functions. Also C is vety portable; that is software wiitten on one machine can be
adapted to work on another machine. : ’

4.1 Overview of Compiler and In'terprete"r's _
- Aprogtam is a set of jiistructions for perfotining particular task. These instructions are just like English
words. The computer interprets the instructions asa 1’s and 0’s. The progratn written in high-level language

(or assemble language) is called source prograni. To execute the source program it should be converted
into machine language, which is called object code. Either Cotipiler or interpreter will do thi sactivity.

Interpreters: Interpreters read one lirie of a source program ata time and converts it to object
code. In case of any error, the same will be indicated instantly. ' '

Compilers: A compiler reads the entire program and conveits it to the object code. It provides
errors not of one line but errors of whole program. Only erro free programs are executed.

Compiling And Running A Program

Various stages of translation of a C program from the source code to the object code are as
follows: ' a

i) SourceCode.

The text of program, which the yser can read and written in C language. It is the input for the C
compiler. : :

i) C Preprocessor

[37]

The source code is first passed through the C preprocessor. The preprocessor acts on special
statements called directives, which start with a #. These directives are usually placed at the start of the
program, though they can be placed anywhere else.

ili) Expanded C code

The C processor expands the shorthand of the directives and produces an output. This is called the
expanded C source code and is passed to the C compiler.

iv) C Compiler

The C compiler translates the expanded code into the computer’s assembly language, which can
be understood by the computer. ' :

v) Assembly Language Code

The system’s assembler takes the code from the compiler and produces object code. This code
can be read and executed directly and provides input to the linker,

vi) Linker

The object code along with support routines from the standard library and any other separate
compiled fanctions are linked together by the linker into an executable code. '

vii) Loader

The executable code is run using the system’s loader.

Possible # luclude Source Cale
Files

Y .
COI“D |

\ 4
Libravy Files Object File

Possible other user
Genersted Ohject
Files

i Linker

¥

Executa bie Fite

Steps for Compiling and Executing ‘C’ Code

[38]

4.2 CProgram Structure

Animportant aspect of C is that it has minifal number of keywords, 32 to be precise. As mentioned
has atready been explained to the C compiler. These
rds combined with the formal C syntax form the C
ters also have added keywords to exploit the memory organisation

eartier, Keywords are the word whose meaning
keywords are listed in the table below.
programming language. Many C compi

of certain preprocessors.

These keywo

Some rules which are hiold for all programs written in C are as follows:

e All keWon‘d are lowercased.

o Ciscase sensitive i.e., do is different from DO.

e Keywords canuot be used for any other purp(}sc, that is, they &annot be used as variable or

functionname.

main() is always the first function called when a program execution begins.

Auto Double - int stract

~ Break Else long switch
Case Enum register typedef
Char Extern |, Jetum Union

" const Float ' short unsigned
continue For signed - Void
default Goto sizeof volafile
Do It * static While

Sample C Program Structure:

Include Header Section

Global Declaration Section

/* comments */

void main{)

{

Declaration Part
Executable Part

y

user-defined functions

{

13
¥

[39]

Include header file section: C program depends upon some header files for function definition
that are used in program. Each header file by default has extension .h, The header files should be included

using #include directive as given below.
| Example: #inciude <stdio.h>
| Or
#include “stdio.h”

Global Declaration Section: This section declares some variables that are used in more than one
function or that are accessible in all the functions of the current program. These are called as global variables.
These must be declared outside of all the functions.

main); Every program written in C language must contain main() function. The main() is starting
pointof every ' program. The execution of the program always starts with fumetion main(). The opening
curly bracesi.e., { and closing curly brace i.e., } of main() includes the code that has to be executed.

Declaration Section: the declaration part declares the entire variables that are used in executable
part. The initialization of variables is also done in this section, The initialization means providing initial value
to the variables. : :

Executable part: This part includes single or multiple statements tollowing the declaration of the
. variable. These statements would be executed for solving the problem.

User-defined functions: The functions defined by the user are called user-defined functions,
These functions are generally defined after main(). They can also be defined before main(). This portion is
optional. _

Comments: Comments are important but not necessary in the program. To understand the progran,
the programmer can include the comments for documentation purposes. Comments are not complied by
the compiler i.e., the compiler ignores comments at the time of compilation. They are used to specify the
purpose of the program, reasons or clarification of complex calculations etc. '

Comments are statements enclosed in /* & */ delimiters.
4.3 Control Instructions in C

Control instructions enable us to specify the order in which the various instructions in a program
are to be executed by the computer. These determine the flow of control in the program. There are four
types of control instructions present in C: ' : '

1. Sequence Control Instructions

2. Selection or Decision Control Instructions
3. Loop Control Instructions

4. Case Control Instiuctions

4.3.1 Sequence Controel Instructions ensures that the instructions are executed in the same order in
which they appear in the program. :

Example:
/* C Program: Multiplication of two Numbers */
void main()

{

[40]

int num 1,pum?2,sum=0;

cl1'3¢10;

printf(*Enter First Number;\n”);

scanf{*%ed”,&num1);

printf(“Enter Second Number:\n”);

scanf(“%od”,&num?2);

sum=num| *numZ;

printf{*The Product of %d and %d is %d” num1,num?2,sum);\’
getch(); -

All the statements would be executed sequentially in the above program.
Output: B
Enter First Number:12

Enter Second Number:2 |

The Product of 12 and 2 is 24

432 Selection or Decision Control Instructions allow the computer to take a decision as to which
instructions are to be executed.

If..else consiructs are used in these instructions.
o SimpleIf(if.... else)
o Multiple Ifsif.... else if. . ‘else)
¢ Nested If (If.. .If...else.l..)

Simple iin C
Insimpie ifthere is only one condition if evaluates to true than it would do something else something
else.
Syntaxin C.
iff <Condition>)
{
<Statements to be executed if condition evaluates to true>;
} _
élse
{ .
<Statements to be executed if condition evaluates to false>;
}

[41]

" Note: If there is only one statement in block ({ }) then we can ignore the curly braces but for
more than one statements this is compulsory to type code in between pair of curly braces({})_.

Example: To check whether the given Number is Even or Odd in C?
void main(}
_ { _
int num=0 result=0;
printf(*Enter Number to be Checked:™);
Scanf(“”/od"’,&nmn);

result=num%s2;

If(result=0)

printt{ *“ The Given Number is Even™);

else

{ | |
printf{ “ The Given Number is Odd™);

\ _

getch();

J

Multiple Ifs

Inreal life every situation may have multiple options and we have to choose only one option among
all the available options. This situation may also arise in computer programs and we have multiple ifs for
handling those situatioris. In nrultiple If, if one condition does not evaluate to true second condition may be
tried and so on. :

if (<Condition]>)
{

<Statements to be executed if Condition] evaluates to frue>;
-} B : ‘

else

if<Condition2>

{

<Statements to be executed if Condition? evaluates to true>;

} '
<Statements to be executed if neither Condition1 nor Condition2 evaluates to true>;

[42]

Note: In multiple H’s, if conditionl evaluates to true then it would not check the next condition.
Example: To Display Grade of the student according to the following conditions:
If percentage>=75 Grade would be “Distinction™ |
If percentage>=60 (but less than 75) Grade would be “1st Division”
If percentage>=50 (but less than 60) Grade would be “2nd Division”
If percentage>=45 (but less than 50) Grade would be “Pass”
Else Grade would be “Fail”
Qoid main ()
{
int Per=0;
printf{“Enter Percentage:”);
scanf(“%d”, &Per);
if (Per>=75)
printf{ “Grade: Distinction™);
else
if(Per>=60)
printf{ “Grade: 1st Division™);

else
if (Per>=50)
| printf(“Girade:2nd Division™);
else
if(Per>=45)
printf(“Grade: Pass™);
else
printf{ “Grade: Fail”); .
.getch();
;
Nested 1f:

_ Sometimes for doirig something it is necessary to evaluate more than one condition. Ifall
conditions evaluate to true than only that activity can be done. To handle such conditions in programming,
we use Nested Ifs.

if(<Condition1>)
{
if{ <Condition2>)

[43]

<Statements that will be executed ifboth Condition 1 and 2 is satisfied>;

}

else

{

<Statements that wil! be executed if Condition! is true but Condition2 is false>:

——

else

{

<Statements that will be executed if Condition] is not satistied>; .
)
Example: Arranging 3 Different Numbers in Ascen ding order. .
void main()
{
int N1=0;
int N2-0,N3=0;
¢lrser();
printf{ “Enfer Three Numbers Y
scanf(“%d %d %ed”, &N1, &N2, &N3);
If(NE>N2) |
{
iIf N1>N3)
t |
H(N2>N3)
printf(“%d%d%d”, N1, N2, N3);
els;e
printf(*%d%d%d”, N1, N3, N2);
h
else
printf(*%d%d%d”, N3, N1 . N2J;
}

| else

[44]

{

if (N2>N3)

{

if(N3>N1)

pnntf(“%d%d%d” N2,N3,Nl1);
else

printf(‘ “od%d%d”, N2, N1, N3);
\ _

else
printf(“%d%d%d”, N3, N2, N1);
) _
getch();
}

Use of logical eperators in nested ifs: We can use logical operators (&& or [) instead of nested if.

. Example: Finding maximum of 3 different numbers with logical operators.

void main()
{
~imtnt ,n2.n3;
clrser();

printf{ “Enter Three Numbers:”);
scanf(*¥ed %d %od”, &nl, &n2, &nl);
ifin1>n2 && ni>n3}

printf{*n]1 is maximum®);

else '

if(n2>n3 && n2>nl)

printf{*n2 is maximum);

else

ifin3>nl && n3>n2)

printf{*n3 is maximum’);
getch();

B

4.3.3 Laop Control Instructions: Although we.will discuss loops or iteration in the next chapter, but

right now we will learn the syntax of all three loops supported by C.

-

[45]

e whileloop
e forloop
» do...whileloop
while loop:
General syntax of while loop in Cis:
while(<Condition>)
{ |
<Statement to be executed if condition is trueﬁ;
3
Features of while loop:
» Itispre-tested loopi.e., it first checks the condition and then executes the statements.
¢ Executes till condition evaluates to true.
e Terminates when condition evaluates to false.
"o Iffirsttime condition evaluates to false, it would never be executed. |
Example: Printing series of 100 numbers (1,2,3,......... 100)
voidmain()
{
int N=1;
while(N<=100}
{
printf(“%d”, N);
N=N+1;
¥
geteh();
}
for Loop
for loop has three parts:
Initialization part: Here we can initialize the values of variables being used in loop.
Condition Part: for loop in C executes according to the cbpdition specified in this part.
increment/decrement part: After every iteration, change'ih values of variables could be mentioned here.
- All these parts could be blanked but ; is compulsory, Sowehaveto pﬁt two senu'colons(;j compusofly.
- Syntax: | | |
fdr(_ <initialization part>;<condition part>;<increment/decrement part>)

(46]

<Statement to be executed condition ew)aluates to true™>;
} |
Example: To print series of Odd numbers til1 99(1,3,5....99).
void main(}
{
intn;
for(n=1;n<=100;n+=2)
{
printf(““/od,”, n),
}
getch();
}
Features of for loop:
o Itispre-tested loop.
e Executes till condition evaluates to true.
o Terminates when condition evaluatesto false
o Iffirst time condition evaluates to false, it would never be executed.
do...while Loop:
Syntax:
do
{ -
<Statement to be executed if condition is true>;
}.
while(<Condition™>};

Same as while loop except it is post-tested loop i.€., it first executes the statement and then checks
for the condition. That means it would definitely be executed for once whether the condition is false or true
at very first time. '

Features of do...while loop:
o Itispost-tested loop. -
v Execute:ls_ltill condition evaluates to true,
¢ Terminates when condition evaluates to false

o Iffirst time condition evaluates to false still it would be executed for at-least once.

[47]

Example: Print series of Even Number tilt 100. (24 6....100)
voidmain() |
{
int N=1;
do
{
printf{“%d”, N,
N=N+1;
} while(N<=100);
getch();
3
Nested Loops

When one loop is inserted in another loop, this condition is known as nested loops. In nested loop
inner loop is executed for each change in outer loop. For example if we want 1o print triangle of stars like;

A

.
*
* %
ok ok #
LI
void main()
intLi;
for(I=1;I<=5;++)
{
for(=1;j<=Lj++)
{
printf(** “);
}
printf(“\n’);
| | | .
- getch();
}

Note: We shall discuss loops in the next unit in details.

[48]

4, Case Control Instructions:

The control statements that allow us to make a decision from the number of choices is called switch
or more precisely a switch-case —default.

Syntax:

switch(<integer variable>}

{
case constantl: _
<statements to be executed if integer variable= constant1>;
break; |
case constant2:
<statements to be f:xecuted if integer variable= constant2>;
break;
default:
<finally, if all the statements are false do this>;

}

Use of break statement:

Consider the following example:

voidmain()
{ '.
inti=2;.
switch(i)
{
case 1
puts(“case 1'\n”);
case 2 |
puts(“‘case 2\n”"),
case 3:
puts(“case 3\n”); i
case 4:
puts(“case 4\n”);
defauit:
puts(“In default case'n);
}

[49]

output:

case 2

case 3

case 4

In default case

The output is not what we expected. This is because that switch executes the case where a match

is found and all the subsequent statements and the default as well.

Break statements terminates the switch and transfer the control anyway. That’s why we use break

in switch so that when the match is found, it do the necessary action and exists from switch. Break could
also be used with loops where it terminates the innermost loop.

Continue statement is used if we want to transfer the control to the loop conditions statement,

Lets take an example, suppose I want to print all the numbers except that are divisible by 5 with continue

from 1 to 100:
void main()
{ .
int I=0;
while(I<=100)
{ .
[++;
if(1%5—0)
continue;
 printfCvd”);
¥
b

. Whenever, 1is found to be divisible by 5 then it would find .continue and it will skip all the statements

below it and transfer the control to while(f<=1 00) statement. Otherwise it would print the value of'i.

Summary

* The program written in high—level language (or assemble language) is called source program.

To execute the source program it should be converted into machine language, which is called
object code. Either Compiler or interpreter will do this activity.) ' '

Interpreters read one line of a source program atatime and converts it to object code. In case of
any error, the same will be indicated instantly.

A compiler reads the entire program and converts it to the object code. It provides errors not of
one line but errors of whole program. Only error free programs are executed. - ‘

The object code along with support routines from the standard library and any other separate
compiled functions are linked together by the linker into an executable code,

[50]

The preprocessor acts on special statements catled directives, which start with a #.

Control instructions enable us to specify the order in which the various instructions ina program
are to be executed by the computer. These determine the flow of control in the program.

The control statements that atlow us to make a decision from the numbes of choices is called switch
or more precisely a switch-case —default.

Questions!

1.
. Differentiate between simple if and multiple if with suitable example,

. Write a “C” code to arrange three numbers in descending order.

Explain different types of control statements of C.

2
3.6 What is a putpose of break statement?

4. 'Why do we use continue statement?

5. Whatis the purpose of default keyword in switch.
6.
7
8
9

Switch can be used in place of multiple ifs. Proof this statement with suitable example.

. Whrite a note oh compiling and executing C program.

. Write a “C” code to check whether the given year is leap year or not.

10. Write a“C” code to check the zodiac sign of given date of birth.

[51]

Unit 5 : Looping
| Structure of the Unit
5.0 - Objective
5.1 Introduction
5.1.1 Whileloop
5.1.2 Forloop
5.1.3 Do whileloop
5.2 Break and continue
53 Programming examples
54 SelfLearning Exercise
55 Summary '
5.6 Further Readings
- 5.7 Answer to Self Learning Exercise
5.8 Unit End Questions

50 Objective

Atthe end of the chapter you should be well informed about different types of loops available in C
and withthe helpof the given programming examples to implement the loops, you must be able to write
various loop based programs in C.

5.1 Introduction

Many times we want to do something a lot of times. An example would be printing a character at
the beginning of each line on the screen. To do this you would have to type out 24 printf commands
because there are 25 rows on the screen and the 25th row will be left blank. We canusea loop to do this
for us and only have to type one printf command. -

So loops are used to repeat a block of code. Being able to have your program repeatedly execute
ablock of code is one of the most basic but useful tasks in programming — mény programs or websites
that produce extremely complex output (such as a message board) are really only executing a single task
many times. (They may be executing a small number of tasks, but in principle, to produce a list of messages
only requires repeating the operation of reading in some data and displaying it.) Now, think about what this
means: aloop lets you write a very snmple statement to produce a significantly greater result simply by
repetition.

Most real programs contain some construct that loops within the program, performing repetitive
actions on a stream of data or a region of memory.

Following are basic loopsavailable in C:
1. while loop
2. forloop
‘3. do while loop

[52]

8.1.1 Thewhile loop

_ The while loop is used when you don’t know how many times you want the loop to run: You also
have to always make sute you initialize the loop variable before you enter the Joop. Another thing you have
to do is increment the vatiable inside the loop, Following is the syntax for while loop.

while (expression)

...block of statenients to execute...
\ _ _

- The while loop contihues to loop while some condition is true, which is given in the form of
expression i the syntax. When the condition becomes false, the looping is discontinued, The condition
is tested upon entering the loop. - ' .

Here is an exammiple of a while loop that runs the amount of times that the user enters:
#include<stdio.h>
int main()
{
int i,times;’
scanf(“%d” ×);
i=0,
while (i <= times)
{
it+;
printf(“%d\n”,i);
}
return 0;
¥
5.1.2 Theforloop

The for loop lets you loop from one number to another number and increases by a specitied
number each time. This loop is best suited for the problems where we know exactly how many times
we need to loop for. The for loop uses the following structure:

for (expression_1; expression_2; expression_3)

{

...block of statements to execute...
Where expression_1 is starting number, expression_2 is loop condition and éxpression_3is
‘inCrease variable . '

With loops you also have to put statements to be executed between curly brackets if ﬂlere isimore
than one of them. Here is the solution to the problem that we had with the 24 printf commands:

#include <stdio.n)
int main()
d

[53]

inti;
for (i=1;1<=24;i++) .
printf(“Hwn™);
return O; _ : _
b | | | |
A for loop is made up of three parts inside its brackets which are separated by semi-colons.
The first part initializes the loop variable. The loop variable controls and counts the number of times
a loop runs. In the example the loop variable is called i and is initialized to 1. The second part of the
for loop is the condition a loop must meet to keep running, In the example the loop will run while i
is less than or equal to 24 or in other words it will run 24 times, The third part is the loop variable
. incrementer. In the example i++ has been used which is the same as saying i =i + 1. This is called

inicrementing. Each time the loop runs i has 1 added to it, It is also possible to use i— to subtract 1
from a variable in which case it’s called decrementi_ng.

The for loop is a special case, and is equivalent to the following while loop:

expression_1;
while {expression_2)

{

...block of statements...
~ expression_3;

For instance, the following structure is often encountered:
i = initial_i; '
while (i <= i_max)

{

...block of statements...
i=1+1i increment;

This structure may be rewritten in the easier syntax of the for loop as:
for (i =initial_i;1<=i_max;i=1+1 increment)
{ _

..block of statements... *

}
5.1.3 The do while loop.

The do while loop 1s the same as the while loop except that it tests the condition at the
bottom of the loop. ‘ '

#include<stdio.h> ' ' .
int main()
{

int itimes;

[541]

scanf{“%d” ×);
i=0;

do

{

1+
printf{*%d\n”,i); .
}
while (i <=times);
return O;
 Theappropriate block of statements is executed éiccor_dirig to the value of the expression, compared
with the constant expressions in the case statement. The break statements insure that the statements in the
cases following the chosen one will not be executed. If you would want to execute these statements, then
you would leave out the break statements. This construct is particularly useful in handling input variables.
6.2 Breakand c‘ontiﬁ&i_e o . ' '
Infinite loops are possible (e.g: for(;;)), C pefmits you to write an infinite loop, and provides the
break statement to breakout of the loop. '

You can exit out of 2 loop at any time using the break statement. This is useﬁnl when you wanta
loop to stop running because a condition has been met other than the loop end condition.
#include<stdio.h> .
int main() '

{
inti;
while (i < 10)
{
i+
ifi=5
- break;
}
return 0; -
}
| You can use continue to skip the rest of the current loop and start from the top again while

incrementing the loop variable again. The following example will never print “Hello” because of the
continue. ' _

#include<stdio.h>

int main()

{
inti; .
while (i < 10)

[55]

{

i++;
continﬁe;
printf{“Hello\n™);
}
return O;
6.3 i’rogramming examples

Following are some example programs to print the various patterns using loops ;

Pattern 1 :
1
121
12321
_ 1234321

Program : -

#include<stdio.h>

#include<conio.h>

Void main()

{ int1, j, n; .
printf(“Please enter number of the rows to be print™);
scanf(*%d”, &n);
for(i=1;1<=n;i++) /*for counting the rows */

{ for(j=1;j<=n-i;j++) /*for coi.lnting the spaces */
pmfey,
for(j=1;j<=i;j++) /* for the printing of first half */
printf“%2d”j), © ' |
for(j=i-1;j>=1;j—) /* for the printing of second half */
printf{“%62d"j);
printf*\n”);

} .

getch();

¥

Pattern 2 :

1
212
32123
4321234

Program :

#mclude<stdio.h>

#include<conio.h>

-~ Void main()

[56]

{ int1,j, n;
printf{(*Please enter number of the rows to be print™);

3

scanf(*“%ed”, &n);
for(i=1:i<~n;i++) /*for counting the rows */
{ for(j=1;j<=n-isj++) /*for counting the spaces */
Printﬁt(f-ﬁ);
forG=g=15—)
printf(*%ed”j);
for(=2;j<=1j++}
printf(*“%d” j);
printf{*4n”);
}
getch();
Pattern 3 : _
' 1
121
12321
‘ 1234321
Program :
#include<stdio.h>
#include<conio.l>
Void main() '
{ int i, j, n;
printf(“Please enter number of the rows to be print”);
scanf(“%d”, &n);
for(i=1;i<=n;i++) /*for counting the rows *f
{ for(j=1;j<=i;j++)
printf(“%d “j);
for(j=i-1;j>=1;j—)
printf(*%d”j);
printf(*‘\n’);
}
getch();
} .
Pattern 4 :
) o ol ok o ok
*
*
*
%
L RS 2R]

Program :
#include<stdio.h>
#include<conio.h>
Void main()
{ mti, n;
printf{*Please enter number of the rows to be print™);
* scanf(“%d”, &n);
for(i=1;i<m;i++) /*for counting the rows */

 printfer
for(i=1;i<=n;i++)
{ printf{"**);
printf*\n”); '
}
for(i=1;i<=n;i++) - : R
_ printf{**7);
getch();
}
\
Pattern’5 :
*
ok
ook
_ . ****1
1 SETITYT’
Program : -
#include<stdio.h>
#indlude<conio.h>
Void main()
{ inti, j, n;

printf{“Please enter number of the rows to be print”);
scanf(“%d”, &n); '
for(i=1;i<=n:i++) /*for counting the fows */
{ for(=1;j<=ij++)

- printf(“*7);

printf{(*dn);

}
geich();

[58]

5.4

Self Learning Exercise

Multiple choice questions

1.

Execution of a break statement in the body of a while loop
[a.] causes the program to terminate.
[b.] causes the current iteration of the loop to terminate and the next iteration'to begm
[c.] causes the loopto terrmnate ancl the statement aﬂer the body of the while loop to be executed next. '
[d.]None of the above. _ _ '
Execution of a contmue statement iri the body ofa for loop
[a.] causes the program to terminate.

[b] causes the current iteration ofthe loop to termmate and the next 1teratlon to begin.

e] causes the loop to termmate and the statement after the body of the while loop to be executed'

. next

.[d] None of the above

Determme the. output of the fol lowmg code

Cinta= 5 b=4,¢6= =15
: 1f (a <b+ l) {
_ prmtf(“Tea, Earl Grey, Hot'\n”) -
. }elself(a>b+c){ o
' pnntf(“Ahead warp factor 9 Engage'\n”) ;
}else1f(a%b>—c){ _ _
prmtf(“Warp core breach in 20 seconds'\n”) ;
} else{ - B
' prmtf(“l sense a Iot of anx1ety in this room \n”)
3 -
[a] Tea, Earl Grey, Hot' _
[b.] Ahead warp factor 9. Engage'
. [c.} Warp core breach in 20 seconds' _.

[d.] I sense a lot of anx1ety m this room.

What is the effect of the following code?

« int i, total ;
for(x—l 1<—15 1-—1+1)
t
if (1% 3==10)
{

¥
. pnntt‘(((%d “’ l) ; .

-

[59]

printf“n'el); S
[a.] It prints out the integers from 3 to 15.
[b.] 1t prints out the multiples of 3 from 3 to 15,
[c.] Tt prints out the sum of the ihtegérs from 310 15,

[d.] Tt prints out the sum of the multiples of 3 from 3 to 15.

5.5 Summary

This chapter starts with the introduction of the loops, After this, various Joops, while..do, for
and do..while are discussed with break and continue statements with their syntax and programming
examples in C. In next section various exampie programs are given for the better understanding of
the loops. And at the end questions are given for the self assessment, o

5.6 Further Readings
e Programming inC :- Balguruswamy, Tata McGraw-Hill Publlcatlon
e The C programming Lang., Pear son Ecl :- Dennis Ritchig, Prenti(,e HA], Dclhl
o _Letus C :- Yashwant Kanetkar, B_PB publication

3.7 Answer to Self Learning Exercises

Question Answer | Quc-é.tion_' Answey |
o c | 3 ' c
2 b - : 4 B b

58 Unit End Questions
1. Write short note on
(a) for loop
“(b) continue-break statement

2. State the difference between while and do-while.

3. Write a C program to calculate factorial of a given number,
4. Write a C program to print Armstrong mumbers from 1 y.ol 500.

[60]

Unit 6 : Arrays

Structure of the Unit
6.0 Objective
6.1 Introduction
6,1.1 Declaration of arrays
6.1.2 Initialization of arrays
6,2 Moulti dimensional arrays
6.2.1 Row-major and column-major ofder
6.2.2 Iiﬁtialization of multidimensional arrays
63 Sorting
6.3.1 Bubble Sort
6.3.2 S@lection. Sort
G4 Btrings
6.5 String Operations
651 string.h
6.5.2 strlen function
6.5.3 streat function
6.5.4 stremp function
6.3.5 stropy function
6.6 * SelfLeaming Exercise
6,7 Summary |
68 Further Readings _
6.9 Answer to Seif Leaining Exercise .
6,10 ~ Unit End Questions

60 Objective

At the end of the chapter you should be well informed about arrays in C and the declaration and
use of one and multidimensional arrays in C. With the help of the given programming examples to
implement the arrays, you must be able to write various array based programs inC.

6.1 Introduction

The C language provides a capébility that enables the user to define a set of ordered data items
-known as an array. ' ' -

Suppose we had a set of grades that we wished to read into the computer and suppose we wished
to petforni some operations on these grades, we will quickly realize that we cannot perform such an

[61]

operation until each and every grade has been entered since it would be quite a tedious task to declare
each and every student grade as a variable especially since there may be a very large number.

In C we can define variable called grades, which represents not a single value of grade but a entire
set of grades. Each element of the set can then be referenced by means of a number called as index number
or subscript. :

6.1.1 Declaration of arruys:

Like any other variable arrays must be declared before they are used. The general form of
declaration is: _ ' -

Data type array-namefsize];

The type specifies the type of the elements that will be contained in the array, such as mnt float
or char and the size indicates the maximum number of elements that can be stored inside the array for
ex: : ' '

- floatweight[20]; -

, Declares the weight to be an array containing 20 real elements. Any subé'c_ri'pts 0 to 19are
~ -valid. In C the array elements index or subscript begins with number zero. So wei ght [0] refers to the
firstelement of the array and the declaration will reserve 20 continuous memory allocations and can’

e referred as weight[0], weight{1], weigh{2] and so on.

_ - As-individual array element can be used anywhere that-a normal variable with a statenent
such as’ '

g.z_ grade [50}; e _ .

The statement assigns the value storéd in the 50th index of the array to the var_iable g
‘More generally if [is declared to be an integer variable, then the statement g=grades [I]#
Will take the vatue contained in the eleément '_number I of the grades array to assign if to g. so

if I were equal to 5 when the above statement is executed, then the value.of grades {5} would get
assigned to g. - o ' _

_ The C system needs declaration information to identify the type of the values stored in an
array and the information in order to determine how much memory space fo reserve for the particular
array. '

The declaration int values[10]; would reserve enough space for an array called values that could
hold up to 10 integers. Refer to the below given picture to conceptualize the reserved storage space.
values[(] |
values[1]
valuesf2]
values[3]
valuesf4)
values[5]
values[6] -
values{7)
values[§]

values{9]

[62]

6.1.2 Imitialization of arrays:

We can injtialize the elements in the array in the same way as the ordinary variables when they
are declared, The general form of initialization of arrays is:

The values in the list care separated by commas, for example the statement
int numberf31={0,0,0],

Will declare the array size as a array of size 3 and will assign zero to cach element if the
nunber of values in the list is less than the number of elements, then only that many elements are
initialized. The remaining elements will be set to zero automatically.

In the declaration of an array the size may be omitted, in such cases the compiler allocates
enough space for all initialized elements. For example the statement

int counter[J={1.1,1,1};

A value stored into an element in the array simply by specifying the array element on the left
hand side of the equals sign. In the statement: :

grade {100]=50;

The value 50 1s stored into the element number 100 of the‘ grade array.

The ability to represent a collection of related data items by a single array enables us to

develop concise and efficient programs. For example we can very easily sequence through the elements -

in the array by varying the value of the vatiable that is used as a subscript into the array. So the for
loop '
)

For(i=0;i<50;+i)

sum = sum + grades {il;

will sequence through the first 50 elements of the array grades (elements 0 to 49) and will
add the values of each grade into sum. When the for loop is finished, the variable sum will then
contain the total of first 50 values of the grades atray (Assuming sum were set to zero before the
loop was entered).)

The inttiatization of arrays in ¢ suffers two draw backs o
1. There is no convenient way to initialize only selected elements.
2. There is no shorteut method to initialize large number of elemnents.

/* Program to count the no of positive and negative numbers*/
#inchude< stdio.h > '
void main()

intaf5 O],n_,count_peg—*-‘-O,couni_pos:O,i;
printf(“Enter the size of the arrayn”);
scanf{*“Yod”,&n); -
printf{“Enter the elements of the arrayn”);
for i=0:1 < n;i++) -

[63]

scanf(*%ed” &ali});
for(i=0;i <m;i++)
t

if(afi] <0)
count_neg--+;
else

count postt;

T
¥

printf(“There are %d negative numbers in the arlayn”,éount__neg);
printf(“There are %d positive numbers in the arrayn”,count_pos);

}

6.2 Muiti dimensional Arrays:

Often there is a need to store and manipulate two dimensional data structure such as matrices
and tables. Here the array has two subscripts. One subscript denotes the row and the other the
column. The declaration of two dimension arrays is as follows: :

data_type arrayﬂname[rpw_'size] [column_size];
int m[10}{20] '.
Here m is declared as a matrix having 10 rows(numbered from 0 to 9) and 20

- columns(numbered 0 through 19). The first element of the matrix is m[0][0] and the last row last
column is m{9]{19] ' .

6.2.1 Row-major and Column-major order

In computing, row-major order and colnmn-major order describe methods for storing
multidimensional arrays in linear memory. Following standard matrix notation, rows are identified by
the first index of a two-dimensional array and columns by the second index.

In row-major storage, a multidimensional array in linear memory.is accessed such that rows
are stored one after the other. It is the approach used by the C programming language as well as
many other languages.

When using row-major order, the difference between addresses of array cells in increasing rows is
larger than addresses of cells in increasing columns. For example, consider this 23 array:

[1 2 3]

4 5 6

An array declared in C ag
int AR21[3] = { 11,2, 3}, {4, 5,6} };

would be laid out contiguously in linear memory as:
123456 |

-+ Column-major order is a similar method of flattening arrays onto linear memory, but the
colunmns are listed in sequence. The programming languages FORTRAN uses column-major ordering.
The array ' :

[64] |

1 23

4 5 6

if stored contiguously in linear memory with column-major order would look like the following:
142536 ' '

Flements of multi dimension arrays:

. A two dimensional array marks [4]([3] is shown below figure. The first element is given by
tarks [0}[0] contains 35.5 and second element is marks {0]{1] and contains 40.5 and so on.

matks [0][0] 35.5 marks [0]{1]40.5 ' marks [0}[2]45.5
marks [1][0] 50.5 marks [1][1]55.5 - marks [11{2]60.5
marks [2)[0] marks [2][1] marks [2][2]
marks {3][{0] marks [3][1] © marks [31[2]

6.2.2 Initialization of multidimensional arrays:

" Like the one dimension arrays, 2 dimension arrays may be initialized by following their
declaration with a list of initial values enclosed in braces.
Example: |

int table[2][3]=(0,0,0,1,1.1};

_ Initializes the clements of first row to zero and second row to 1. The initialization is done
- row by row. The above statement can be equivaiently written as
int table[21[3)-{{0.0.01. {1113} :
/* Program to read the matrix*/
#include< stdio.h >

void main()

{

int a[3][3],i1,m,iJ; :
printf(“Enter the number of tows in the matrix™);
scanf(*%d”,&n); "
printf(“Enter the number of columns in the matrix™);
scanf{“%d”,&m);
printf(“Enter the matrix elements”);
for (i=0d <mjit+) | |
tor(05<m;j 1)
scant(*“%ed” &afi]li]);
3
6.3 Sorting

Sorting is the process of arranging data into meaningful order so that you can analyze it more
effectively. For example, you might want to order sales data by calendar mouth so that you can
produce a graph of sales performance. You can use Discoverer to sort data aé follows:

1651

« sorttextdata into alphabétical order

« sort numeric data into numerical order _ |

¢ group sortdata to many levels, for example, you can sort on City within Month within Year
6.3.1 Bubble sort

The simplest sorting algorithm is bubble sort. The bubble sort works by iterating down an
array to be sorted from the first ¢lement to the last, comparing each pair of elements and switching
their positions if necessary. This process is repeated as many times as necessary, until the array is
sorted. Since the worst case scenario is that the array is in reverse order, and that the first element in
sorted array 1s the last element in the starting array, the most ex changes that will be necessary is equal
to the length of the array. Here is a simple example: Given an array 23154 a bubble sort would lead
to the following sequence of partially sorted arrays: 21354, 21345, 12343, First the 1 and 3-would he
compared and switched, then the 4 and 5. On the next pass, the { and 2 would swi tch, and the array
would be in order. ' ' '

The basic code for bubble sort looks like this, for sorting an integer array:

for(int x=0; x<n; x++) - |
{ |
for(int y=0; y<n-1; y-++) |

{ - |
it{array[yParray[y+1]) |

(' '

{ I
int temp = array[y+1]; }
array[y+11 = arrayly); |

I
I
I
I
I

e

|
I
I
|
I
!
I
I
!
|
|
|
|
I
!
!
L

Note that this will always loop n times from 0 to n, so the order of this algorithm is O(n"2).
6.3.2 Selection Sort ' '

Selection sort is the most conceptually simple of all the sorting algorithms. It works by
selecting the smallest (or largest, if you want to sort from big to small) element of the array and
placing it at the head of the array. Then the process is repeated for the remainder of the array; the

next largest element is selected and put into the next slot, and so on down the line.

Because a selection sort looks at progressively smaller parts of the array each. time (as it
knows to ignore the front of the array because it is already in order), a selection sort is slightly faster

than bubble sort, and can be better than a modified bubble sort.

[66]

Here is the code for a simple selection sort:
[o e e e e B ek e e o s S T S P s T T e S T e T e e e e -1
| for(int x=0; x<n; x++) :
I , |
I K
I
: mt index of min= l
} for(int y=x; y*:n;-y-F"l‘) :
| . . L |
, oo , | _i
: if(array[index_of minjrarrayly]) : :
1 : . i
3 . index of min=y; |
] N : : |
N SRR * |
I o i
| ¥ I
P : . I
| ~ int temp = array[x]; | [
E ' ar rav[x] ----- -array[index_of min}; %
: array[mdex_p‘f_ _min] = temp: {
l) R : |
e e o o o e e et e e e 2 et i a2t e o e e it e e 4 »

The firstloop goés_from 0 to n, and the second loop goes from X to n, so it goes from 0 to n, then
from | ton.then fro_m 2 tonand so on. The multiplication works out so that the efficiency s n*(1/2), though
the order is still O(2). ' '
6.4 Strings

Astring is a sequence of characters. Any sequence or set of characters defined within double
quotation symbols is a constant string. In C, many times it is required to do seme meaningtul
operations on strings they are: - ' ' '

Reachn" and dlsplaymg s’mngs _

; o '_ Comblnmg or concatenatmg stnngs .
e Copymg one sirmer to another. P
e C omparmg st:rmg and checkm&, whether they are equal
e Extraction of a portionof a string - ’

‘Strings are stored in memory as ASCII codes of chal acters that make up the string appended
w1th a0’ (A%CII value of null). N01 ma]ly each chalactel is stored in one byte successive characters
are stoned in successwe bytes ' : -

\0

1= T

Charac_tcb a| b - c o d e | o

| The last chﬁfacter 15 the nuil Cl]_é}i"acter ha\firig ASClI value zero.

[67]

Enitializing Strings _
Following the discussion on characters arrays, the initialization of a siring must the tollowing form
which s simpler to one dimension array.

charmonthl[]={4’,’a’, 0’ ’w’,’a’, ',y)

Then the string month is initializing to January. This is perfectly valid but C offers a special way to
initialize strings. The above string can be initialized char monthi{}="January™; “The characters of the string
are enclosed within a part of double quotes. The compiler takes care of string r enclosed within apairof a
double quotes. The compiler takes care of storing the ASCII codes of characters of the string in the
memory and also stores the null terminator in the end.

/*String.c string variable*/
#include <stdioh> .
e

¥
L

char month{i5]);

printf (“Enter the string”);

gets (month);

printf (“The string entered 1s %os” month),

} .
In this example string is stored in the character variable month the string is displayed in the statement.
printf{(*The string entered is %s”, month™);

String is one dimension array. Each character occupies a byte. A null character (\0) that has the
ASCIl value 0 terminates the string. The figure shows the storage of stri mg January in the memory recall
that \0 specifies a single character whose ASCII value is zero.

J

R B [el R

\0

Character string terminated by a null character \0°. A string variable is any valid C variable name
and is always declared as an array. The general form of declaration of a string variable is char
btnng,_name[mze]

The size determines the number of characters in the stung name.

[68]

Example:

char nj_onth[IO]; char address{100]; | _

The size of the ﬁrmy should be one byte more than the actual s.pacc occupied by the string since the |
complier appends a null character at the end of the string. -
Reading Strings from (e terminal:

The function scanf with %s format specification is needed to read the character string from the
terminal.

Ixample:
- Char address[15];
‘scanf{*%s” address);

Scanf statement has a draw back it just terminates the statement as soon as it finds a blank space,
suppose if we type the string new york then only the string new will be read and since there is a blank space
after word “new”” it will ferminate the string. :

Note that we can use the scanf without the ampersand symbol before the variable iame. In many
applications itis required to process text by reading an entire line of text from the terminal.

The function getchar can be used repeatedly to read a sequence of successive single characters
and store it in the array.

We cannot manipulate strings since C does not provide any operators for string. For instance
we cannot assign one string to ancther directly.

For example:
String="xyz";
String1=string?2;

Are not valid. To copy the characters in one string to another string we may do so on a
- character to character basis. S

Writing strings to screen:

The printf statement along with format specifier %s to print strings on to e screen. The
format %s can be used to display an array of characters that is terminated by the null character for
example printf(*%s”,name); can be used to display the entire contents of the array name. Function
puts is also used to display the string, but it prints unformatted string only. Like : puts(“hello”);

Arithmetic operations on characters:

We ce:y.lso manipulate the characters as we manipulate numbers in € language. When ever
the system gucounters the character data it is automaticatly converted into a integer value by the
system. We can represent a character as a interface by using the following method.

X="a’";

Printf(*%d\n”,X); . : _

will display 97 on the screen. Arithmetic operations can also be performed on characters for
example x="z’-1; is a valid statement. The ASCII value of ‘2" is 122 the statement the therefore will
assign 121 to variable x.

[69]

-

It is also possible to use character constants in relational expressions for example ch>"a’ && ch <
=z’ will check whether the character stored in variable ch is a lower case letter. A characier digjt can also
be converted into its equivalent integer value suppose un the expression a=character-* 1°; where a is defined

~asan integer variable and character contains valtue 8 then a= ASCII value of 8 ASCII value *1’=56-49=7,

We can also get the support of the C library function to converts a string of digits into their ‘equivalent'
integer values the general format of the finction in x=atoi(string} here x is an integer-variable and string is a
character array containing string of digits,

6.5 String operations
6.5.1 string.h

C language recognizes that string is a different class of array by letting us input and output
the array as a unit and are terminated by null character. C library supports a large number of string
handling functions that can be used to array out many of the string mampulanons such as:

Length (number of characters in the str ing).
Concaténtation (adding two are miore strin 23)
Comparing two strings.

Substring (Extract substring from a given string)
Copy(copies one string over another)

¢ & & & @

To do all the operations described here it is essential to include string.h library hect(lcn file in
the program.

6.5.2 strlen() function:

This function counts and retums the number of char acters in a string. The length does not
include a null character. :

Syntax n=strlen(string);
where n is 111teg:,er variable.'Which receives the value of length of the string,
anmple .
_ length==str]en(“I-Iollywood”);
The function will assign number of characters 9 in the string to a integer variable length. R

Hwrite a ¢ program to find the length of the string using btlleﬂ() function*/
#include < stdio.h >
include < string.h>

void main()

]
I3

char name[1007;

int length;

printf(*‘Enter the string”);

gets(hame);

length=strlen(name});

printf(“\nNumber of characters in the string is=%d”,length);

¥

L - .
T L ST TR

[70]

653 streat() function:

when you combine two sirings, you add the characters of one string to the end of other string. This
process is called concatenation. The streat() function joins two strings together. It takes the following form

streat(string1,string?)

string] and string? are character avrays. When the function streat is executed string2 is appended
. tostring]. the string at string? remains unchanged.

Example
strepy(stringl,”’sti”); -
stropy(string2,”’Bhagavan™);
Printf(*%s” strcat(string 1,string2);

From the above program seginent the value of str mgl becomes ST 1bhagavan The string at str2
remains unchanged as bhagawan. :

6.5.4 strcmp function: |
In ¢ you cannot directly compare the value of 2 strings in a condition like H{string1==string2)

* Most libraries however contain the strcmp()" function, which returns a zero if two strings are
equal, or a non zero number if the strings are not the same. The syntax of stremp() is given below:

stremp(stringl,string?2)

String] and string? may be string variables or string constants. String1, and string2 may be
string variables or string constants some computers return a negative if the string] is alphabeticaﬂy
less than the second and a positive number if the string is greater than the second.

Example:
stremp(“Newyork”,”Newyork™) will return zero because both strings are equal.

str(,mp(“‘thelr” “there”) will return a 9 which is the numeric difference betweenASCH ‘t"and
ASCII ’r

_ strcmp(“The”, “the”) will return 32 which is the numeric difference between ASCII “T” and
ASCIT ™.

6.5.5 strepy{) functio.n'

C does not a]low you to asugn the characters to a sumg:> dlrec,Ll} as in the statement
name"”Robelt” : '

Instead use the strcpy() functlon foundin most compllers the syntah of the function is illustrated
below. : _

strepy(stringl, sh‘i11g2)'

“strepy function assigns the: contents of st11ng2 to strmgi strmg2 may be a character array
variable or a string constant. :

strepy(N ame,”Robert BN

Inthe above example Robert is assigned 1o the string called name, -

L71]

6.6 Self Learning Exercise
Multiple choice questions

1. What will happen ifin a C program you assign a value to an array element whose subscript exceeds
the size of array?

[1]. The element will be set to 0.
[2) The compiler would report an error.
[3]. The program may crash Iif some important data gets overwriiten.
[4) The array size would appropriately grow.
2. int a[20]; 5
In the above declaration index will vary from
[a] 0to 19
[b] Ito20
[e] 1019
| [d] None of the above.
3. At the end string stores
) o
[5] 0
[e] ©°
[d] None of the above.
4, Bubble sort arranges array elements in
fa] onlyinascending order.
[b] onlyin descending order
[c] inboth the orders
[d] none ofthe above
6.7 Summary

This chapter starts with the introduction of the arrays. After this, declaration and type of
arrays are discussed with example, in addition to this how array elements can be accessed is also
discussed. In next section various sorting - methods are given for the better understanding of the
arrays. At the end strings are discussed with various built-in string functions.

7.8 Further Readings
s Programming in C :- Balguruswary, Tata McGraw-Hill Publication.
e The C programming Lang., Pearson Ecl :- Dennis Ritchie, Prentice HAll, Delhi.
e LetusC:- Yashwant Kanetkar, BPB publication

[72]

6.9 Answer to Self Learning Exercises

Question Answer Question
i ¢ 3
2 a 4.

6.10 Unit End Questions
1. Write shott note on
(a) Multi-dimensional array
{(b) stings
| State the difference between strerp and stmpy functions. :

nooR W

Write a C program to find the sum of two matrices.

Write 2 C program to find the frequency of a word *is’ in a string.

Answer

Write a C program to find the maxinmum number from a list of numbers.

Unit 7 ; Introduction to Functions

Structure of the Chapter
7.0 Objective
7.1 Introduction
7.1.1 Function prototype and declaration
7.1.2 Callinga Function
7.1.3 Return étatement
7.2 Scopeof furlction variables -
7.3 Storage Classes o
7.3.1 Automatic
7.3.2 Extemal
733 Static
7.3.4 Register

7.4 Sample Programs using functions

7.5 Functions with array

7.6 SelfLearning Exercise

7.7 Summary _

7.8 Further Readihgs |

- 7.9 Answer to Self Lc_amling Exercise. -

7.10 UnitEnd Questions

7.6 {}b;emve

The ob;echve of the chapter is to mtroduce the concept of modular p1 ogrammmg Afrer completmg-' S
this chapter you will be fam_lllal with funcnons inC, Tn addltlonto mtroductlon you will also be informed
about function declaration, parameter pa ssing and oalhng of function etc. With the heip of the given
pmc,lammmg e\amp!n, to 1mploment the ﬂmctxons, youy w1ll be able to wme vanous funotlon basod programs

7.1 Introducuon o

Functions: allow compllcated prog:ams to be dmdod mto smaIl blocks each of wh1oh iseasier to
write, read, and maintain. Programs inreal life apphcahons are very large mterms of size, so it becomes
very complex to handie these programs; Fun(,tlons are solution to thi fs_tllgy_pmde modularity to the -
program, Complex programs can be divided into qmaller parts known. as subprograms, and Spemﬁcally n
C these are kriown as funcnon Tlus method of dmdmg complete program 1nto smaller modules is known .
as modular pmgrammmg SRR . R :

[74] o

Advantages of modular programming :

1. Ttiseasiertotestand debuga long program by testing and debugging the individual modulesin the
program. '

2. A modul'u promam is casmr 10 undcrstand

LS I

Itiseasier to mod1fy a modular program by modlttcatlon ot replacement of 1nd1v1dual modules
_ _w1thout upsettmg the ent1re plogram S RS
4. The pr oglammer s output IlTCl ¢ases mamf 1d, bee'mse each mdmdual module ean be developed :
S sepa1 ately in lsolatlon "J hus palailel designing of the moclules speeds up the program design
- jobs. \ _ :

5. 'Ihe' modules. approaeh of de51gmng the programs enhances the readablllty of the programs

6. Modules canbe developed in Orenel '1l way $0 that these.can be used with other programs In
o -thlS way, a 11brary of standald and commonly used modules ean be developed for future use.

S 5 Functlons are self contamed ptog_,ram seg,ments that car 13! out some spec1ﬁc, well deﬁned'
'_ task Every C program must have a funiction. One of the fuuctlons must be main().

hxecuuon of program will always begm by earrymg out the mstruetlons in ttmctlon mam()
Addltlonal ftmettons Wlll be submdmate to mam() and also {0 one another N :

There are two types ot tunettons nC:

_ lerary Function : These functions are predeﬁned inC l1brary and need is Just to. melude _
' the library. o _ ' _
' " User Defined ¥ unctmn ‘These needs to be developed by the proglammel at the time of
program wrltm;, as. per. the 1equtre1nent
7 1 1 Functmn declaratnon .md prototype -

There are two mam parts of the- functmn '

The functlon header and the functlon body

- int sum(mt x mt y)

o int ans% 0; f/holds the answer that w1ll 'oe retumed' o
Cans=x by //ealeulatethe sum - |
returna.ns /}’retumthe answer -
3

Function Header . _ e o
- Inthe ﬁrst lme of the above eode a
: int sum(mt x, int y) '
It has tlnee main parts o
The nane of the funetton i. e Sum.
2 The parameters of the tunetlon enelosed in pa1anﬂ1e51s

3 Return Value type Le. mt

'_[751_"'

Function Body |
What ever is written with in { } in the above example is the body of the function.
Function Prolotypes

The prototype of a function provides the basic information about a function which tells the compiler
that the function is used correctly or not. Tt contains the same information as the function headet contains.
The prototype of the function in the above example would be like '

int sum (int x, int y);

The only difference between the header and the prototype is the semicolon ; there must the a
semicolon at the end of the prototype.

7.1.2 Calling a Function

The call to a function in C siniply entails referencing its name with the appropriate arguments.
The C compiler checks for compatibility between the arguments in the calling sequence and the _
definition of the funetion, ' '

Library functions are generally not available to us in source form. Argument type checking is
accomplished through the use of header files (like stdio.h) which contain all the necessary information.
For example, as we saw earlier, in order to use the standard mathematical library you must include
math.h via the statement

‘#include < math.h> ‘
at the top of the file containing your code. The most commonly used header files are
< stdio. > -> defming I/O routines
<ctype.h> -> defining character manipulation routines
<string.h> -> defining string manipulation routines
< math.h> > deﬁm’hg mathematical routines
<stdlib.h> -> deﬁning number conversion, storage allocation and similar tasks
< stdarg. h> -> defining libraries to handle routines with variable numbers of arguments
<time.h> -> defining time-manipulation routines
In addition, the following header files exist:
<assert.h> -> defining dia@wstic routings
<setjmp.h> -> defining non-local function calls
<signal.b> -> defining signal handlers
<limits.h> > defining constants of the int type
<float.h> > \deﬁning constants of the float type
- 'Writing Your Own Functions
A function has the following layout:
return-type function-name (argument-list-if-necessary)

{

[76]

_local-declarations...
..statements...
return return-value;

}

If return-
A function may sin;lply perform-a task without returning any value, in which case it has the
. following layout: : ' :

| void function-name { argumenf-list-if—necessa_ry)

'.{

..Jocal-declarations...

type is omitted, C defaults to int. The 1'eturnaval.ue must be of the declared type.

..statements...
\ _

As an example of function calls, consi_der the following code:
#include <stdio > |
int add (int x, int y) {

int z;
z=Xty; -
return (z);
}
main ()
{
| int 1, j, k;
i=10; v
i=20;
k = add(i,));
printf (“The Value of k is %d\n”, k);
¥

Argumenté are always passed by value in C function calls. This means that local “copies” of
the vatues of the arguments are passed to the routines. Any change made to the arguments internally
in the function are made only to the local copies of the arguments.

As an example, consider exchanging two numbers between variables. Lets illustrate what
happen how the variables are passed by value:

 #include < stdio.h>
void exchange(int a, int b);

void main()

[771

inta, b;
a#S;
b=7;

printf{(“From main: a = %d, b = %d\n™, a, b);
'exchange(a, b); '
printf(“Back in main: *);
printf(‘;a =%d, b = %din™, a, b);

3

void exchange(int a, int b)

(.. S

. int temp;

temp = a;
a=bh;
b = temp;
printf(* From function exchange: “);
printf{*a = %d, b = %dw”, a. b);

b

. Run this code and observe that a and b are NOT exchanged! Only the copies of the arguments

are eXchangéd. The RIGHT way to do this is of course to use pointers(will be discussed in next
“chapter). . ' .

7.1.3 Return st.a'tement

Data is returned from the function fo the calling portion of the program via return statement.
It causes control to be returned to the point from where the function was accessed. The return
statement takes the following form : -

Return(expression),
7.2 Scope of Function Variables

~ Only a limited amount of information is available within each function. Variables declared
‘within the calling function can’t be accessed unless they are passed 1o the called function as argunients,
The only other contact a function might have with the outside world is through global variables.

Local variables are declared within a function. They are created anew each time the function
is called, and destroyed on return from the function. Values passed to the function as arguments can
also be treated like local variables. : :

Static variables are slightly different, they don’t die on return from the fumction. Instead their
last value is retained, and it becomes available when the function is called again,

[78]

7.3 Storage Classes :

Storage class defined for a variable determines the accessibility and longevity of the variable.
The accessibility of the variable relates to the portion of the program that has access to the variable.
The longevity of the variable refers to the length of time the vauable exists within the program.

Types of Storage Class Variables in C:
e Automatic
» [External
¢ Static
» Repister
7.3.1 Automatic:

Variables defined within the function body are called automatic variables. Autoisthe keyword
used to declare automatic variables. By default and without the use of a keyword, the variables
defined inside a function are auntomatic variables. e

For instance:

void exforsys()
¥

4

auto int x;

auto tloat y;

............

is same as

void exforsys()

——

float y; //Automatic Vari_ablés ,

et

Inthe abo_vé function, the variable x and y are created only when the function exforsys() is called.
An automatic variable is created only when the function is called. When the function exforsys() is called, the

variable x and y is allocated memory automatically. When the function exforsys() is finished and exits the

control transfers to the calling program, the memory allocated for x and y is automatically destroyed. The

term automatic variable is used to define the process of memory being allocated and automatically de- -

stroyed when a function is called and returned. The scope of the automatic variables is only within the
function block within which it is defined. Automatic variable are also called local variables.

{791

7.3.2 External:

External variables are also called global variables. External variables are defined outside any fune:
tion, memory is set aside once it has been declared and remains until the end of the:program. These
variables are accessible by any function. This is mainly utilized when a programmer wants to make use of
a variable and access the variable among.differentfunction calls.

733 Static:

The static automatic variables, as with local variables, are acéessible only within the functionin -
which it is defined. Static automatic variables exist until the program ends in the same manner as external
variables, In order to maintain value between function calls, the static variable takes its presence.

For example:

#include <iostream.h>
int exforsys(int);

void main()

L

mt m,out;

while(in!=0)

{

cout<<"Enter input value:";
cin>>in;

out=exforsys(in);

cout<<"\nResult:"<<out;

3
f

cout<<"\n End of Program"<<out;
3

int exforsys(int x)

{,

static int a=0;

static int b=0;

att;

be=brtx;

return(b/a);

}

In the above program, the static variables a and b are initialized only once in the beginning of the
program. Then the value of the variables is maintained between function calls. -

When the program begins, the value of static variable a and b is initialized {0 zero. The value
of the input in is 5 (which is not equal to zero) and is then passed to the function in variable X, The
variable a is incremented thus making a as equal to 1. Variable b becomes equal to 5 and thus, the
return of value from function exforsys() for the first time is 5, which is printed in the called function.

The second time the value of the input in is 7 (which is not equal to zero) and is passed to the
function in variable x. The variable a (which is declared as static) has the previous value of 1. This is
incremented and the value of a is equal to 2. The value of b is maintained from the previous statement

~as’5 and new value of b now is b=5+7 = 12 and thus, the return value from the function is 12/2=6
~ which s printed in the called fimction, o

[80]

7.3.4 Register Variable

~ Compiler can be informed that a variable should be kept in one of the machine’s register, instead of
keeping in the memory. Since a register access is much faster than a memoy access and keeping the
frequently accessed variables in the register for the faster execution of the program. ‘

74 Sample programs using functions
Following are some example programs using function :
Program 1: To check whether a given-number is prime or not.
#include<stdio.h> ‘
#include<conio.h>
#define prime 1
#define no_prime 0
int isprimé(int number)
{ int count = 2;
if (nuniber=="1)
return no_prime;
while (count<= nuntber/2)
| if (number%ecount==0)

return no_prime;

count++;
)
return prime;
}
void main()
{ intnumber;
printf{"enter a number™; |
‘scanf{"%d", &number);
if (isprime(number)) _
printf("%d is a prime number\n” Jjumber)
else | b
printf("%d is not a prime number\n”, number);
}

Program 2: To reverse a number.
#include<stdio.h>

#include<conio.h>

[81]

void main()
{ int number; .
long tnumber;
" long reverse(int);
pfin"cf "enter a number to be reversed");
_ séélli‘("%d", &number); |
| _'_rn_u:ahber = i‘everse(munber); '

printf("the reverse of %d is %ld\n", number, rnumber);

; |
long reversé(ini-n)
{ longr;
r=0; _
while (n>0)
{ p=1* 10 + (n%10);
n=n/10;
h
refurnr;

_.,Prograhxl‘a’::”To calculate the sum of first n odd numbers.
#include<stdio.h>
#include<conio.h>
int sumodd(int nu_mbef)
{ inti, sum=0:
for(i=0;i<nmnber;i4+)

Sum = sum + (2*i+1);

Teturn sum;
b
= vojd._'_mai_n()_
S intm - |
- 'p.rint]‘.‘("_en_ter how many odd numbers are to be added"):
.scanf("%d",..&n); . '
printfi "-t-he sunf of first %d odd nunbers is %d\n",n, sumodd(n));
}

[82]

Program 4: To calculate the power of'a given number.
#Hinclude<stdio.h>
void maii) -
{ | int a,b;
double p, power(int,int);
printf("enter the value of a and b");
scanf("%d %d ", &a, &b);
p = power(a,b);
printf{("%lf",p):
}
double power (int X, int y)
{ int i;
double pl,
for (i=1;i<=y;i+)
p = X*p;
return(p);
}
Program 5: To calculate the sum of Fibbonacci series of first n numbers..
#include<stdio.h>
#include<conio.h>
int fibonacci(ini n)

{ static fn;

return{fn);

}

void main()

{ int number, f;
printf("enter a number");
scanf("%d", &number),
f=fibonacci(number);
printf("Sum is =>%d ",f);

v

[83]

7.5 KFunctions with array

At some moment it is needed to pass an array to a function as a paramieter.. In order to accept
arrays as parameters the only thing that we have to do when declaring the function is to specify in its
parameters the element type of the array, an identifier and a pair of void brackets [] with the size of
the array . For example, the following function: R

void procedure (int arg[], int n)

accepts a parameter of type "array of int" called arp and nis:the size of array. In call by value,
we pass the value of array element while in call by refelence We pass lhe name of array, without any
subscript, and size of array elements to the function.

Parameter passing by call by value :

#include<stdio.h>

#include<¢onio.h>

void display(int);

void main()

{ nt i; _
static int num [] = {10,20,30,40,50};
for(i=0;i<=4;i-++)

dispiay(nmn(i));
getch();
void display(int n)
o
printf("%d",n);
)

7.6 Self Léar.nin-g Exerci‘se '
- State %I‘ru-ch alse
1. GloBal_ variables are declared inside the function.

2. Lehgth of a program can be reduced using function.

(¥R

Register variables are used for the fast access.
4. The scope of automatic variable is not confined to that fuiction in Wthhlt is declared.
7.7 Summary ' T

This chapter starts with the introduction of the functions. Aﬂer this, funcuon declaration,
calling of function, scope of function variables is discussed: In next section various example
programs are given for the better Lulderstandmg of the functions. And at the end quesnons are
given for the self assessment.

[84]

7.8 Further Readings
o Programming in C :- Balguruswamy, Tata McGraw-Hill Publication.

e TheC programming Lang., Pearson Ecl :- Dennis Ritchie, Prentice HAIL, Delbii. -

¢ Let us C :- Yashwant Kanetkar, BPB publication

79 Answer to Self Learning Exercises

Question Answer Qllest“’“ Answer e
1 - False 3 e

2 True 4 v l“alse b _-

7.10 Unit End Questions
1. Write short note on
(a) Library functions
(b) User defined functions

2. Write the difference between global and local parmneters R TR R R
3. Writea C program to calculate sum of first n even numbels usmg functlon S
4. Write a C program to find the sum of the digits of a number ubmg functlon o

(85]

Unit 8 ; Structures & Unions

8.0 Objectives
8.1 Introduction
8.2 .Deﬁnition of Structure
8.3 Declaration of Structure Variables
8.3.1 With Structure Definition
8.3.2 Using Structure Tag
8.4 Initialization of Structure Variable
8.3 Accessing Fields Using Dot Operator
8.6 Usion |
8.6.1 Defining a Union
8.6.2 Declaration of Union Variable
8.6.3 Accessing of Union Members
8.6.4 Comparison with Stfucume
8.7 Array of User Define Data Types
8.8 Passing Structure Variables to F unction
- 8.8.1 Passing Structure Variables as Argtments
8.8.2 Passing Structure Members as Arguments
8.9 Other User Define Data Type
8.9.1 Enumeration

8.9.2 typedef

8.0 Objectives

Array is a collection of same type of elements but in many real life applications we may need to
group different types of logically related data. To store related fields of different data types wecanuse a
structure, which is capable of storing heterogeneous data. Data of different types can be grouped together
under a single name using structures. ' ' '

8.1 Iniroditction.

A structure can be considered as a template used for defining a collection of variables under a
single name. Structures help a programmer in grouping elements of different data types into single logical
unit. This is undike arrays which permita programmer to group only elements of same data typé. Insome
programming contexts, we need to access multiple data types under a single name for easy manipulation;
for example il'we want to refer to address with multiple data like house number, street, zip code, country
C supports structure which allows us to wrap one or more variables with different data types. Astrocture
can contatn any valid data types like int, char, float even arrays and other structures. Each variable in
structure is called a structure member.

[36]

82 Definition of a Structure
Definition of a structure creates a template of format that describes the characteristics of its members.
All the variables that would be declared of this structure type, will take the Torm of this temptatc. The
general syntax of a structure definition is~ :
strict tagname 4
datatype memberi;
datatype member?;

dataype membei2;

1
i

Here steuet is a keyword, which tells the compiler that a structure is being def; ned. Memberl.
‘member2, ... _memberN are known as members of structure and are declared inside cusly braces.
They should be a semicolon at the end of curly braces. These members can be of any data type like iot,
char, float, arTay, pointers or another structure type. tagname is the name of the structure and it is used
further in the program to declare variables of this structure type. ' '

~ Itisimportant to remember that definition of a structure template does not reserve any space in
amory for the members; space isreserved only when actual variables of this structure type are declared.
Although the syntax of declaration of membeis insidé the template is identical to the syntax we us ia
declaring variable but these members are not variables, they don’t have any existence until they are attached
with a structure variable. The member names inside a structure should be different from one another but
these names can be sirnilar to any other variable name declared outside the structure. The member names
of two different structures may also be same.

Consider an example for declaring a structure template:
struct student {

char name[20},

int rollno;

float marks;

I |
Here, student is the structure tag and there are three members of this structure (name, rollono and
wmarks). Structure template can be defined globally or locally i.e. it can be placed before all functions in the

program or itcan be jocally presentina function. Ifthe template is global then it can be used by alt functions
while ifitis local then only the function containing it can use it.

83 Declaration of Structure Variable
We can declare structure vatiables i two ways:
1. Withstructure definition

2. Using the structure tag

[87]

8.3.1 With structure definition
- struct student §
| o 'c'har.nmhe[?.ﬁ]; '
introllno:
float marks;
b stdl, std2, std3:

- Here std1, std2 and std3 are variables of type struct student. When we declare a variable while
defining the structure template, the tagname is optional. So we can also declare them as:

struct § S -
char name[20]; - e
'intmllnﬁy; S

O flatmakss

st] A2 std3s o | o L _ _

* Ifwe declare variable i this viay, thr el not be dble 0 deblare oér vaiabl ofthisscictare

type anywhere else in the program nor can we send these structuré variable to finctions. So'although the _
tagname isoptional it is better to specity a tagname for the structure. vy ool '

steuctstudent{ <o o e

g

introltno;
floatmarks; oo
| -} ; . - N .
struct student std, std2;
struct student std3; _ _ _

Here std1, std2 and std3 are structure variables that arc'.;declﬁr_-ed using the structure tag student.
Declaring a structure variable reserves space in memory. Each structure variable declared to be of type
struct student has three members (name, rollno and marks). The compiler will reserve space for each
variable sutficient to hold alt the members. For this example each variable.of type struet student will occupy

8.4 Initialization of structurd varfables

The syntax of initializing structure Variable is similar to that of arays. All the values ate given in curly
braces and the number, order and type of these values should be samic as in the striichire temiplate definition.

The initializing values can only be constant expressions, . . o+ -
struct student { _
char name(20];

introlino;

1881

float marks;
| | stdt={"Mano" 25,983
struet student std2={“Deep™, 24, 70.5}., .

We cannot initialize members while defining the structure.

struct student {
char name[20];
introline; _ .
float marks=9%: /* Invalid */ -
) stdl;

This is invalid because there is no variable called marks, and no memory is allocated for structure
definition.) '

If the number of initializers is less than the number of members then the remaining memoers are
initialized with zero. For example if we have this initialization:

struct student stdl= { “Manoj”};

Here the members rollno and marks of std1 will be initiali 7cd fo':z;e_m. This is EQuivalcnt to thie
initialization: S . C

struct student std1={*“Manoj”, 0,0%;
85 Accessing fields using dot operator

For accessing any member of a structure variable, we use the dot (.) operator which is also
known as the period or membership operator. The format for accessing a structure member is:

sﬁ*uculrevariable.mcq}pe; o
For example, wnaldelthe f(;:;_l:lg)l*\lé;li ::lg SUu(,ture -
stm(_,tt,tudgn[{ | _
o | charnarﬁc[ZO];
int rolino;
{loat marks;
3
struct student std1. std2;
name of std1 is given by- std] name _
- roltno of stdl is given by- stdlLrollno -

| marks of std1is given by- std1 .marks

;. -name of std21s given by-std2.name o el T

marks of std2 is given by- std2.marks

[89]

We can use std] .name, std1.marks, std2 marks etc like any other ordinary variables in the program.
They can be read, displayed, processed, assi gned values or can be sending to functions as arguments, We
can’t use student.naime or student.rollno because student is not a structure variable, it is a structure tag,

/% Program 1o display the values of structure members */
#include <stdio.h>
#include <string h>
structure student {
char name[20];
initroling;

float marks:
maing)

struct stuclent std1={*“Manoj ”,25,’?9.5 b
struct student std2.std3;
strepy (std2.name, “Deep™);
std2.rolino=24;
std2.marks=98§;
printf (“Eoter name. rolino and marks for std3 - “Y,
scant (% %s %d %1, std3.name, &std3.rolino, &std3.marks);
printf (“std1 : %s Yod %f\n”, std] name, stdl.rollno, std1.marks);
printf (“std2 : %s %d %f\n™, std2.name, std2.rollno. Std2.r;1arks);
printf (“std3 : %s Yad %i“\n’i std3 name, std3.roltno, std3.marks);
!
Output:
Enter name, rolino and marks for std3 : Anil 27 87.9 _
std] : Manoj 25 79.5
std2 : Deep 24 98
std3 : Anil 27 87.9

Note that since std2.name is an array so we can't assign a string to it using assignment operator,
henee we have used the strepy () function, -

The dot operator is one of the highest precedence operators; its associativety is from left o right.
Hence it will take precedence over all other unary, relational. logical, arithmetic and assignment operators.
So in anexpression like -++std .marks, first std.marks will be accessed and then its value will be increased
by 1. :

[90]

8.4 Usnion

Union is a derived data type like structure and it can also contain members of different data types.
The main difference between union and structure is in the way memory is allocated for the members, Ina
structure cach member has its own memory location, whereas members of union share the same memory
location. When a variable of type union is declarcd, compilerallocates sufficicnt memory to hold the largest
memory in the union. Since all members share the same memory location hence we can use only one

mermber at a time. Thus union is used for saving memory. The concept of union is useful when itisnot

necessary to use all members of union atatime.
8.6.1 Defining a Union
The syntax of definition of a umon is:
union union_name {

datatype memberi;

datatype member?;

datatype memberN;
8.6.2 Declaration el union variable

Like, structure variables, the union variables can be declared along with the definition or sepacately.
For example: ' ' -

union union_name §
datatype memberl;

datatype member?;

datatype memberN;

} variable name;

This canalso be declared as:
union union_name variable name;
8.6.3 Accessing of union members
We can access the union n-members'using the same syntax used for structure. For example:
/¥ program for accessing union members */
#include <stdio.h>

main()

[91]

- unionresult {
| i_ht marks;
cha_r gradc;- _
ﬂoat 1)01 '
) 1es:
res.marks=9(; -
printf(* Marks : %d\n ", res.marks);
res.gmdefA’;.
printf (“Grade : %c \n*, res.grade);
res.per= 85.5; _
printf (“Percentage 1 %fn “, res.per);
}
Ousput;
Marks : 90
Grade : A
. -Percentage : 85.5- .,

Before the first printf, the value 90 is assigned to the union member marks, so other members
grade and per contain garbage value. Atter first printf, the value °A’is assigned to the union membeér.grade.
S0 now the other two members marks and per contain garbage value. Only one member of union can bold
value at a time, don’t try to use all the members simultaneously, So'a uhion variable of type result can be
treated as either an int variable or char variable or float variable. It is the responsibility of the programmer
to keep track of member that currently hold the value.

Union variables can also be initialized, but there 1s a limitation. We know that due to sharing of
memory, all the members can’t hold values simultaneously. So during initialization also only one member
can be given an initial value, and this privilege is given to the firstmember. [{ence only the first member of
a union can be given an initial value. The type of the initializer c,‘houlc[match wnh the type of the first
member. For example, we can initialize the above union variableas: ™~ -~

union resuitres = { 76 };

8.6.4 Comparison with structure

The main difference between unjon and structure is in the way inéinory is allocated for the members.

The syntax used for definition of a union, declaration of union variables and for aceessing. membersis.. &

similar to that used in structures, but here keyword union is used instead of struct. Now we’ i conmdcr a
program to'compare the memory atlocsted fora union and qtructu] e variable. T -

#include <stdio.h>
struct stag {

[92] .

char¢:

inti;
float £
3
unionutag {
charc;
inti;
float

nain()
{
union utag uvar;
struct stag svar;
printf (* Size of svar = %au \n *, sozeot (svar)); - -
N prmlf (““ Address of svar: Yout ¥, &svar); -
printf (¢ Address of members : %u%u %u i &s»arc,&svar i, &svart);
printf (** Size of wvar = %u'\n *, sozeof (uvar))y;
printf (¢ Address of uvar : %u\t* , &uvar);

. _pnntr(Addm% of members,: %u YouYouin ™, &uvare,&uvard, &uvar.t);

Oniput:

Sizeofsvar="7 e
__Addmssofsvar 65%14Addressofmt,mbers 65514 6551565317
~Size ofuvar=4" -

Address of uvar : 65522 Address of memhers 65 ‘522 65522 6552’7

The addresses of members of a umon are same whu]e t%le qddrw%cq oFmt,mbu S of a su uctune are
different, The difference in the size of variablés §Var and uvar ajso indicafes that union is VCI')f’ bconomlc,cﬂ in
zheuseofmcmory S PR

8.7 Array of User Define Datatype ' ey

We know that array is a collection of elements of same datatype. We can declare array of structures
where each element of array is of structure type. We can be declared as:

struct student std[107];

Tere std is an array of 10 elements, éach of which is a structure of type struct student, means each
element of sid has members, define in structure. These structures can be accessed through subscript notation.
To access the individual members of these structitres we'{l use the dot operatar as usual. For example:

193)

/* Program to understand array of structures */
#include <stdip.h>
struet student |

char name[20];

introflno;
float mm‘ksi
IR |
tmain ()
A
inti;
struct student stdf 101,
for (i=0; iél 0; i1+
{
printf(™ Enter name, rollno and marks : <),
scant(“ %s %d %f, std[li].namee &std[t].rollno, &std{i].marks):
} | |
For (i=0; i<10; #++)°
‘
printf (* %s Yod %f\n™, std{i].name, std[i].rollno, _std[i] .marks);
|
H

8.8 Passing Strueture variables to Functions

Structures may be passed as arguments to function in ditferent way. We can pass individual
members, whole structure variable to the function, Similarly a fanction can return either a structure member
ot whole structure variable, '

1.6.1 Passing structure variable as arguments |

We can pass structure variables as arguments to function. Forexam ple:
#nclude <stdio > |
struct student {

charname[20];

introfino;

float marks;

bR

display (struct student),

[94]

mair)

t
struct student std1={"Manoj”.1 287
struct student std2={"Deep”,18,90};
display (sidi);
display (std2);

H

display (struct student std)

{ .
printf{* Name - %os \t *, std.name);
printf(* Rollno - %d \t %, std,rolino);
printf(“ Marks - %f\n ", std.marks);

b

Output: *

Name - Manoj Rolino - 12 Marks - 87
Name - Deep Rollno - 18 Marks — 90
Here it is necessary to define the stracture template globally becanse it is used by both functions to
declared variables. ' '

8.8.2 Passing structure members as arguménts
We can péss individual structure merubers as arguments to functions like any other ordinary variable
/* Program to understand how structure members are sentto a function */ '
#include <stdio.h>
#include <string.h>

structure student {

char namej20];
introllno;
float marks;

E |
display (char namef], int 1‘011z10,‘ﬂoat mafks);
main () |
i

struct student std1 = {*Manoj”, 12, 87}:
struct student std?;

strepy (std2.name. “Deep”);

195]

std2.roflno=18;
std2.marks=90;
display (std1.name, stdi.rollno, std1 ‘marks');’ '
display (std2.name, std2.rollno, std2.marks);
}
display (char namef], int rollno, float marks)
{
printf{** Name - %s \t “, name);
printf(* Rollno - %d \t , rollno);
printf(* Marks - %fn “, marks);
}
Output:
- Name - Manoj Rollno - 12 Marks - 87
Name - Deep Rollne - 18 Marks - 90

 Here we have passed members of the variables std T and std2 t6 the finction dwpidy() The names
ofthe formal arguments can be similar to the names of the members.-We can pass the arguments using call
by reference also so that the changes made in the called function will be reflected in the calii ing function. In
a "that case we’[Phave to senid the address of the mémbers. It is also possible to return a mnglc mt,mber tl om
a function,

8. 9 User Define Data Types

“We have already seer'the data types that are defined by the user: the structures ad the union. But
in addition to these there are.other kinds of user defined datatypes: o

8.9. 1 Enumeration

* Enumerated data types are auser defined ordinal data type. l‘hc mai purpose ofthe.coumerated
data type is to allow numbers to be replaced by words. This is intended to im mprove the readablhty of
programs, The general format of definition is: :

enum data_type name { wordl, wde Word(nul) word(n) };
OR
enum data_type_name { word ! = integer], word2 =integer2, etc... };

here enum is a keyword, data_type_name is an identifier that sepecities the name of the new
enumeration type being defined, and word 1 ,.word2,,word(n) are identifiers which Tepresent integer
constants and are called enumeration constants or enumerators. The list of these enumerators is called
enumerator list. Note that unlike structure and union, here the members inside the braces aré niot variables,
they are named integer constants. -

After the definition, we can declare variables ofthisnewdatatypeas:. - - -

enum data_type namevarl, var2,....... , varN;

[96]

... Herevarl,var2,......;varN are variables of typ‘~ emum, These variables can t‘“l%s.e value-a cmly from
. .theenumerator list. : _ R N .

The variables can also be declared xyi.th the definition as:

enum data_type_name § -
word];
wol.'d?,_;

wordN; o
} varl, var2,.... varN;
Here the data_type_nameis optional. Consider an example:
enum month { Jan, F cb Mar, A pr Mft} Iun‘) o
here a new data type month s dcﬁnc.d and the f,nurncralor 11st comaing sm enumerators.

Initially the compiler freats enumerators as integer constants, These are automatically -:Ibb!gn(.d.
intiger values beginning from 0, 1, 2,....etc till the last mem ber ofthe cnumcratmn ln the above example
these enumerators will take followmg vaiuu, TR T :

Jan 0
Feb 1
Mar 2
Apr 3
May 4
Jun 5

These are the default values assigned to the enumerators. T is also possible o explicitly assign any
value to enumerators but in this case, the successive unassigned enumerators will take Valuu, one greater
than the value of the prevmus enwmerator. For e;xample :

WO o month T Jan: Febi= =4, Mar Apl qu*l! lun,

Now the enumerators will take following values:

Mar 5
Apr 6

i MayII
hn 12

We can ass,lgn any si gned mteocr vaiuu to enumcraiors provudcd thc valuc is w1t1m1 the range of int.

.....

enum month { Jan, Janvary=0.Feb=1, Febm'arj?'=1, Mdr—"2 Marchﬁ2} , |

197]

the enumerated variables can be processed like other integer variabies. We can assign values to
them from the enumerator list or they can be compared to other variables and values of the same type. For
example:
enum month { Jan, Feb. Mar, Apr, May, Jun} ml, m2;

mi=Mar;
m2=May;
Now m] bas integer value 2 and m2 will take the value 4.
/* Program to print the value of enum variables */
#include <stdio >
maing}
{_
enum month { J an, Feb, Mar, Apr, May, Jun } m1, m?2;
mi=Mar; '
pratf(* m1 =%d ", ml);
printf(** Enter value form2 ;);
scanf{"%od”, &m?2),
printf** m2 =%d w", m2);
i
Output: |
mil =2
Enter the value form?2: 3
m2=5
8.9.2 typedef

The typedef definition fd(:lhtv allow us to define anew name for an existing data type. the general
syntax is;

typedefdata_type new name;

auser defined type, new_name is an identifier, which is a new name of existing data type. Forexample, we

can define a new name for int type by writing:

here typedefisakeyword, data_type iaany existing data type that may be a standard data type or

typedefint marks;

now marks is a synonym for int and we can use marks instead of int anywhere in the program, for
example:

marks subl, sub2;

Here subl, sub2 are actually int variables and are similar to any variable declared using int keyword.
The above declaration is equivalentto:

int subl, sub2;

[98]

We can give more than one name to a single data type using only one typedef statement. For

example;

typedef int age, marks, units;
Now we’ll see how typedef can be used to define new names for arrays, functions and structures.
Arrays
t)pudci int miau 1] 0]

After this statement intarr 1 anothcn name for integer arrays of size 10. Now conmdcr thm declaration

statexnent;

value,

3.

intarra, b, c{15]; (Hquiva]_entlto inta[10}, b[10], c[151[10])
Here a, b are declared as 1-ID arrays of size 10, and ¢ is dec{a__r;ed as 2-1) array of size 15x1(.
Function
typedef float funct(float, mt);

- Here functis any hmctlon that take two valueq one ﬂoat anci one mi and retum afloat value '

Now consider this deddl‘dtl(m statement:
funict add, sub,mul,div;

‘Hereadd, sub, mul, div are declarcd as functions that take a ﬂoat and int vaiue and return a float

The above statement is equivalent to the following declaration statements:

ﬂmt add (foat, mt),
ﬂoat sub (float, int); -
float mul {float, tnt); |
float div (float, int});

© Structure

Similarly we can also use typedef for defining a new name for structures. Suppose we have this -

structure definition;

struct studentrec{
char name[20];
| int marks;
5

Now whenever we want to use this structure we have to write struct studentrec. We can give a

short and meaningful name to this structure by typedef.

typedef struct studentrec Student;
Now we can deciare variable like this;

Student std1, std2; (Equivalent to *: struct studentrec std1, std2;)

" 'We can also combine typedefand structure definition. The syntax is as:

[99] .

typedefstruct tagname{
datatype mamberl;

................

................

} newname;

Here tagname can be same as the newname. we can omit the tagname if the structure is not self
refrential. .

typedefstruct §
char 112&11(:[20];
intage;
}'peréon;
person student, teacher, emp;

Here person is a new name for this structure and we have define three structure vanables, whlch
have the format of the above definition. o

Advantages of using typedef

- 1. Itmakes our programs more readable and understandable since we can document our progtam by
giving meaningful and descriptlve names for existing types.

2. Instructures it is important since we can give a single name to the structure, we need not write
struct keyword repeatedly.

3. Itmakes our programs more portable. When program is run on a different machine on which
standard data types are represented by different number of bytes, only typedef statement has to be
changed.

[100]

Unit9: P_ointer_s

9.0 Objectives
9.1 Introduction
92 Definition of Politter
93 Declaration of Poiritet
94 MemoryAllocatlotito Pointets T
95 PoimtefstoanAtay
96 Pointet Atithietic |
97 Pointer to data type defitie by-uéer' Uising structure
9.8 Potinters atid fu’ﬁ@tioti -
981 Callbyvalue
9.8.2 Allﬁyreference '
9,9 Dynamic Memory Alloeatiot _
9.9.1 Memory allocatiofis process
9.9.2 Allocating ablock of memo_ry;
9.9.3 - Allocatingmultipte blocks of terioty
'9.9.:4' Relessing theusedsﬁaoe'_ |

9,9.5 To alter the size of hemory
9.10 Summary
9.11 Unitend questions
9.0 Objectives

Clsavety powerful language and the real power of C lies in pomtels The concept of pointers is
lmerestmg as well as challengm&, Itis very snmple to-use pointers provided the basics are understood
thoroughly. So it is necessary to visualize every aspect of pointers instead of just having a superficial
knowledge about their syntax and usage. The use of pointers makes the code more efficient and compact
Some of the uses of pointers are:

(1) Accessing array. elements.

- (i) Returningmore thanone vatue froma ﬁmctlon

(iii)y Accessing dynamically at located memory o _

(iv) Implementing data structures hke linked list, trees and graphs
9.1 Introduction

Pointers are an extremely powerﬁtl programming tool. They can make some thmgs much easml help
improve our program’s efficiency, and even allow us to handle unlimited amounts of data. For example,
using pointers is one way to have a function modifya vanable passed tofit. It is also possible to use pointers
to dynamically allocate memory, which means that we can write programs that can handle nearly unlimited
amounts of data on the fly. We don’t need to know, when we write the program, how. much memory we
need. In C a pointer is a variable that points to or references-a memoty location in which datai 18 stored

(101]

Each memory cell in the computer has an address that can be used to access that location so a pointer
variable points to a memory location we can access and chdnge the contents of this memory location via
the pointer.

9.2 Definition of Pointer . ‘
To understand pointers, it helps to compare them to normal variables.

A “normal vartable” is a location in memory that can hold a value. For example, when we declare
a variable i as an integer, four bytes of memory are setaside for it. In our program, we refer to that location
in memory by the name i. At the machine level that location has a memory address. The four bytes at that
address are known to us, the programmer, as i, and the four bytes can hold one integer value.

A pointer is different. A pointer is a variable that points to another variable. This means thata
pointer holds the memory address of another variable. Put another way, the pointer does not hold a value
in the traditional sense; instead, it holds the address of another variable. A pointer “points to” that other
variable by holding a copy of its address.

Because a pointer holds an address rather than a value, it has two parts The pomter 1tself holds the
address. That addresses points to a value. There is the pointer and the value pointed to.

9.3 Declaration of Pointer

Like other variables, pointer variables should also be declared before bemg used. The general
syntax of declaration | 1s:

data_type Tpointer_name;

Here pointer_name is the name of pointer variable, which should be a valid C identifier. The
asterisk “*’ preceding this name informs the compiler that the variable is declared as a pomter Here
data_type is known as the base type of pointer. Let us take some pointer declarations:

int *Iptl
float *fptr;
char *cptr chl,ch2;

here iptrisa pointer that should point to variables of typeint, similarly fptr and cptr should point i
vanables of float and char type respectlvély Here typeof variable iptr is ‘ pointer to int’ or (int *), or we' can
say that base type of iptr is int. we can also comibine thie declatation of simple variables and poiriter
variables as we have done in the thired declaration statement where chi ancl ch2 are declarecl as varlables
of type char.

Pointers are also variables so compiler will reserve space for them and they will also have some
address. All pointers irrespective of their base type will occupy same space in memory since all of them
contain addresses only. Generally 2 bytes are used to store an addresa (may vary in dlffel ent computers) -
so the compiler allocates 2 bytes for a pointer variable. . '

9.4 Memory Allocation to Pointers |

When we declare a pointer variable it contains garbage value i.¢. it may be pointing anywhere in
the memory. So we should always assign an address before using it in the program. The use of an unassigned
pointer may give unpredictable results and even cause the programto crash. Pointers may be a351gned the
address of a variable using asmgnment statement. For example: - :

- int*iptr, age=30;"
- float *fptr, sal = 1500.50;

[102]

iptr = &age;
fptr = &sal;

* Now iptr contains the address of variable age i.¢. it poiiits 16 variable age, similarly fptr points to
variable sal. Since iptr is declared as a pointer of type int, we shouldassign address 6f only integer variables
to it. If we assign address of some other data type then compiler won’t show any error but the output will
be incorrect. '

5000 5001 5524 5525
| 5524 N 30
iptr : age
4500 st ss20 ss21 S522 5523
5520 > | 150050
fptr o __5:____:sal

.. We canalso iifialize the pointer at the time of declaration. Butin this case the variable should be
declared before the pointer: For exampler: - - e S

int age = 30, *iptr = &age;

It is also possible to assign the value of one pointer variable to the other, provicle& their base type
is same. For example, if we have an integer pointer p1 then we can assign the value of iptrto itas:
. pl=p , .
" Now both poirtter variable iptr and pl contain the address of variable age and poiht to the same
variable age.

5000
5520
a o fptr 5524
5400 ° _ '
- 5524 _age . -
p | _

- We can assign constant zero to a pointer of any type. a symbolic constant NULL isdefined in
stdio.h, which denotes the value zero. The assignment of NULL to a pointer guarantees that it does not
point to any valid memory location. This can be done as: o T

/* Program to understand the use of pointer variable */
#include <stdio.h>

- main()

[103]

(-
mtx; = /* Anormal integer®/ ,
int *p;.. A pomter to an integer (“* p” is-an integer, so p must bea pﬂinter to an mteger) */
p=&x; / * Read it, “asmgn the address of xtop”*/ S |
scanf{ * Ente1 the value of x =%d”, &x); /* Put avalue in'x, we could also nse p here */ ,
printf{ “The value of pointer pis : %d\n”, *p); /* Note the use of the * to get the value */
getchm()

o
9,5 Pointerfoan Array .
: Array elements are just like bthﬁr variables: they have addresses.
intarf20),%ip; .
ip=&ar[5];
ip=0; / cquwalent to ar[5] = 0, ¥
The address of ar[5] is put into ip, then the place pointed to has zero assigned to it, By itself, this

isn’t pamcularly exciting. What is 111terest1ng isthe way that pointer arithmetic works, Althoughit’s simple,
it’s one of the cornerstones of C. .

- Adding an infegral value to a pomter results in another pomter of the same type. Adding n gives a
~ pointer which point n elements further along an array than the original pointer did. (Since ncan be negative,
: subtrachon is obkusly posszlble t00.) In'the example above a statement of the form

*(1p+1) =();

would set arf6] tozero. and so on. Again, this is not obvxously any lmptovement on ordmary
ways of accessing an array, but the followmg is, - :

int ar[20] *ip,
for (ip = &ar|0]; 1p<&a1[20] 1p-H-)
 Hip=0;

- _ Thatexample is a classic fragment of C. A pointer is set to point to the start of anarray, then, while

it still points inside the array, array elements are accessed one by one, the pointer incrementing between
each one. The Standard endorses existing practice by guaranteeing that it’s permissible to use the address
of ar[20] even though no such element exists, This allows us to use it for checks in loops like the one above.
The guarantee only extends to ohe element beyond the end of an array and no further.

. Why is the example better than indexing? Well, most arrays a_re.accessed sequentially. Very few
programming examples actually make use of the ‘random access’ feature of arrays. If we do just want
sequential access, using a pointer can give a worthwhile improvement in speed. In terms of the underlymg
address arithmetic, on most architecture it takes one multiplication and one addition to access a one-
dimensional array through a subscript. Pointers require no arithmetic at atl-—they nearly always hold the

-store address of the object that they refer to. In the example above, the only arithmetic that has to be done
‘isinthe for loop, where one oompanson and one addltlon are done each time roxmd the loop The equivalent,
using indexes, would be this: ' -

.. intar{201, i

[104]

for (i=0;1<20; i++)
Car(if=0;
 Thesame amountofarithmetic occursin the loop statement, but an extra address calculation has to
be performed for every array access. ' B '

Efficiency is not normally an important issue, but here it can be. Loops often get traversed a
substantial number of times, and every microsecond saved in a big loop can maiter. It isn’t always easy for
even a smart compiler to recognize that this is the sort of code that could be ‘pointerized” behind the
scenes, and to convert from indexing (what the programmer wrote) to actually use a pointer in the gener-
ated code. ‘ : ' '

To be honest, C doesn’t really ‘understand’ array indexing, except in declarations. As faras the
compiler is concerned, an expression like x[n] is translated into * (x+n) and use made of the fact that an
array name is converted into a pointer to the array’s first element whenever the name occurs in an expression.
That’s why, amongst other things, array elements count from zero: if X is an array name, then inan expression,
x is equivalent to &x[0], i.e. a pointer to the first element of the array. So, since *(&x[0]) uses the pointer
. to getto x[0], *(&x[0] + 5)is the same as *(x + 5) whichi is the same as x{5]. A curiosity springs out of all
this. Ifx[5] is translated into *(x + 5), and the expression X + 5 gives the same result as 5 + x (it does), then
5{x] should give the identical result to x[5]. Let us see an example that compiles and runs successfully:

#nclude <stdio.h>
#include <stdlib.h>
#define ARSZ 20
maing |
{ .
‘intar{ARSZ], i;
for(i=0;1<ARSZ; i++)
{
arfi] =1
o ifarRs |
- printfar[%d] now = %d\w”, i, ar{i});
}

printf{“15[ar] = %d\n”, 15{ar]); -
exit (EXIT_SUCCESS);
b
9.6 Pointer Arithmetic

All types of arithmetic operations are not possible with pointérs. The only valid operations that can
_be performed are as: ' '

(1) Addition of an integer to a pointer and increment operation. |

(2) Subtraction of an integer from a pointer and decrement operation.

[105]

(3) Subtraction of a pointer from another poinier of same type.

Pointer arithmetic is somewhat different from ordinary arithmetic. Here all arithmetic is performed
relative to the size of base type of pointer. For example if we have an integer pointer pi which contains
address 1000 then on incrementing we pet 1002 instead of 1001, This i is because the size of int data type
1s 2. Similarly on decrementing pi, we will get 998 instead 01 999. The expression (pi+3) wxll represent the
address 1006: Let us see pointer arithmetic for mt float and char pomters :

' 111ta-—5 *pl-—&a,_ _ L o
ﬂoatb—z.z,.*pff&b; R R T o :

charc =’x’, *pc = &C'

_ suppose the address of variableh a; b and care 1000 4000 5000 respectwely, 50 mmally values
ofpl p2 p3 W1]1 be 1000 4000 and 5000

pH‘F or-+pi; p1*1000+2 1002(smce1ntlsof2bytes)
pl pl 3, pi“‘100’7 3*2 996
. p1~p1-+5, | -_p1v996+5*2"l-006_
©pior—pi; pi=1006-2=1004

pf+; or ++pf, pf=4000 +.'4 = 4004 (since float is of 4 bytes)
pf=pf-3; pf=4004-3*4 =3992 |
pf=pf+5; pf=3992 +5%4 =4012

pf—‘ or —pf; pf=4012-4= 4008

pett; or ++pe;pe = 5000 +1 = 5001 (smce char is of 1 bytes)
pe=pe-3; pe=5001-3*1=4998 '

pc=pc+35; pec= 4998 + 5*1 = 5003

pe—; or —pe; pe = 5003 - 1 = 5002

The compiler scales all this arithmetic automatically since it knows the base type of pomter The.
arithmetic in the case of char pointer seems to be like ordinary arithmetic because the size of a char The
addresses of variables a, b and ¢ are not affected by these operatlons, only the pointer moves ahead of
backward.

/* Program to show pointer arithmetic */
#include <stdio.h> |
man)

{

S intess, *piska
char b="x’, *pc=&b;
floatc=5.5, * pf-—&c _ _
prmtf(“value of pi= Address of a= %u \n”, j:u),

[106]

printf(“value of pc = Address of -;1 =%u\n”, pe);, -
printf(“value of pf=Address of a=%u\n”, pf);
pit+t;
pe+t;
pft; .

. Ip'rintf_("NQw value of i = %ou \n”, pi); -

| .plintf(“ﬁbw \}allué of pc. = %ﬁ ‘m’i pcj;
printf{“Now val.ué of pf=%u\n", pf);
printf(“value of pi = %ou'n” ++pi);
printf{*value of pi=%u \n” Hpi);
printf(*value of pi = %u\n” pi++j;

| printf{*“*value of pi =%u \n” —pi);
- printf{*“value of pi = %u \n” pi—);

printf(‘-‘val.ue of pi::-%u \n’ ph);

. Output:
‘Value of pi = Address of a = 1000
‘Value of pi = Address of b= 4000
Value of pi = Address of ¢ = 8000
now value of pi = 1002
now value of pc; - 4001 _
now value of pf=8004
=:_-.valuco.fpi'_=l 1004 o
 valueof pi= 1004
value of pi= 1004
value of pi = 1004

ontaining addresses 3000 and 3010 respectively then pti2-ptrl W\ﬂl give 5 (Smenoe size of int is
2). This operation is generally performed when both pointer variables point to the elements of same array.

~ Subtraction of a pointer of a pomter from another pomter of same base type returns an integer,
which denotes the number of elements between two pointers. If we have two int pomters ptrl and ptr2,
containing addresses 3000 and 3010 respectively then ptr2-ptrl will give 5. (Science size of int is 2), This
operation is generally performed when both pointer variables point to the elements of same array.

The arithmetic operations that can never be performed on pomters are:

(1) Addition, multiplication, division of two pointers.

[107]

(2) Multiplication between pointer and any number. -
(3) Division of a pointer by ansl number:
(4) Addition of float or double values to pointers.
9.7 Pointer to data type define by user using structure

We have studied that pointer is a variable which holds the starting address of another variable of
any data type like int, float or char. Similarly we can have pointer to structure, which can point o the
starting address of a structure variable. These pointers are called structure pointers and can be declared as:

struct student {
char namef20};
introlino;
int marks;
oo

struct student std, *ptr;

Here pir is a pointer variable that can point to a variable of type struct student. We’lluse the &
operator to access the starting address of a structure variable, so pir can point to std by writing;

ptr = 7std;
There are two ways of accessing the members of structure through the structure pointers.

. As we know ptr is a pointer to a structure, so by dereferencing it we can get the contents of
structure variable. Hence 8ptr will gwe the contents of std s0 to access members of a structure variable std
we can wrlte :

(*p_tr).name -
(*ptr).rollno
(*ptr).marks

. Here parentheses are necessary because dot operator has higher precedence that the * operator.
This syntax is confusing so C has provided another facility of accessing structure members through pointers.
We can use the arrow operator (—>) which is formed by hyphen symbol and greater than symbol. So we
can access the members as:

ptr->name
ptr->rolh10
ptr->marks

The arrow Operator has same pr@edenoe as that of dot Operator and 1t also assocnates from leﬁ to

-, /*program .t.o .understand i)oi-ntet'"s to structures Ja
#include<stdio.h™ A |
struct student{

char name[20};

[108]

introling;
~ intmarks;
5
main() :
S -
- struct student std = {“Manoj”, 25, 68};
struct student *pir = &std; |
printf(** Name - %s \t”, ptr->name);
printf(* Rollno - %s \t”, ptr->roflno);
printf{“ Marks - %s \t”, ptr->marks);
} .
We can also have pointers that point to individual members of a structure variable. For example:
int *p=&std.rollno;
float *ptr = &std.marks;

The expression &std. rollno is equivalent to &(std.rollno) because the precedence of dot operator
is more than that of addiess operator.

A pointer can also be used as amember of sﬁ'ucturc. For example, we can deﬁne a structure like
this: . ' ' : '- -
strﬁct student{ |
char name{20];
- int¥ptr;

¥

struct student std, 8stdptr = &std;
Here ptr is a pointer to int and is a member of the structure student.
To access the value of ptr, we’Hl write: |
~ std.ptr or stdptr->ptr |
To access the value pointed to by std.ptr, we’ll write: |
| *std.ptr or *stdpte->ptr '

Since the priority of dot and arrow operator is more than that of dereference 6pe_rétoi?,.hence the
‘expression 8std,ptr is equivalent to *(std.ptr), and the expression 8std->pir is equivalent to *(stdptr->ptr).

98 Pointers and function

The pointers are very much usedina ﬁmcnon declaration. Sometimes only with a pointer a complex
function can be easily represented and success. The usage of the pomters ina functlon deﬁnmon may be
013551ﬁed nto two groups. '

1. Callby value.
2. Call bﬁreference._

[109]

9.8.1 Call by value

We have seen that a function is invoked there will be a link established between the formal and
actual parameters. A temporary storage is created where the value of actual parameters is stored. The
formal parameters picks up its value from storage area the mechanism of data transfer between actual and
formal parameters allows the actual parameters mechanism of data transfer is referred as call by value. The
corresponding formal parameter represents a local variable in the called function. The current value of
corresponding actual parameter becomes the initial value of formal parameter. The value of formal parameter
may be changed in the body of the actual parameter. The value of formal parameter may be changed in the
body of the subprogram by assignment or input statements. This will not change the value of actual

parameters. _
/* Program to Understand call by value using pointers i A

#include < stdio.h >
‘-
float add(int, {loat),result;
~float (*fp) (int, float); _
fp=add, / *Assngn address of ﬁmctlon add() to pomter fp */
'/*Invokmg afunction directly using flmctlon sname ¥/
result =add(5, 6.2);
printfl“%f\n”, resul); o
/* Invocking a function indirectly by dereferencing function pointer */ .
result=(*fp) (5, 6.2); |
printf(“%f\n”, result);
} |
float add(int a, float b) |
{
return (a+ b);
3 _
. ._Ou_tput_: A
. 11.600000
11.600000
9. 8 2. Call by Reference

When We pass addresstoa funcnon the parameters receiving the address should be pomters The
process of calling a function by using pointers to pass the address of the variable is known as call by
reference. The function which is called by reference can change the values of the variable used in the call.

/* Program to understand the concept of call by reference using pointers*/

#include < stdio.h >

[110]

Cintxyy; o
x=20;
y=30; : S .
: printf(“m Value of a and b before function call = ‘f/od %d”, a,b), . -
fnen(&x, &y); -
printf{*\n Value of a and b after function call = %d %d”, a,b);
i.ntp,q;
{ .
*p =*p+ =1=p;
*q=*q+*q;
} _

9.9 Dynamic memory allocation

The process of allocating memory at run time is known as dynamic memory allocation. Although C
does not inherently have this facility there are fourlibrary routines which allow this function.

Many languages permit a programumer to specify an array size at run time. -

Such languages have the ability to calculate and assign during executions, the memory space required
by the variables in the program. But C inherently does not have this facility but supports'with memory
management functions, which can be used to allocate and free memory during the program execution. The
following functions are used in C for purpose of memory management.

Function Task
malloc Allocates memory requests size of bytes and returns a pointer to
- the Ist byte of allocated space o
calloc _ Allocates space for an array of elements initializes them to zero
andreturnsa pomter tothe memmy
free | Frees prewously allocated space |
realloc _ Modlﬁes the size of prev10usly allocated space

991 Memory allocations process

According to the conceptual view the program instructions and global and stati¢ variable in a
permanent storage area and local area variables are stored in stacks, The memory space that is located
between these two regions in available for dynamic allocation during the execution of the program. The free
memory region is called the heap. The size of heap keeps changing when program is executed due to
creation and death of variables that are local for functions and blocks. Therefore it is possible to encounter
memory overflow during dynamic allocation p ocess. In such situations, the memory allocation functions
mentioned above will return anull pointer.

[111]

9.9.2 Allocating a block of memory

A block mf memory may be allocated using the function malloc. The malloc function reservesa
block of memory of specified size and returns a pointer of type void. This means that we can assign

it to any type of pointer. It takes the following form:
ptr={(cast-type*) malloc (byte-size);

ptr is a pointer of fype cast-type the malloc returns a pOlIltCl (of cast type) to an area of memory
with size byte-size. For example:

x = (int *) malloc (100 * sizeof(int));

* On successful execution of this statement a memory equivalent to 100 times the area of int bytés is
reserved and the address of the first byte of memory allocated is assigned to the pointer x of type int.

/* Program to understand dynamic allocation of memory */
#include<stdio.h>
#include<alloc.h>
mainy)
{
int *p,n, 1; -
printf{“Enter the number of integers to be entered : «);
 scanf“%d”, &n), |
p=(int *) malloc(n*sizeof{int));
. if(p=NULL) - |
. | ..
.' ﬁrintf(“Memory not available \n™);
exit(1); '
3
for(=0id<mi+t)
« o N
pﬁnﬁ(“Enterapmtegcr %
scanf(“%d”, p+);
Y _
for(1=0 i<pit+)
printf{**%ed\t”, *(pﬂ)),

[112]

9.9.3 Allocating multiple blocks of memory

Calloc is another memory allocation fimction that is normally used to request multiple blocks of
storage each of the same size and then sets all bytes to zero. The general form of calloc is:

ptr = (cast-type *) calloc(n, elem—s1ze), |

The above statement allocates contiguous space for n blocks each size of elements size bytes. All
bytes are initialized to zero and a pointer to the first byte of the allocated reglon is returned. If there is not
enough space a null pointer is returned. S :

9.9.4 Releasing the used space

Compile time storage of a variable is allocated and released by the system in accordance with its
storage class.

With the dynamic runtime allocation, it is our respons1b1hty 0 release the spaee wheni it is not
required. The release of storage space becomes lmportant when the storage is limited. When we no longer
need the data we stored in a biock of memory and we do not intend to use that block for stormg any other
information, we may release that block of memory for future use, using the free function. free(ptr);

ptris a pointer that has been created by usiﬁg malloc or calloc.
9.9.5 To alter the size of allocated memory

" The memory allocated by using calloc or malloc might be insufficient or excess sometimes in both
the situations we can change the memory sizz already allocated with the help of the function realloc. This
process is called realtocation of memnory. The general statement of reallocation of memory is:

pir =realloc(ptr, newsize)

ThlS function allocates new memory space of size newsize to the pointer vanable ptrans returns a
pomter to the first byte of the memory block. The allocated new block may be or may not be at the same:
region.

/* Program to understand the reallocation*/
#include< stdio.h> |
#include< stdlibh>.
defineNULL 0
main()
{
| char *buffer;
/* Allocating memory*/
if((buffer=(char *) malloc(10))==NULL)
{ _
printf{(“Malloc failedn”);
exit(1);
}
printf{(“Buffer of size %d created \n,_msize(bufler));

[113].

strepy(butfer,”Bangalore”); ‘
prmtft ‘nBuffer contains: %s\ buﬁ‘er) :
/*Reallocation*/
if{(buffer=(char *)realloc(buffer,15)y==NULL)
printf(“Reallocation failed\n™);
exit(1);
printf(*\nButfer size modified.\n”); o
prﬂitft«“u)Buﬁ'ér still bontaihé: %s\x;”,ﬁuﬂ‘cr); | _ '_ -~ B
- -strcpy(buﬂ‘er ”Mysore”), _ '
_. printf{* “nBuffer now contams %s\n” buffer)
/*freeing memory*/ |
free(buffer);
9.10 Summary -
It is very snnple to use pointers provided the basics are understoocl thoroughly Some of the uses of

pointets aré Accessmg array elements, Reéturning more than one value from a function, Aocesmng dynanucally
allocated mermory, Implementmg data structures like linked list, trees and graphs.

9.11 Unit end questions

What do youmean by ponters?

Explain pointer arithmetic with example.

Differentiate between call by value and call by reference.
What do you mean by pointer to array?

What is dynamic memory allocation?

il

[114]

Unit 10: C Preprocessor

Structure of the Unit
10.0 Objectlve
10.1 Introduction
10.2 Definition of Preprocessor
103 Macro Substitution directivés
10.3.1 Simple macro substitution
1032 Argument macro substitution
10.3.3 Nested 1n_a¢f0 subétiulfiorx |
104. File inclusion. directives
10.5 Conditional compiléﬁoh '
| 10.5. 1. it flelif, #éndif
10.5.2 #ifdef, ifndef
106 Summary - |
10.7 Glossary
108 :Fusther Readings
10.9 Unitend quesﬁons

10.0 Objective _
Students who complete this unit should be able to under stand the follomng tasks
o Idemifytherole of Preprocessor '

. Understand the types of preprocessor directives:

o Macro substinstion directives _ _
File inclusion directives C o

Compiler control directives
10.1 Introduction

This chapter focuses on the C Language - The Preprocessor, Preprocessor directives, Macros,
#define identifier string, Simple Macro substitution, Macrosas arguments, Ncstmg of macros, Undefining a
macro and File inclusion.

10.2 'Definition of Preprbcéssor
Makmg programming versarde

Aunique feature of C language isthe preprocessor, making ‘C” an unusual language. A program
can use the tools provided by preprocessor to make the program easy to read, modify, portable and more
efficient. This comes from its Unix origins. As its name might suggest, the preprocessor is a phase which
' *'*{gurs prior to compilation of a program. Pre~processor commands are distinguished by the hash (number}

N

[115]

symbol “# . When we compile the program, before the source code passes to the compiler it is examined
by the C preprocessor for any macro definitions. When it sees the *#” directive, it goes through the entire
program in search of the macro templates; whenever it finds one, it replaces the macro template with the
appropriate macro expansion. Only after this procedure has been completed is the program handed over
to the compiler. : ‘

Note: In C programming, it is customary to use capital letters for macro template. This makes it
easy for programmers to pick out all the macro templates when reading through the program.

The C preprocessor, is used automatically by the C compiler to transform your program before
compilation. Many times you will need to give special instructions to your compiler. This is done through
inserting preprocessor directives into your code. When you begin compiling your code, a subprogram
called the preprocessor scans the source code and performs simple substitution of tokenized strings for
others according to predefined rules. Preprocessor is a program that processes the code before it passes
through the compiler. It operates under the control of preprocessor command lines and directives.
Preprocessor directives are placed in the source program before the main line before the source code
passes through the compiler it is examined by the preprocessor for any prepsocessor directives. If there is
any, appropriate actions are taken then the source program is handed over to the compiler. In C language,
all preprocessor directives begin with the hash character (#).

Directives

Directives are special instructions directed to the preprocessor (preprocessor divective) or to the
compiler (compiler directive) on how it should process part or all of your source code or set some flags on
the final object and are used to make writing source code easier (more portable for instance) and to make
the source code more understandable. Directives are handled by the preprocessor, which is either a separate
program invoked by the compiler or part of the compiler itself.

T._ “The preprocessor has two main uses: it allows external files, suchas header files, to be included
and it allows macros to be defined. This useful feature traditionally allowed constant values to be defined in
Kernighan and Ritchie C, which had no constants in the language.

Other directives include #pragima compiler settings and macros. The result of the preprocessing
stage is a text string. One thing to remember is that these directives are NOT compiled as part of your
source code.

Preprocessor directives:

Directive ~ Function

#define Defines a macro substitution

#undef Undefines amacro

#include _ Specifies a file to be included

#ifdef Tests for macro définition .
#endif | Speciﬁes the end of #if

#ifndef Tests whether the macro is not def

#hf ' Tests acompile time condition

#else - Specifies alternatives when # if test fails -

{1161

The Preprocessoi difectives ean be divided into three categories
t. Macro substitution divislon
2. Fileinclusiot division
3. Compiler eotitrol division
10.3 Macro Substitution directives

When you write programs, you cai cigate what is known as a macro, $0 the preprocessor replaces
every occutrerice of the identifiet in the soutce code with the specified expression. The definition should
stait with the keyword *#defitie’ atd should follow on identifier and a string with at leastone blank space
between them, The stiltig may be any text ind identifier nwist be a valid C name. It also allows youto define
macros, which are brief abbreviations for longer constructs, that we will discuss.

Thete ate different fottns of Macto substitution. The most common form is
1. Simpleinacro substitution
2. Argument mactt substitition
3. Nested macro stibstitution
10.3.1 Simple Macro Substitution
Simple string replacement is commonly used to define constants. Here’s an example. Ifyou write
#defirie RATE 8.50 |]

Now, when you waht to prifit ot use the value of RATE, you use the word RATE instead of the
number 8.50, the preprocessot will replace all instances of RATE with 8.50, which the compiler will
 interpret as the literal double 8.30. The preptocessot performs substitution, that is, RATE is replaced by

8 50 so this rireans thete is no fieed for a semicoloty, It is important to note that #define has basically the

same fanctionality as the “find-and-replace” function in a lot of text editortslzg(ord processors. Incase of
change of RATE value, one has to define/change the value of RATE just once, and the new value will be
flashed everywhere the constant is used. So, you need not go through the whole program and manually
change each occurtence of the constant. It is more meaningful and would make a program read more
naturally than if the raw number were used.

NOTE: Writing macto definition in capitals is a convention not a rule a macrd/definition can include more
thana simple constant value it can include expressionsas well. * : :

Following are valid examples:
#define AREA 12:34
#define PIE 3.14
#define GREET “Good Morning..”
A #define directive is many a times used to define operators as shown below.
fidefine AND &&
#define OR ||
main(’}
{
intf=1,x=4,y=90;

[117]

if((£ YAND (x <=20 OR y <=45))
printf (“\nYour PC w_ﬂl always work fine...”) ;
de
printf (“\nlrfront of the maintenance man”) ;
A#tdefine directive could be used even to replace a condition, as shown below.
© HdefineAND && |
. #define INRANGE (2> 25 AND 2 < 50)
main() o
t
inta=30;
if (INRANGE)
printf (“within range”) ;
else
- printf (“outof range”) ;
}
A#define directive could be used to replace even an entire C statement. This is shown below.
o #define FOUND printf(“The Yankee Doodle Virﬁs’_’) . .)
- char signature ;
if signature==Y")
FOUND
elée
printf (“Safe... as yet I} ;
h
10.3.2 Argument macro ﬁubsﬁtution

Function-like macros can take arguments, just like true fumetions. To define a macro that uses
arguments, you insert parameters between the pair of parentheses in the macro definition, that make the
macro function-like. The parameters must be valid C identifiers, separated by commas and optionally
whitespace. o S

To invoke a macro that takes arguments, you write the name of the macro followed by alistof
actual arguments in parentheses, separated by commas. The invocation of the macro need not be restricted
to asingle logical line—it can cross as many lines in the source file as you wish. The namber of arguments
you give musimatch the number of parameters in the macro definition. When the macro is expanded, each

[118].

use of a parameter in its body is replaced by the tokens of the corresponding argument: (You need not use
. all of the parameters in the macro body.) ' _

~ The preprocessor permits us to define more complex and more useful form of replacements it
takes the following form. Macros can have arguiments, just as functions can : .

define 1dentlﬁer(f1 2,£3.....fh) string,

Notice that there is no space between identifier and left panentheqes and the identifier f1,£2.3....fa
- is analogous to formal arguments in a function definition. There is a basic difference between s1mple
replacement discussed above and replacement of macro arguments is known as a macro call. Asimple
example of 2 macro with arguments is

- #define CUBE (X) (x*x*x)
Ifthe followmg statemenis appears later in the program
' voiume-{‘UBE(mde),
The PrEprocessor would expand the statement to
volume =(side*side*side)
Here isanother example that illustrates this fact.
#define AREAG) (3.14* x%x)
main()
{
floatrl =6.25,12=2.5,a;
a=AREA(rl);
prmtf (“\nArea of cucle =%1",2);
a= AREA (12);
printf (“\nArea of circle =%f ’,. a);
oo
Here’s the output of the prog;ram
"Area 0f01rcle = 122656250
Area of circle = 19.625000

Asan example, here is a macro that computes the minimum of two numeric values, asit is defined
in many C programs, and some uses,

#define min (X, Y) ({(Xy<(M)? (X) L (Y))

x =min(a, b); i ((a) <(b)? (a) : (b));
y=min(1, 2); === ((1)<(2)’?(1))

Zz=min(a+ 28, *p), ' == ~((a + 28) < (*p)‘?(a + 28) (*p))

In this small example you can already see several ofthe dangers of macro arguments For detailed
: explanatlons read more about some spec;al rules that apply to macros and macio expa,nswn, and pomt out
‘certain cases in which the rules have counter-intuitive consequences that you must watch out for

[119]

* Misnesting

e Operator Precedence Problems
¢ Swallowing the Semicolon

« Duplication of Side Effects

e Seif-Referential Macros

e Argument Prescan

e Newlines in Arguments

L eading and trailing whitespace in each argument is dropped, and all whitespace between the
tokens of an argument is reduced to a single space. Parentheses within each argument must balance; a
comma within such parentheses does not end the argument. However, there is no requirsment for square
brackets or braces to balance, and they do not prevent a comma from separating arguments, Thus,

macro (array[x =y, x+ 1]}

passes two arguments to macro; array[x =y and x + 1], If you want to supply array[x =y, x +1]
asan argument, you can write it as array[(x =y, x + 1)], which is equivalent C code. -

All arguments to a macro are completely macro-expanded before they are substituted into the
macro body. After substitution, the complete text is scanned again for macros to expand, including the
arguments. This rule may seem strange, but it is carefully designed so you need not worry about whether
any function call is actually a macro invocation.

For example, min (min (a, b), ¢} is first expanded to
min ({(2) <(b) ? (a) : (b)), (c))
and then to
(@) <(b) 7 (a) : (b))) <(c)
(@ <0)?@: B)
t(e))
(Line breaks shown here for clarity would not actually be generated.)

You can leave macro arguments empty; this is not an error to the preprocessor (but many maeros
will then expand to invalid code). You cannot leave out arguments entirely; if a macro takes two arguments,
there must be exactly one comina at the top level of its argument list. Here are some silly examples using

min(,b) ==>((}<(®)?(}: (b))

min(z,) =>{@)<()?@):())

minG;) ==)}<Q?():(»

min(()) => (N <02 ((): () |
min() error—> macro “min” requires 2 arguments, but only 1 given
min{,,) error—> macro “min” passed 3 arguments, but takesjusf 2

Whitespace is not a preprocessing token, so if a macro foo takes one argument, foo () and foo ()
both supply it an empty argument. Previous GNU preprocessor implementations and documentation were
incorrect on this point, insisting that a functmn—hke macro that takes a single argument be passed a space if
an empty argument was required.

[120]

Macro parameters appearing inside string literals are not replaced by their corresponding actual
arguments,
| #define foo(x) x, “x”
foo(bar) ==>bar, “x”
10.3.3 Nested macro substitution

We can also use one macro in the definition of anothel MAcro. That is macro definitions may be
nested. Consider the following macro definitions

define SQUAREXN(x)*(x))
‘Undefining and Redefining Macros

If a macro ceases to be useful, it may be undefined with the “#undef” directive. ‘#undef” takes a
single argument, the name of the macro to undefine. You use the bare macro name, evenif the macro is
function-like. It is an error if anything appears on the line after the macro name. ‘#undef” has no effect ifthe -
name is not a macro.

#define FOO 4 |
x=F0O0; =>x=4;
#undef FOO

x=FO0; ==>x=FO0;

Once a macro has been undefined, that identifier may be redefined as amacro by a Subsequent
“#define’ directive. The new definition need not have any resemblance to the old definition.

However, if an identifier which is currently a macro is redefined, then the new definition must be _
effectively the same as the old one. Two macro definitions are effectively the same if:

o Both are the same type of macro (object- or function-like).
o Allthe tokens of the replacement list are the same.
e Ifthere are any parameters, they are the same.

_ s Whitespace appears in the same places mboth Itneed not be exacﬂyﬂme same amount of thtespace
though. Remember that comments count as whitespace.

These definitions are effectively tht_e same:
#define FOUR (2 +2) ‘
#define FOUR 2 + 2
#define FOUR (2 /* two */ +2)
but these are not:
#define FOUR (2+2)
#define FOUR (2+2)
#define FOUR (2 * 2) _
#define FOUR(score,and,seven,years,ago) (2 +2)

[121]

Ifamacto is redefined with a definition that is not effectively the same as the old one, the preprocessor
issues a warning and changes the macro to use the new definition. If the new definition is effectively the
same, the redefinition is silently ignored. This allows, for instance, two different headers to define a common
macro. The preprocessor will only complain if the definitions do not match.

- Here are some important points to remember while writing macros with arguments:

(2) Be careful not to leave a blank between the macro template and its argument while defining the
- macro. For example, there should be no blank between AREA and (x) in the definition, #define
AREA(x) (3.14 * x * x) : If we were to write AREA (x) instead of AREA(x), the (x) would
become a part of macro expansion, which we cextainly don’t want. What would happen is, the
template would be expanded to ‘

(r1)(3.14*r] *r1)

o which won’t run. Not at all what we wanted.

1 .

would happen if we fail to enclose the macto expansion within parentheses.
#define SQUARE(n)n * n
main()

{

o (b) The entire macro expansion should be enclosed within parentheses. Here is an example of what

intj;
j=64/SQUARE (4); -
printf(*=%d",)
The output of the above prﬁgrém would be:
j=64 | -
whereas, what we expected was j = 4. I_ S
What went wrong? The ipaér(; was z;xpanded into
 j=64/4%4; whichyielded 64,

(¢) Macros can be split into multiple lines, with aV’ (back slash) present at the end of each line,
- Following program shows how we can define and use multiple line macros. .

#define HLINE for (i = 0;1<79;i++)\
printf (“%c”, 196) ; o
#define VLINE(X, Y) {\
gotoxy (X, Y);\
printf (“%c”, 179) ;\
}
main()
{

[122 j

CoInthy;
.c]fscr(); |
gotoxy(l 12);
HLINE -
for(y=1; y<25 y++)
VLINE (39,¥);
3

This program draws a vertlcai and a horlzontal hne inthe center ofthe screen,

(d) If for any reason you are unable to debug a macro then you should view the expanded code of the
program to see how the macros are getting expanded. If your seurce code is present in the file PR1.C
then the expanded source code would be stored inPR1.1 Youneed to generate this file at the command
“prompt by saymng: : _

cpp prl.c
Here CPP stands for C PreProcessor. It generates the expanded source code and stores itin a file
called PR1.1. You can now open this file and see the expanded source code. Note that the file PR1.1 gets

generated in C \TC\BIN dlrectory The pr ocedure for generatmg expanded source code for compllers
other thah- - : . _

“Turbo C/C-+ might be a little different.
19/ 4 File inclusion directives

. This dlrectlvo (.auses s one fileto be mcludod in another. The preplocossor connnmd for file inclusion
looks ljke thls ' : :

#mclude “ﬁlename

and it simply causes the entire contents of fi lename to be inserted into the source codeat that
point in the program. Of course this presumes that the file being included is ex1stmg When and why tth
feature is used? It can be used in two cases:

- (a) Ifwe havea very large program, the code is best divided into severat different files, each contalmng
asetofrelated functions. It is a good programming practice to keep different sections of a large
. program separate. These files are #mcluded atthe beginning of main program file. -

(b) There aré some functions and some macro definitions that we need almostin all programs that we
write. These commonly needed functions and macro definitions can be stored ina file, and that file
can be included in every program we write, which would add all the statements in this fileto our
program as Lf we have typed them in.

#mc!ude

C has sorfie features as part of the language ands some others as part ot astandard llbrary, whlch
is a repository of code that is available alongside every standard-conformant C compﬂer Whenthe C -
compiler compiles your program it usually also links it with the standard C library. For example, on
encountering a #finclude <stdio.h> directive, it replaces the directive with the contents of the stdio:h header
file. When you use features from the library, C requires you to declare what you would be usmg The first
line in the prograrn isa preprocessmg directive Whlch should look llke thlS

‘tinchide <stdioh>

[123]

“#mclude <stdio.h>’ is a command which tells the preprocessor to treat the file stdio.h as if it were
the actually part of the program text, in other words to include it as part of the program to be compiled. The
above line causes the C declarations which are in the stdio.h header to be included for use in your program.

‘Usually this is implemented by just inserting into your program the contents of a header file called stdio.h,
located in a system-dependent location. The location of such files may be described in your compiler’s
documentation. A list of standard C header files is listed below in the Headers table. The stdio.h header
contains various declarations for input/output (I/O) using an abstraction of 'O mechanisms called streams.
For example there is an output stream object called stdout which is used to output text to the standard
output, which usually displays the text on the computer screen. :

Note about “Hinclude’

When an include statement is written into a program, it is a sign that a compiler should merge
another file of C programming with the current one. However, the #include statement is itself valid C, so
this means that a file which is included may contain #includes itself. The includes are then said to be
“nested”. This often makes includes simpler.

Macros are words which can be defined to stand in place of something complicated: they are a
way of reducing the amount of typing in a program and a way of making long ungainly RATEces of code
into short words. For example, the simplest use of mactos is to give constant values meaningful names: e.g.

The C standard library is a standardized collection of header file’s and library routines used to
implement common operations, such as input/output and character string handling, in the C programming
language. Unlike other languages such as COBOL, Fortran, and PL/I, C does not include builtin keywords
for these tasks, so nearly all C programs rely on the standard library to function.

Design

The name and characteristic of each function are in a computer file called a header file but the
actual implementation of functions are separated into a library file, The naming and scope of headers have
become common but the organization of libraries still remains diverse. The standard library is usually
shipped along with a compiler. Since C compilers often provide extra functionalities that are not specified
in ANSIC, a standard library with a particular compiler is mostly incompatible with standard libraries of
other compilers.

Pesign quality

Much ofthe C standard library has been shown to have been well-designed. A few parts, with the
benefit of hindsight, are regarded as mistakes. The string input funetions gets() (and the use of scanf{) to
read string input) are the source of many buffer overflows, and most programming guides recommend

avmdmg this usage. Another oddity is strtok(), a function that is de91gned as a primitive lexical analyser but
ishighly “fragile” and difficult to use.

History

The C programming language, before it was standardized, did not provide built-in functionalities
such as /O operations (uniike traditional languages such as Cobol and Fortran). Over time, user communities
of C shared ideas and implementations of what is now called C standard libraries to ‘provide that
functionality. Many of these ideas were incorporated eventually into the definition of the standardized C

programming language.
Both Unix and C were created at AT&T’s Bell Laboratorles in the late 1960s and early 1970s.
During the 1970s the C programming language became increasingly popular, Many universities and

organizations began creating their own variations of the language for their own projects. By the beginning of
the 1980s compatibility problems between the various C 1mplementat1ons became apparent. In 1983 the

[124]

American National Standards Institute (AN SI) formed a committee to establish a standard specification of
C known as “ANSI C”. This work culminated in the creation of the so~called C89 standard in 1989. Part
of the resulting standard was a set of software libraries called the ANSI C standard library.

Later revisions of the C standard have added several new required header filesto the library.
Support for these new extensions varies between implementations.

The headers <iso646.h>, <wchar.h>, and <wetype.h> were added with Normative Addendum
1 (hereafier abbreviated as NA1), an addition to the C Standard ratified in 1995, The headers <complex;h>,
<fenv.h>, <inttypes.h>, <stdbool.h>, <stdint.h>, and <tgmath.h> were added with C99, arevision to
the C Standard published in 1999.

ANSI Standard

The ANSI C standard library consists of 24 C header files which can be included into a programmer’s
project with a single directive. Each header file contains one or more function declarations, data type
definitions and macros. The contents of these header files follows. In comparison to some other languages
(for example Java) the standard library is minuscule. The library provides a-basic set of mathematical
functions, string manipulation, type conversions, and file and console-based I/0. It does notinclude a
standard set of “container types” like the C++ Standard Template Library, let alone the complete graphical
user interface (GUI) toolkits, networking tools, and profusion of other functionality that Java provides as
standard, The main advantage of the small standard library is that providing a working ANS! C environment
is much easier than it is with other languages, and consequently porting C to a new platform is relatively
easy. : '

Many other libraries have been developed to supply equivalent functionality to that provided by
other languages in their standard library. For instance, the GNOME desktop environment project has
developed the GTK+ graphics toolkit and GLib, a library of container data structures, and there are many
other well-known examples. The variety of libraries available has meant that some superior toolkits have
proven themselves through history. The considerable downside is that they often donot work particularly
well together, programmers are often familiar with different sets of libraries, and adifferent set of them may
be available on any particular plaIfOIm

-

ANST C library header files

<asserth> Contains the assert macro, used to assist with detecting logical errors and other
types of bug in debugging versions of & program.

<complex.h> A set of functions for manipulating complex numbers, (New with-C99)

<ctype.h> This header file contains functions used to.classify characters by their typesorto

: convert between upper and lower case in a way that is independent of the used -
character set (typically ASCII or one of its extensions, although implementations
utilizing EBCDIC are also known).

<errno.h> Fortesting error codes reported by library functions,
<fenv.h> For controlling floating-point environment. (New with C99)

<floath> Contains defined constants specifying the implementation-specific properties of

. - the floating-point library; such as the minimum difference between two different
floating-point numbers (EPSILON), the maximum number of digits of accuracy
(_DIG) and the range of numbets which can be represented (MIN, MAX).

<inttypes.h> Forprecise conversion between integer types. (New with C99)

[125]

<iso646.h> For programiming inISO 646 varian}f _chai‘actel' sets. (New with_NAl) | ' |
<'l'in_1_it's.l_hl> L Co_ntaiﬁs defined constants specifyiﬁg the implementation-specific properties of
) the integer types, such as the range of numbers which can berepresented (_ MIN,
<localeh> Forsetlocale() and related constants. This s used to choose an appropriate locale.
) <métth:h$. -': For cbn__}putjng_coﬁﬁnon iﬁathematicél functions o
<setjmp-h> - Declares the macros setjmp and 16ngjmp, which are used fornon-local éxijs
<signalh> For controlling various exceptional conditions
<stdarg.h> For accessing a varying number of arguments passed to functions.
~ <stdboolh> Foraboolean data type, (New with C99)
<stdinth> - For defining various integer types. (New with C99)
<stddefh> For defining several useful types and macros.. S
- <stdio.h> - Providesthe core input and output capabilities ofthe C language. This'ﬁle includes
- . theadmired printf function. - - 7) o
o <stdlibh> For pgrfbﬁnif;g_a va:iéty of operations, including conversion, psendo-random
R numbers, memory allocation, process conirol, envitonment, signalling, searching,
and sorting. _ :
<string.b> ~ For ﬁmﬁpulating several kinds of strings. .
-_<tg1nath.h> For type-generic mathematical ﬁinc_t’io_ris. (New with a9
" <timeh> Forconverting between various time and date formats, .
- <wcharh> © For manipulating wide streams and séVeral kinds of strings using wide characters
- key to supporting a range of languages. (New with NA1l) '
<wetypeh> For classifying wide characters. (New with NA1) .

The C standard library in C++

" The C++ pi'ogrémii'iing_léhgﬁaéé _inch_idés .tﬁc functionality of the ANSI € standard library, but
makes several modifications, such as changing the names of the header files from <xxx.h> to <cxxx>
(however, the C-style names are still avaitable, although deprecated), and placing all identifiers into the std
namespace. e L Lo
Common support libraries

While not standardized, C programs may depend on a runtime library of routines which contain
code the compiler uses at runtime. The code that initializes the process for the operating system, for
example, before calling main(), is implemented ini the € Ruri-Time Library for a given vendor’s compiler.
The Run-Time Library code might help with other language feature implementations, like handling uncaught
-exceptions or implementing floating point code. '

. The C standard library only documents that the specific routines mentioned in this article are
available, and how they behave. Because the compiler implementation might depend on these additional
implementation-level functions to be available, it is likely the vendor-specific routines are packaged with
the C Standard_ Library in the same module, because they’re both likely to be needed by any program built
with their toolset. = - " SRR ' ' oy

[126]

Though often confused with the C Standard L.ibx_‘aly because of this packaging, the C Runtime
Library is not a standardized part of the language and is vendor-specific. _ :

NOTE: You shouid check the documentation of the development environment you are using for
any vendor specific implementations of the #include directive.

A library in Cis merely a group of functions and declarations. The library has an interfice expressed
in a file with a * Iv’ extension and an implementation expressed in a file with a ¢ extension (which may be
precompiled or otherwise inaccessible). o

The C90 standard headers list:

assert.h ctype.h ~ enmoh tloath limitsh

localeh math.h setjmip.h signal.h stdarg.h

stddef.lh ~ sidioh stdlib.h string.h timeh
Headers added since C90:

complex.h fenvh initypes.h i§0646.h stdboolh

stdint.h tgmath.h weharh wetype.h
Header files and what to put into them - '

We have talked a lot in other parts of this course about header files. A header file is a file which is
included (with a #include statement) ina C program. You have already encountered a number of library
header files: <stdio.h> <string.h> <math h> <stdlib.h>. Basically, any code can be put in a header file —
afterall, a#include simply shoves the code into your source at that point. However, here are the rules that
we recommend for what to include in header files: : o

1) Defined constants (enum or #define).
2) Prototypes.

3) Only those #include statements which are necessary for the prototypes (for eg, if one of your
prototypes includes FILE * then you must include stdio.h (otherwise FILE * won’t make any
sense to the compiler).

 4) extern statements for giobal variables. (see later)
5) typedefand struct statements.

By convention, header files which you have witten are included using double quotes rather than
anglebrackets like so: #nclude “myheader.h” The reason for this rule is that it means that people reading
your code can readily tell which files you have written and which are system files for the compiler you are
using. This can be important, for example, the first few lines of'a program are: o

Egs.:
#include <stdio.h>
#include <Xlib.h>
#include <sys/types.h>
Hinclude “protosh”
#include “defsh”-

(127]

without the <>and “” notation it would be hard for all but the inost experienced progtammers to |
know which files were part of the program and which were part of the operating system. {tis conventional
to put system header files before user header files.

10.5 Conditional compilation
10.5 1 #if, #elif and #endif Directives

The#if command checks whether a controlling conditional expression evaluates to zero or nonzero,
and excludes or includes a block of code respectively. Foreg:

#if 1
/¥ This block will be included */
#endif

- #if0
/* This block will not be included */
#Hendif

The conditional expression could contain any C operator except for the assignment operators, the
increment and decrement operators, the address-of operator, and the sizeof operator. One unique operator
used in preprocessing and nowhereelse is the defined operator, It returns 1 if the macro hame, optlonally
enclosed in parentheses, is currently defined; 0 if not,

- The #elif command is similar to #if, except that it is used to extract one from a series of blocks of
code. E.g.:

#i£/* some expression*/

#elil /* another expression */
/* imagine many more #elifs here ... */

#else
/* The optional #else block is selected if none of the previous #if or

#elif blocks are selected */

#endif /* The end of the #if block */

The #if directive can be used to test whether an expression evaluates to a nonzero value or not, If
the result of the expression is nonzero, then subsequent lines upto a #else, #elif or #endif are compiled,
otherwise they are skipped. A simple example of #if directive is shown below:

main()

[128]

{

#HETEST <=5
statement 1 ;
statement 2 ;
statement 3 ;
#else
statement 4 ;
statement S ;
statement 6 ;
#Hendif

}

If the expression, TEST <=5 evaluates to true then statements 1,2 and 3 are compiled otherwise
statements 4, 5 and 6 are compiled. In place of the expression TEST <=5 other expressions like (LEVEL
==HIGH || LEVEL ==LOW) or ADAPTER == CGA can also be used.

If we so desire we can have nested conditional compﬂatmn dlréctlves An example that uses such
directives is shown below.

#HFADAPTER —VGA

code for video graphics array

#else

#FADAPTER ==SVGA

code for super video graphics array
#else |

code for extended graphics adapter
#Hendif

#endif

The above program segment can be made more compact by using another conditional compilation
directive called #elif. The same program using this directive can be rewritten as shown below. Observe
that by using the #elif directives the mumber of #endifs used in the program get reduced.

- #HifADAPTER==VGA
code for video graphics array
#elif ADAPTER == SVGA
code for super video graphics array
#else ' |
code for extended graphics adapter
#Hendif

[1291

There are a handful more preprocessor commands which can largely be ignored by the beginner,
They are commonly used in “include” files to make sure that things are not defined twice.

#Hif
This is followed by some expression on the same line. It allows conditional

compilation. It is an advanced feature which can be used to say: only compile the code between
#if and #endifif the value following #ifis true, else leave out that code altogether. This is different from not
executing code—the code will not even be compiled.

10.5.2 #ifdef and #ifndef Directives

The #ifdef command is similar to #if, except that the code block following it is selected if 3 macro
name is defined. In this respect,

#HifdefNAME
isequivalent to
#lf deﬁned NAME .
The #;fndef command is sm ulal to #ﬂdcf except that the test is reversed
| #ifdef NAME |
isequivalentto
#if Idefined NAME

We can, if we want, have the compiler skip over part of a source . code by msemng the preprocessing
- commands #ifdef and #endif, which have the general form:

. #ifdef macroname
statement 1 ;
statement 2 ;
statement 3 ;
Hendif
If macroname has been #idefined, the block of code will be processed as usual; otherwise not.

Where would #ifdef be useful? When would you like to complle only a part of your pmgram? In
three cases: .

' ‘(a) “To“comment out” obsolute lines of code. It often happens thata program is changed at the last
minute to satisfy 2 client. This involves rewriting some part of source code to the élient’s satisfaction
and deleting the old code. But veteran programmers are familiar with the clients who change their
mind and want the old code back again just the way it was.

Now you would definitely not like to retype the deleted code again_'.- _

One solution in such a situation is to put the old code within a pair of /* */ combination, But we
might have already written a comment in the code that we are about to “comment out” This would mean
we end up with nested comments. Obviously, this solution won’t work since we can’t nest comments in C.

Therefore the solution is to use conditional compilation as shown below,

main()

[130]

{

Hifdef OKAY

stateivieitt 1 §

statemerit 2 : /¥ deteets virus */

statemertt 3

statertietit 4 ; /* speeific to stone virus */

#endif

staterretit 5 ;

| stateiieiii 6 ;

statettietit 7 §

}

Here, s{atemeﬁts 1,2, 3 and 4 would get compited only if the ﬁlﬁém OKAY has beeh. deﬁllae.d, and
we have putposefully otitlited the definition of the macto OKAY. Ata later date, if we want that these

statements stiotild also get cothpiled all that we are required to do is to delete the #ifdef and #endif
statements. '

(b) A mote sophisticated use of #iftlef has to do with making the programs portable, i.e. to make them
work oh two totally different computets. Suppose an organization has two different types of
computers and yoti dre expected to wrlte a program that works on both the machines. You can do
so by isolating the lihes of vude that must be different for each machine by marking them off with
#ifdef. For example: : -

rialh()

0

#ifdef INTEL
code sultable for aIntel PC

 Helse _ |

code stitable for a Motorola PC
#endif

code common to both the computers

} |

When you compile this program it would compile only the code suitable for 2 Intel PC and the

common code. This is because the macro INTEL has not been defined. Note that the working of #ifdef -
Helse - #endif is similar to the ordinary if - else control instruction of C. - : '

If you want to run your progtam on a Motorola PC, justadd a statement at ths top saying,
#defing INTEL |

Sometimes, instead of #ifdef the #ifndef directive is used. The #ifndef (which means ‘if not
defined’) works éxactly opposite to #ifdef. The above example if written using #ifindef, would look like
. this: = - '

[131]

main(}

{

#itndef INTEL

code suitable for a Intel _PC

felse

_ code Suitgble for a Motorola PC

(©

#endif

code common to both the computers

Suppose a function myfune() is defined in a file ‘myfile.h” which is #included ina ﬁlé m&f lel.h.

“Now in your program file if you #include both ‘myfile.h” and ‘myfile [.h" the compiler flashes an

error Multlple declaration for myfunc This is because the same file ‘myfile.h’ gcts included twice.
To avoid this we can write following code in the header file. -

 Pmyfileh®
fhﬁldef myfile h

#define myﬁle h

myfunc()

{

/* some code */

}
#endif

First time the file “‘myfile.h’ gets included the preprocessor checks whether a macro called _myfile_h

has been defined or not. If it has not been then it gets defined and the rest of the code gets included, Next
time we attempt to include the same file, the inclusion is prevented since __myfile_halready stands defined.
Note that there is nothmg special about _ myfile_h. In its place we can use any other macro as well,

To summarize :
#undef: - This undefines a macrd, leaving the name freé.
#ifdef: -~ Thisis followed by a macro name. If that MAcro is deﬁned then thisis true.
Hifidef: ThlS is followed by a Macro name. If that name is not de:ﬁncd then thisis true,
#elée P This is part of an #f, #1fdef #ifndef) preprocessor statement '
flendif: .The #endif command ends a block started by #if, #ifdef, or #ifndef.
This marks the end of a preprocesscu statement
#Ime H: N Has the form T

#line constant ﬁlename

[13’2']

- Thig ié for debuizging mainty. This statement causes the compiler to believe that the nextline is line
number (constant) and is patt of the file (filename).

Example
f**********$*$**$***$*****%******$******$$$$*$**$*$*******$$/

* To compile or not to compile */ :
j************************$**$***$$*$$$************#********$ﬁ -
© #define SOMEDEFINITION 6546
#define CHOICE 1 /* Choose this before compiling */
f*$**&***$*$**$*$*$***$$**$**$$*$$$**$*$*$**$$*$***$*******}f
.. #if (CHOICE==1) . N '.‘
#define OPTIONSTRING “The programmer selected thls”
#define DITTO “instead of
#define OPTIONSTRING “The alternative”
#define DITTO “i.e. This! ©
#endif _ _
. '/w****#*se*s:*H***MM*******H§|=M**M**M*H***H*é*%**ﬂﬁf' :
. #ifdef SOMEDEFINITION
#define WI-IATEVER “Somethmg was defined!”
Helse
#deﬁne WHATEVER “Nothmg was defined”
.f**************$$*$$$*ﬁ*$$$*$*#$************$#*$$$**$********}”_‘i'
. main() ' | :
- printf (OPTIONSTRING); -
O oprintf(DITTO),
}
Herror N
- Thisisapart of the proposed ANSI standard. It is intended for debugging. It forces the compiler
to abort compilation, The #error directive halts compilation. When one is encountered the standard specifies

that the compiler should emit a diagnostic containing the remaining tokens in the directive. This ismostly

used for debugging purposes.
#error message
There area few more, less useful features

 Except for expansion of predefined macros, ail théSe operations are triggered with preprocessing

directives. Preprocessing directives are lines in your program that start with ‘#’. Whitespace is allowed

i before and after the ‘4. The ‘# is followed by an identifier, the directive name. It specifies the operation
“to perform. Directives are commonly referred to as ‘#name’ where name 1s the dlrectlve name. For
example, “#define’ 1s the dmctlve that defmes amacro. ' -

The ¥ whlch begms a directive cannot come from a macro expansmn Also, the chrectwe name is
not macro expanded. Thus, if foo is defined as a macro expanding to define, that does not make ‘#foo’ a
valid preprocessing directive.

[133]

The set of valid directive names is fixed. Programs cannot define new preprocessing directives,

Some directives require arguments; these make up the rest of the directive line and must be separated
from the directive name by wlntespace Forexample, ‘#define’ must be followed by a macro name and the
mtended expansion of the macro.

A preprocessing directive cannot cover more than one line. The line may, however, be continued
- with backslash-newline; or by a block comment which extends past the end of the line. In either case, when
the directive is processed, the continuations have already been merged with the first line to make one long
line.

Once-Only kieaders

If aheader file happens to be included twice, the compiler will process its contents twice. This is
very likely to cause an error, e.g. when the compller sees the same struclule definition twice, Even ifit does
not, it will certainly waste time. -

The standard way to prevent this is to enclose the entire real contents of the file in a conditional, like
/* File foo. */
" #ifndef FILE_FOO_SEEN
#define FILE_FOO_SEEN
rﬁe-entire Jile
Aendif /*WFILE_FOO_SEEN */

This construct is commonly known as a wrapper #ifndef. When the header is included again, the
conditional will be false, because FILE_FOO_SEEN is defined. The preprocessor will skip over the entire
contents of the file, and the compiler will not see it twice,

The macro FILE_FOO_SEEN is called the controlling macro or guard macro. In a user header
file, the macro name should not begin with * . In a system header file, it should begin with ¢ .’ to avoid
conflicts with user programs. In any kind of header file, the macro name should contain the name of the file
and somne additional text, to avoid conflicts with other header files.

Standard Predefined Macros

- The standard predefined macros are specified by the relevant language standards, so they are
available with all compilers that implement those standaltls Older compilers may not provide all of them.
“‘Their names-al! start with double underscores. :

_FILE
This macro expands to the name of the current input file, in the form ofa C String constant, This is
the path by which the preprocéssor opened the file, not the short name specitied in“#include’ oras

the input file name algument Forexample, “fusr/]ocal/' nclude/myheader h”is aposs1ble expansion
~ ofthismacro.

_LINE

This macro éxpands to the current input line number, in the form of a decimal i integer constant.
While we call it a predefined macro, it’sa plvetty strange macro, since its “definition” changes with
each new lme of sonree code. :

[134]

__FILE _and __ LINE__ are useful in generating an error message to report an inconsistency detectcd
by the program,; the message can state the source line at which the inconsistency was detected. For example,

fprintf (stderr, “lntemal error: ©
“negative string length “
~“0%d at Ys, line %d.”,
length, _FILE__, LINE_);

'An “#include’ directive changes the expansmns of FIL E ~and _LINE . to correspond to the
included file. At the end of that file, when processing resumes on the input file that contained the “Hinclude’
directive, the expansionsof FILE _and__ LINE__ revert to the values they had before the *#include’
(but__LINE__is then incremented by one as processing moves to the line after the ‘#include’).

A ‘#line’ directivechanges LINE__,andmay change _FILE _aswell,

C99 introduces __func__, and GCC has prov1ded __FUNCTION _ for a long time. Both of
these are strings containing the name of the current function (there are slight semantic differences; see the
GCC manual). Neither of them is a macro; the preprocessot does not know the name of the current
function, They tend to be useful in conjunction with __ FILE__and__ LINE__, though.

_DATE__

This macro expands to a siring constant that describes the date on which the preprocessor is being
run. The string constant contains eleven characters-and looks like “Feb 12 19967, If the day of the
month is less than 10, it is padded with a space on the left.

If GCC cannot determine. the current date, it will emit a warning message (once per compilation)
and__DATE__ will expand to “??? 22 7777”.

TIME

This macro expands toa strmg constant that de::crlbes the time at which the preplocessor is being
run. The string constant contains eight char. acters and looks like “23:59:017.

IfGCC cannot determirie the current time, it will emit a warning message (once per compllatton)
and__ TIME_ _will expand to “?2:72:72”. _ ,

10.6 Summary
1. The preprocessing language consi sts of directivesto be exucutcd and macros to be ex panded Its
* primary capabilities are:

‘s ' Inclusion of header files. These are files of dLCIal'atIOHS that can b«, substltuted into your program.

. Macro expansion. You can define macros, which are abbreviations for arbitrary fragments of C
' code. The preprocessor will replace the macros with their definitions throughout the program.
Some macros are automatically defined for you.

e Conditional compilation. You can include or exclude parts of the program accordlnU to various
conditions.

¢ Line control. If you use a program to combine or rearrange source files into an intermediate file
which is then COmplled you can use llne control to mform the compller where each source line.
originally came from. :

o . Diagnostics. You can detect problems at compile time and issue errors of wam:mgs

[135]

-2+.+.. Tolndefine a macro- A defined macro can be undefined using the statement
‘#undefidentifier, o
This is useful when we want to restrict the definition only to a particular part of the program.

3. There are three general reasons to use a conditional. =~

» A program may need to use different code depending on the machine or operating system itis to
run on. In some cases the code for one operating system may be erroneous on another operating
system; for example, it might refer to data types or constents that do not exist on the other system.

- When this happens it is not enough to avold executing the invalid code. Its mere presence will
© cause the compiler to reject the program. Witha preprooessmg conchtlonal the oﬁenchng wde can
be effectively exci ised ﬁom the program when it is not valid. |

e Youmay want to beableto compile the same source file into two di flerent programs. One version

might make frequent time-consuming consistency checks ondits intermediate data, or print the .

values of those data, for debugg,mg, and the other not.

o . A condltlonal whose condition is always false is one way to exclude code from the progtam but
_ _keep it as a sort of comment for future reference.

Simple programs that do not need systcm-speclﬁc logic or complex debugging hooks genenlly
will not need to use preprocessing u)ndltlonals :

10 7 Glossary

ANSI (Amerlcan Natlonal Standards Inst:tute) An 01gamzat10n that creates standards for the '

computer industry. Responsible for the AN SI C standard. -
'ANSYIC An international standard for the C progmmmmg lfmguage

C An advanced programming language used for proglarrumng advanoed computel apphcatlons

Ci+ (C Plus Plus) The-same as C with added object-oriented functions.
" CH(C Sharp)A Microsoft version of ,‘C{rﬁ- _With added J'ava?iil_{é functions.
. Case Sensitive A term used to describe ifjt is of importance to use upper or lower case letters.

Character set A finite set of ditferent characters used for the: representdtlon organisation or
control of data.

Directive A directive is an instruction by the programmer for a compiier- Most pj ogramming
languages have directives. InC, #include isused to mclude headel files. You canuse the #deﬁne direct:ve
' to gwe ameaningful name to a constant in your program -

L Macro In C and C++, a Macro is a piece of text {hat is expanded b‘s the prepmcessor part ofthe
'compller This is used in to expand text before comp]lmg,

a

Preprocessor The preprocessor is the part of the bOlIlplIel‘ inCand C++ ﬂmt readq the source
code ﬁles and expands text wherever it finds a# in column one.

-NaN (not aiumber)

* Avalue that can be stored i ina floating 1 type but that is not a valid ﬂoatmg pomt number. Not all

. Systems support the NaN value _ /

[136)

10.8

10.9

o - NV R

Further Readings

Programming in ‘C’ Balaguruswamy, Tata MCGI‘&W-I‘IIH Publlcatlons
The C programming language— Dennis Ritchie, Prentice Hall, Delhi
Let us C — Yashwant Kanetkar, BPB Publication

Unit end questions

Define amacro called “birthday” which descubes the day of the month upon which your blrthday
falls.

Write 2 command to the preprocessor to include to maths library math.h.

A macro is always a number. True or false?

A macro is always a constant. True or false? _ _

Write a Program to ﬁncl the area and perimeter of geometrical hgure usm;:, macvo detmmon
What are the differences between header file and library file?

What is the difference between #include <stdio.h> and #mclude “stdlo h”‘?

[137]

Unit 11 : File Handling

Structure of the Unit
110 Objective
11.1 Introduction _
11.2 Definition of File and its types
11.3 Operations onthe Files
11.3.1 Opening '
11.3.2 Closing |
11.3.3 Read froma File
11.3.4 WriteintoaFile
11.4 Standard file functions
1141 fopen
11.42 felose
11.4.3 feof
11.4.4 fseek, fiell
11.4.5 rewind
11.4.6 fgete, fputc, fread, fwrite
1147 fscanf, fprintf
——1TA.8 Other file access functions
11.4.9 Error Handling Functions
11.5 Filehandling through programs
| I]_l.6 Summary
11.7 -Glossary
11.8 Further Readings

11.9 Unitend questions

1.0 Objective

Students who complete this unit should be able to understand the following tasks;

Identify the File and file operations .
Understand and use standard file handling functions

*

Understand and use file access functions

Understand and use etror handling functions

[138]

11.1 Introduction -

This chapter focuses on the File handling in C Language - The File and file operations, use of
* standard file handling functions, use of file access functions, use of error handling functions.

All files, irrespective of the data they contain or the methods used to process them, have certain
important properties. They have a name. They must be opened and closed. They can be written o, or read
from, or appended to. Conceptually, until a file is opened nothing can be done to it. When itis opened, we
may have access to it at its beginning pr end. To prevent aceidental misuse, we must tell the system which
of the three activities (reading, writing, or appending) we will be performing on it. When we are finished
using the file, we must close it. If the file is not closed the operating system cannot finish updating its own
housekeeping records and data in the file may be lost. ' a

Essentially there are two kinds of files that programmers deal with - fext files and binary files,
These two classes of files will be discussed in the following sections. .

11.2 Deﬁn ition of File and its types

At some times it becomes necessary to store the data in a manner that can be later retrieved and
displayed either in part or in whole. This mediwm is usually a *file” on the disk. This chapter discusses how
file YO operations can be performed. ' ' '

Data Organization

Before we start doing file input/output let us first find out how data is organized on the disk. All data
stored on the disk is in binary form. How this binary data is stored on the disk varies from one OS to
another. However, this does not affect the C programmer since he has to use only the library functions
written for the particular OS to be able to perform input/output. it is the compiler vendor’a responsibility to
correctly implement these library functions by taking the help of OS. This is illustrated here :

Our program 0S8 . ClLibrary - Disk
-. functions

There are different operations that can be carr_ied outona ﬁ'le.. These aré_:
e Creation of anew file
» Opening an existing file
¢ Reading froma file
e Writingtoafile
s Moving foaspecific locationina fle (seeking)
s Closingafile '

Files are places for reading data from and writing data into. This includes disk files and it includes
devices suchas the printer or the monitor of a computer. C treats all information which enters or leaves a
program asthough it were a stream of bytes: a file. The most commonly used file streams are stdin (the
keyboard) and stdout (the screen), but more sophisticated programs need to be able to read or writg to
files which are found on adisk or to the printeretc. Anoperating system allows a program to se¢ files in the
putside world by providing a number of channels or ¢ portals’ (‘inlets” and ‘outlets’) to work through. In
order to examine the contents of a file or to write information to a file, a program has to open one of these
portals. The reason for this slightly indirect method of working is that channels/portals hide operating
system dependent details of filing from the programmer. Think of itasa protocol. A program which writes
information does no more than passing that information to one of these portals and the operating system’s
filing subsystem does the rest. A program which reads data simply reads values from its file portal and does

[139]

not have to worry about how they got there. This is extremely simple to work in practice. To use afile then,
-a program hastogo through the follow ing routine:

e ?0penafile forreading or writing. (Reserve a portal and loéa'__te the file on disk or whatever.)
« ?Read or write to the file using file handling functions provided by the standard library.
e 7Close the file to free the operating system “portal” for use by another programor file.

A program opens a file by calling a standard librar y function and is returned a file pointer, by the

' opemtmg systern, which allows a program to address that particular file and to distinguish it from all others. The

ANSI C <stdio.h> library is based on the ongmal Unix file I/O primitives but casts a wider net to
accommodate the least-common denominator across, vaned systerns.

Let usnow look ata program that reads a file and dlsplay its contents on the screen.
#include “stdio.h”
main()
{
FILE *tést;
charc;
test= fOpen(“TENL]NES.TXT” “r); /* openin ‘r’ead mode */
- if (test == EOF) prlntf(“Flle doesn tex1st\n”)
else { I

do {

L ¢= getc(test)-; /* get one character from the file */
putchar(c); /* display it on the screen */
} while (¢ 1= EOF); /* repeat until EOF (end 6f file) */
y
felose(test);

}

In this program we check to see that the file exists, and ifit cdoes, we execute the main body of the
program. If it doesn’t, we print amessage and quit. If the file does not exist, the system will set the pointer
equal to NULL which we can test. The main body of the program is one do while loop in which a single
character is read from: the file and output to the monitor until an EOF (end of file)is delected ﬁom the input

“file. The file'is then cloqed and the progmm IS termmated ' '
Strc.lms

o Input and output, whether toor from physxcal devices such as tenmnals and tape drives, or whether
~to orfrom files suppotted on structtued storage devices, are mapped into logical data streams, whose
properties are more uniform than their various inputs and outputs. Two forms of mapping are supported:

text streams and binary streams.

- A text stream is an ordered sequence of characters composecl into llnes each llne consxstmg of
zero or more characters plus a terminating new-line character. Whether the last line requires a terminating
- new-line character is implementation-defined. Characters may have to be added; altered, or deleted on

[140]

input and output to conform to differing conventions for representing text characters in a stream and those
inthe external representatlon

 Data read in from a text stream will necessarily compare equal o the data that were earher written
out to that stream anly if the data consist only of printable characters and the control characters horizontal
tab and new-line, no new-line character is immediately preceded by space (characters and the last character
is a new-line character. Whether space characters that are written out 1mmed1ately before a new-line
character appear when read in is 1mplementat10n—deﬁned

Unix adopted a standard internal format for all text streams: Each lme of text is terminated by a
new-line character. That’s what any program expects when it reads text, and that’s what any program
produces wherrit writes text. If such a convention doesn’t meet the needs of a text-oriented peripheral

attached to a Unix machine, then the fixup occurs out at the edges of the system. None of the code inthe

middle needs to change.

A binary stream is an ordered sequence of characters that can transparently record internal data.
Data read in from a binary stream shall compare equal to the data that were earlier written out to that
stream under the same 1mplementat10n Such a stream may, however, have an unplementatlon-deﬁned
number of null characters appended to the end of the stream

Nothmg in Unix prevents the program from wrmng arbitrary: 8 blt bmary codes to any open ﬁle or

reading them back unchanged from an adequate repository. Thus, Unix obliterated the 10ng~stand111g

distinetion between text streams and bma:y streams.
Files Generally '

C provides two levels offile hancllmg, these canbe called hlgh level and low level ngh level files

are all treated as text files. In fact, the data which go into the files are exactly what would be seen ont the
screen, character by character except that they are stored in a file instead. This is true whether afileis
mesnt fo store characters, integers, floating point types. Any file, which is wrltten toby h1gh level file
handling functions, ends up as a text file which could be edited by a text editor. '

High level text files are also read back as character files, in the same way that mput isacquired from
the keyboard. This all.means that high level file functions are identical in conceptto keyboard/screen mput/
output. The alternative to these high level functions, is obviously low level functions. These are more efficient,
in principle, at filing data as they can store data in large kamps, in raw memory format, without converting to
text files first. Low level input/output functions have the disadvantage that they are less programmer fnendly
than the high level ones, but they are likely to work faster. '

Text Mode Versuq Blnary Mode o
() New Lines

In text mode; a newline character is converted into the carriage return -linefeed combination before

bemg written to the disk. Like wise, the cariage return-line feed combination on the disk is converted back
into a newline when the file ts read by a ¢ program. [-Iowcver 1f fileis opened in bmary mode, as opposed
to text mode, these conversions will not take place ’

(ii). Endof Flle

The difference is that in text mode when end-of-file'is detected a special character whose ascil
value is 26, is inserted fter the last character in the file to mark the end of file. If this character is detected
at any point in th file, the read function will return the EOF signal to the program. As against this, there is
no such special character present in the binary mode files to mark the end of file. The binary mode file
keeps teack of the énd of fite from the number of characters present in directory entry of the file.

(1417

Text Mode

The only function available for storing in a disk file is the fprintf{) in text mode. Here numbers are
stored as string of characters when written to the disk; These 1234, even though it occupies two bytes in
memory, when transferred to the disk using fprintf{), it would occupy four bytes, one byte per character.
Similarly the floating point number 1234.56 would occupy 7 bytes on disk. These, numbers with more
digits would require more disk space. In binary by using the functions (fread() and fwrite()) numbers are
stored in binary format. It means each number would occupy thé same number of bytes on disk as it
occupies in memory. Normally a programmer can get away with using the high level input/output functions,
but there may be times when C’s predilection for handling all high level input/output as text files, becomes
anuisance. A program can then use a set of low level /O functions which are provided by the standard
library. These are: :

open() close() ._ _ creat() read() M'ite{)
: 1'ename() unlink{)/remove() Iseek() o

These low level routines work on the operating system’s end of the file portals. They should be
regarded as being advanced features of the language because they are dangerous routines for bug ridden
programs. The data which they deal with is untranslated: that is, no conversion from characters to floating
point or integers or-any type at all take place. Data are treated as a raw stream of bytes. Low level
functions should not be used on any file at the same time as high level routines, since high level file handling
functions often make calls to the low level functions. Working atthe low level, programs can create, delete
and rename files but they are restricted to the reading and writing of untranslated data: there are no functions .
stich as fprintf() or fscanf() which make type conversions. As well as the functions listed above a local
operating system will doubtless provide speciat function ¢alls which enable_a programmer to make the
most of the facilities offered by the particular operating environment. These will be documented, eitherina
COmpllel‘ manual, orin an operating system manual, depending upon the system concerned. (They might
concern special graphics facilities or windowing Systems or prowde ways of writing specnal system dependent -
data to disk files, such as clate/tlme stamps ete) :

FIL]L pomters

- The <std1o h> header oontams a deﬁmhon fora type FILE {usually viaa typedet) whichis capable
of recordmg all the information needed to control a stream, including its file position indicator, a pointer to
the associated buffer.(if any), an error indicator that records whether a read/write error has occurred, and
an end-of-file indicator that records whether the end of the file has been reached. It is considered bad
manuners to access the contents of FILE directly unless the programmer is writing an implementation of
<stdio.h> and its contents. How, pray tell, is one going to know whethér the file handle, for example, is
- spelthandle or_Handle? Access to the contents of FILE is better provided via the functions in <stdio.h>.
It can be said that the FILE type is an early example of object-orlented prog1 amming.

File Positions

‘When data are read from a file, the operating system keeps track of the current position of a
program within that file so that it only needs to make a standard library call to “‘read the next part of the file’
and the operating system obliges by reading some more and advancing its position within the file, until it
reaches the end. Each single character which is read causes the positicn in a file to be advanced by one.
Although the operating system does a great deal of hand holding regarding file positions, a program can
control thc way in which that position changes with functions such as ungete() if need be. In most cases it
is not necessary and it should be avoided, since complex movements within a file can cause complex
‘movements of a disk drive mechanism which in turn can lead to wear on disks and the occurrence of
errors, Most of the high level input/output functions which deal with files are easily recognizable in that they
start with the letter f*, Some of these functions will appear strikingly familiar,

[142]

For instance: o

i feafDfes) fpus)

These are all generalized file handling versions of the standard input/output library. They work with
generalized files, as opposed to the specific files stdin and stdout which printf() and scanf{) use. The file
versions differ only in that they need an extra piece of information: the file pointer to a particular portal. This

is passed as an extra parameter to the functions. they process data in an identical way to their standard I/
O counterparts.

Other filing functions will not look so familiar. Forexample: -

fopen() freopen() felose() gete() © ungete();
pute() foetc() fpute() feof(}

detail. |
11.3 - Operations on the Files -
11.3.1 Opening

Before we can read (or write) information from (to) a file on a disk we must open the file. To open
the file we have called the function fopen(). It would open a file “PR1.C” in ‘read’ mode, which tells the
C compiler that we would be reading the contents of the file. Note that “r” is a string and not a character;
hence the double quotes and not single quotes. In fact fopen() performs three important tasks when you
open the file in “r” mode: - -

. Firs_ﬂy it searches on the disk the fileto be opéned._ _
.{.' Thenit loads the file from the chsk into apiade in memory .calléd-buffer,
e Tisets up a character pointer that points to the first character of the bufter.

 Afileis opened by a call to the library function fopen(): this is available automatically when the
library file <stdioJi> is included. There are two stages to opening a file: firstly afile portal must be found so
that a program can access information from a file at ail. Secondly the file must be physically located on a
disk oras a device or whatever. The fopen() function performs both of these services and, if, in fact, the file
it attempts to open does not exist, that file is created anew. The syntax of the fopen() function is:

- FILE *returnpointer; _
1'eturrip0i11fer = fopen(“filename”, "mode™);
or
FILE returnpointer;
char *fname, *mode;
refurnpointer = fopen(fname,mode);

_ _ The filename is a string which provides the name of the file to be opened. Filenames are system
dependent so the details of this must be sought from the local operating system manual.. . :

Trouble in Opening a File -

There is a possibility that when we try to opeti a file using the function fopen(), the file may not be
opened. While opening the file in “r” mode, this may happen because the file being opehed may not be

present on the disk at all. And you obviously cannot read a file that doesn’t exist. Similarly, while opening -

[143]

. Before any work can be done with high level files, these functions need to be explained in some

the file for writing, fopen() may fail due to a number of reasons, like, disk space may be insufficient to open
anew file. or the disk may be write protected or the disk is damaged and soon. .

Crux of the matter is that it is important for any program that accesses disk files to check whether
afile has been opened successfully before trying to read or write to the file. If the file opening fails due to
any of the several reasons mentioned above, the fopen() function returns a value NULL (defined i in,
“stdio.h” as #define NULL 0). . : :

11.3.2 Closmg

When we have finished reading from the file, we iced to'close it. This is done using the function
felose() through the statemgnt, : : "

felose (fp) ' ' ' S .

-~ "The tunction returns zero if the file was successfully closed or EOF if any errors were detected.

Once we close the file we can no longer read from it using gete() unless we reopen the file. Note that to

close the file we don’t use the filename but the file pointer fp. On closing the file the buffer associated with
the file isremoved from memory.

. When we close this file usmg iclose() three Operatlons would be performed o
p _i The chal acters m the buffer would be wrntten to the file on the dlsk |
e Atthe end of ﬁle a character with ASC]I value 26 would get wutten
.-. The bu{fer would be elumnated fmm memmy |

You can imagine a possibility when the buffer may become full before we close the file. In sucha
case the buffer’s contents would be written to the dlSk the moment it becomes full, AII tlus buffer management
is done for us by the library functions.

11.3.3 Read from a File
- Reading f"rom file can be done in seveml ways
- 0 | getcO like fgefc() | .
. fgerc () -int ﬁ,retc (FILE * stream) wrlte a character to afile
o fgets() - char * feets (char * 5:rmg, mr num FILE * Mream) wnte a stnng to a file

e fscanf{) - int fscanf (FILE " stream ; const char * Jormat [, argument .1); - works
like scanf{) except that it reads from a file instead of STDIN -

Reading functions are classified in 3 categories :

» Character Input Functions : fgete , fgets, getc, getchar, gets, ungete
¢ Directinput function : fread function o
¢ Formatted input fonctions :scanf family of functions

Once the file has been successfully opened for reading using fopen(), as we have seen, the file’s
 contents are brought into buffer (partly or wholly) and a pointer is set up that points to the first character in
the buﬂ"er This pointer is one of the elements of the structure to which fip is pointing. -

_ To read the file’s contents from memory there exists a function callecl fgetc() Tlus has been used
in our program as, . _

“ch=fgetc(fp);

[144]

foete() reads the character from the current pointér position, advances the pointer position so that
it now points to the next character, and returns the character that is read, which we collected inthe variable
ch. Note that once the file has been opened, we no longet refer to the file by its name, but through the file
pointer fp. : '

While reading from the file, when fgete() encounters a special character (whose ASCIL value is
26, signifies end of file. This character is inserted beyond the last character inthe file, when it is created),
instead of returning the character that it has read, it returns the macro EOF. The EOF macro has been
defined in the file “stdio.h”. In place of the function foetc() we could have as well used the macro gete()
with the same effect. . S S

11.3.4 Write into a File
| Writing to files can be done in various ways:
. put-c() - like fputc() -
o fputc() - int fpuic (int characfén FILE * srrea'm.)ﬂ;' - write a character to a file
o fputs() - int fputs (’con&t char *'strl'i'relg', _.F ILE * sr.ree.am).;; . write;. astringto a file

o [printf()-int jj}rimjf (F_‘ILE.* stream , const char '*format [,@rgﬁment, ..]); - works like
- printf{) except that it writes to qﬁle inistead of B S
o STDOUT... e
_-' Similarto réad_funétioﬁ, this is'als_c'i‘:(.:a_t@gari:z.éd'ilbﬁo 3 classes ¢ |
« Character (ﬂjutput.Fun.ctions - fipute, fputs; putc, putchar, puts -
- " » - Directoutput function "'_ ¢ s fwrite fonction |
e Formaﬁeﬂ,éufput ﬁ;'nctién.s. .' fpnntffannly ofhmctlons .
" The f[)l'll.f(.!‘() function is similar to the puteh() funéti_on, in the sense that both output characters.
However, putch() function always writes to the VDU, whereas, fpute() writes o the file. Which file? The

file signified by ft. The writing process continues till all characters from the source file have been written to
the target file, following which the whille loop terminates. I o

~ Note that our sample file-copy program is capable of copying only text files. To copy tiles with
extension .EXE or .COM, we need to open the files in binary mode, a topic that would be dealt with in
sufficient detail in a later section. : o

1_'1.._'4 Standard i'ile functions
11.4.1- fopen’
. #.i.ns.:l.udlel <._std:1;q JS _ | ,
FILE *fopen(const char *filename, const char *mode);
FILE *freopen(const char *filename, const char *niode, FILE *streamy);
The fopen and freopen functions open files. o o

The fopen function opens the file whose name is in the string pointed to by filename and associates
astream with it. B ' '

riasi

- Theargument mode points to a string begitining with any one of the fnllowing sequerices:

r - openatextille forreading
w truncate to zero length ot create a text file for writing
a append; open or create text file for writing at end-of-file
tb .~ . openbinary file for reading
wh truncate to zero length or create a binary file for writing
ab append; open or create.b.inary file for writing at end-of-file
r+ open text file for update (reading and writing)
w truncate to zero length or create a text file for update
at append; open or create text file for update

r+b or rb+ open binary file for update (reading and wri_tin'g) .
wtbor wh+ truncate to zero length or create a binary file for update
atborab+ append; open or create binary file for update

Opening a file with read mode (‘r” as the first character in the mode argument) fails if the file does
1ot exist or cannot be read. Opening a file with append mode (“a’ as the first character in the mode
argument} causes all subsequent writes to the file to be forced to the then-cutrent end-of-file, regardless of
intervening calls to the fseek function. In some implementations, opening a binary file with append mode
(‘b’ as the second or third character in the above list of mode arguments) may initially position the file
position indicator for the stream beyond the last data written, because of null character padd ing.

When a file is opened with update mode (“+” as the second or third character in the above list of
mode argument values), both input and output may be performed on the associated stream. However,
output may not be directly followed by input without an intervening call to the filush function or to a file
positioning tunction (fseek, fsetpos, or rewind), and input may not be directly followed by output without
an intervening call to a file positioning function, unless the input operation encounters end-of-file. Opening
(or creating) a text file with update mode may instead open (or create) a binary stream in some
implementations. When opened, a stream is fully buffered if and only if it can be determined notto referto
an interactive device. The error and end-of-file indicators are cleared.

- Thefopen fimction returns a po'gll'fel' tothe object controlling the stream. If the open operation fails,
topen returns a null pointer. _

The freopen function opens the file whose name is the string pointed to by _ﬁlenax;ic and associates
the stream pointed to by stream with it. The mode argument is used just as in the fopen function. The
“Areopen function first attempts to close any file that is associated with the specified stream. Failure to close
the file successfully is ignored. The error and end-of-file indicators for the stream are cleared. It returns a
null pointer if the open operation fails, or the value stream if the open operation succeeds.
The operation mode s also a string, chosen from one of the tollowing;
r "~ Openfile forreading ~
w Openfile for writing
a Open file forappending
rw ' Openfile for reading and writing (some systems)

[146]

This mode string specifies the way in which the file will be used. Finally, returnpointer is a pointer 1o
AFILE structure which is the whole object of calling this function. If the file (which was named) opened
successfully when fopen() was called, returnpointer is pointer to the file portal. If the file could not be
opened, this pointer is set to the value NULL. This should be tested for, because it would not make sense
to attempt to write to a file which could not be opened or created, for whatever reason.

A read only file is opened, for example, with some program code such as:

FILE *fp; _
if (fp="fopen (“filename”,”r"))==NULL)
{

printf (“File could not be openedn”);
error_handlet();

}

A question which springs to mind is: what happens if the user has to type in the name of a file while
the program is running? The solution to this problem is quite simple. :

char *filename(} /* return filename */
{ static char *filenm = ... ”
do '
{ |
printt {“Enter filename :”);
scanf (“%24s” filenm);
skipgarb();
}
while (strlen(filerm) == 0);
return (filenm);
}
This function makes file opening simple. The programmer would now write sométhing like:
FILE *fp; '
char *filename();

{
printf (“File could not be opened\n”);

error_handler();
¥

[147]

and then the user of the program would automatically be prompted for a filename. Once a file he.
been opened. it can be read from or written to using the other library functions (such as fprintf() an-
fscanf{)) and then finally the file has to be closed agaii.

11.4.2 fclose _
Afileisclosed by calling the function felose(). felose() has the syntax:
int returncode;
FILE *fp:
returicode = {close (fp);

fpisapointerto the file which s to be closed and returncode is an integer value which is) if the file
was closed successfully. fclose() prompts the file manager to finish offits dealings with the named file and
to close the portal which the operating system reserved forit. When closing a file, a program needs to do
something like the following:

if (felose(fp) 1= 0)
{ .
printf (“File did not exist.\n™);
error_handler();
h
11.4.3 feof

This funiction returas a true or false result. Tt tests whether or not the end of a file has been reached
and ifit has it returns ‘true’ (which has any value except zero); otherwise the function returns “false’ (which
has the value zero). The form of a statement using this function is:

FILE *fp;
. intoutcome;
outcome = feof{fp);
Most often feof() will be used insideloops or conditional statements. For examplef

~ consider a loop whiclt reads characters from an open file, pointed to by fp. A call to feof() is
required in order to cheek for the end of the file.

while (Ifeof{fp)) -
{ _
ch = gete(fp):
}
Translated into pidgin English, this code reads: ‘while NOT end of ﬁle, ch equals get character

from file’. In better(?) English the loop continues to fetch characters as long as the end of the file has not
been reached. Notice the logical NOT operator ! which stands before feof{).

11.4.4 fseek, ftell

fseek : fseek function is used to move the file position to a desired location within the file. It takes
the following form: ' :)

 fseek(file ptr, offset, position)

[148]

File ptr is a pointer to the file concerned, offset isa number variable of type long and positi nisan
nteger number. The offset specifics the number of positions(bytes) to the moved from the location specified
by posttion.

The position can take one of the following three values

Values Meaning
0 ' Beglinning offile
i Current position
2 End offile

offset may be positive meaning move forwards or negative meaning move backwards, The fo llowing
examples illustrate the operation of the fseek function:

Statement Meaning

fseek(fp,0L,0) Goto beginning -

fseek(tp, OL, 1) Stays at current position

fseek(fp, OL, 2) Goto end of the file, past the last character of the file
fseek(fp, m, 0) Moveto (ni—k Dithbytein the file

fseek(fp, m, 1) Go forward by m bytes

fseek(fp,-m, 1) Go backward by m bytes from the current position
fseek(fp,-m, 2} | Go backward by m bytes from the end

fiell : fell takes a file pointer and returns a number of type long that comsponds. to the current
position. This function is useful in saving the current position of a file, which can be used later in the
program. It takes the following form
n=ftell(fp);

nwould give the relative offset(in bytes) of the current position. This means that n bytes have

already been read (or written).ftell() tells a program its position within a file, opened by fopen() where as
fseek() secks a specified place within a file, opened by fopen(). Normally high level read/write functions
perform as much management over positions inside files as the programmer wants, but in the event of their .
being insufficient, these two routines can be used. The form of the function callsis:

long int pos;

FILE *fp;

pos = ftell(fp);

fpp is an open file, which is in some state of being read or written to. posisalong integér value which
describes the position in terms of the number of characters from the beginning of the file. Aligning a file
portal with a particular place in a file is more sophisticated than simply taking note of the current position.
The call to fseek() looks like this: '

long int pos;

int mode.returncode;

FILE *fp;

returncode = fseek (fp,pos,mode);

[149]

The parameters have the following meanings. ip is a pointer to a file opened by fopen(). pos.
some way of describing the position required within a file. mode is an integer which specifies the way:
which pos is to be interpreted. Finally, returncode is an integer whose value is 0 if the operation wi
successful and -1 if there was an error.

0 pos is an offset measured relative to the beginning of the file.
1 pos is an offset measured relative to the current position.
2 pos is an offset measured relative to the end of the file.

Some examples help to show how this works in practice:
long int pos = 50; ‘
intmode = O,retm'ncode;
FILE *fp; ,
if (fseek (fp,pos,mode) = 0) /* find 50th character */
{
prantf{*Error\n™);
; | |
fseek(fﬁ,OL,O); /* find beginning of file */
fseek(fp,2LL,0); /* find the end of a file */
if (fseek (fp,10L,1) 1= 0) /* move 10 char’s forward */
(_
printf{“Frrorfin™);
13
The s indicate long constants.
#include <stdio.h>
int fSeek(FILE *stream, long int offset, int whengce);
long int fiel(FILE *stream);

The fseek function sets the file position indicator for the stream pointed to by stream. For a binary
stream, the new position, measured in characters from the beginning of the file, is obtained by adding offiet
to the position specified by whence. Three macros in stdjo.h called SEEK_SET, SEEK_CUR, and
SEEK_END expand to unique values. If the position specified by whence is SEEK _SET, the specified
position is the beginning of the file; if whence is SEEK_END, the specified position is the end of the file;
and if whence is SEEK._CUR, the specified position is the current file position. A binary stream need not
meaningfully support fseek calls with a whence valne of SEEK END, '

For atext stream, either offset shall be zero, or offset shall be a value returned by an earlier call to
the ftell function on the same stream and whence shall be SEEK SET.

The fseek function returns nonzero only for a request that cannot be satisfied.

The ftell function obtains the current value of the file position indicator for the stream pointed to by
stream, : -

[150]

For a binary stream, the value is the number of characters from the beginning of the file; foratext

rean, its file position indicator contains wnspecified information, usable by the fseek function for returning

ae file position indicator for the stream to its position at the time of the fiell call; the difference between two

such return values is ot necessarily a meaningful measure of the number of characters written or read, If

successful, the ftell function returns the current value of the file position indicator for the stream. On faure,
the ftell function returns - 1L and stores an implementation-defined positive value inerrno.

11.4.5 rewind
rewind : rewind takes a file pointer and resets the position to the start of the file.
fore.g. -

rewind(fp);

n=fiell(tp);

1 would return 0. rewind() is a macro, based upon fseek(), which resets a file position to the
beginning of the file. It is equivalent to '

(void)fseek(stream, OL, SEEK SET)
except that the error indicator for the stream is also cleared.
e.g.
FILE *fp;
rewind(fp);
fseek(fp,0L,0); /* = rewind() .
1_1.4.6 fgete, fpute, fread, ﬁvrite
Single Character 1/O |

There are commonlﬁ four functions/macros which perform single character input/output to or from
files. They are analogous to the functions/macros '

- getchar() putchar()
" forthe standard VO files and they are callcd:

gete) ungetc() putc() fgete() - fpute()
getc() and fgetc() | | '

The difference between getc() and fgete() will depend upona particular system. It might be that
getc() is implemented as a macro, whereas feete() is implemented asa {function or vice versa. One of these
alternatives may not be present at all ina library. Check the manual, to be sure! Both getc() and fgete()
fetch a single character from a file:

FILE *fp;

char ch;

/* open file */
ch=geto (fp),
ch=fgetc (fp);

[151]

These functions return a character from the specified file if they operated successfully, otherwise
they return EOF to indicate the end of a file or some other error. Apart from this, these tunctions/macros
are quite unremarkable, - '

ungetc()

ungete() is a function which ‘un-gets’ a character from a file. That is, it reverses the effect of the Jast
getoperation. This is not like writing to a file, but it is like stepping back one position within the file. The
purpose of this function is to leave the input inthe correct place for other functions in a program when other
functions go too farin afile. An example of this would be a program which looks for aword in a text file and
processes that word in some way.

while (gete(fp) 1= 4
{
}

The program would skip over spaces until it found a character and then it would know that this was
the start of a word. However, having used gete() to read the first character of that word, the posttion in the
file would be the second character in the word! This means that, if another function wanted to read that
word from the beginning, the position in the file would not be correct, because the first character would
already have been read.

The solution is to use ungete() to move the file position back a character:
int returncode;
returncode = ungete(fp);
The returncode is EOF ifthe operation was unsuccessﬁil.
pute() and fpute()
) #inclﬁde <stdio.h>
int putc(int ¢, FILE *stream),

The putc function is equivalent to fputc, except that ifitis implemented as a macro, it may evaluate
stream more than once, 5o the areument should never be an expressic 1 with side effects. The function
returns the character written, unle - write error occurs, in which case the error indicator for the stream is
set and the function returns EOF.

These two functions write a single character to the output file, pointed to by fp. As with gete(), one
of these may be a macro. The form of these statements is: ' _

FILE *fp;

char ch;

int returncode; _
returncode = fpute (ch,fp);
returncode = putc (ch, fp);

The returncode is the ascii code of the character sent, ifthe operation was successful, otherwise it
is EQF.

[152]

The putchar function
#include <stdio.l>
int putchar{int c);

The putchar functionis equivalent to putc with the second argument stdout. Tt returns the character
written, unless a write erfor 0ccurs, in which case the etror indicator for stdout is set and the function
returns EOE. '

fgets() and fputs()

Just as gets() and putsQ) fetched and sent strings to standard input/output files stdin and stdout, s0
fets()and fputs() send strings to generalized files. The feets/fputs function reads/writes the string pointed
t0 by s to the stream. pointed to by stream. The terminating nutl character 18 not written. The function returns
EOF if a read/write error ocCurs, otherwise it returns a nonnegative value.

The form of an figets() statement is as follows:
char *strbuff, *returnval;
nt 1y;
FILE *ip; _
returnval = fgets (strbuffn,p);

strbuff is a pointer to an input buffer for the string; fp is a pointer to an open file. returnval is a
pointer to a string: if there was an error in fgets() this pointer is set to the value NULL, otherwise itis setto
the value of “strouff”. No more than (n-1) characters are read by fpets() so the programmer has to be sure
to setn equal to the size of the string buffer. (One byte is resetved for the NULL terminator.) The form of
an fputs() statement is as follows:

char *sir;

int returnval;

FILE *fp;

returnval = fputs (st fp);

Where str is the NULL terminated string which is to be sent o the file pointed to by {p. returnval is
set to BEOF if there was an exror in writing to the file. _

#include <stdio.h>
int fpute(int ¢, FILE *stream);

The fputc function writes the character specified by ¢ (converted toan unsigned char)to the stream
pointed to by stream at the position indicated by the associated file position indicator (if defined), and
advances the indicator appropriateiy. If the file cannot support positioning requests, or if the stream is
opened with append mode, the.character is appended to the output stream. The function returns the

~ character written, unless a write error occurs, in‘which case the error indicator for the stream is set and

fipute returns EOF.
The puts function
#include <stdio.h>

int puts(const char *s);

[153]

The puts function writes the string pointed to by s to the stream pointed to by stdout, and appends
- anew-line character to the output, The terminating null character is not written, The function returns EOF
if a write error occurs; otherwise, it returns a nonnegative value,

Direct input functions : fread » fwrite
fread:

#include <stdio.h>

size_t fread(void *pir, size t size, size_t nmemb, FILE *stream);

The fread function reads, into the array pointed to by ptr, up to nmemb elements whose size is
specified by size, from the stream pointed to by stream. The file position indicator for the stream (if defined)
15 advanced by the number of characiers successfully read. If an error occurs, the resulting value of the file
position indicator for the stream is indeterminate, If a partial element is read, its value is indeterminate. The
fread function returns the number of elements successtully read, which may be less than nmemb ifa read
error or end-of-file is encountered: If size ornmemb is zero, fread returns zero and the contents of the
array and the state of the stream remain unchanged, :
fwrite ;

#include <stdio. b~ _

size t fwrite(const void *pir, size_tsize, size_tnmemb, FILE *stream);

The fwrite function writes, from the m‘ray pointed to by ptr, up to nmemb elements whose size is

11.4.7 fscanf, fprintf _

fscanf: The analogue of scanf() is fscanf() and, as with fprintf(), this function differs from its
standard I/O counterpart only in one exira parameter: a file pointer. The form of an f5canf() statement is:

FILE *fp; -

int n;

n=fscanf (ip,string” pointers); _

where nis the number of items matched in the control string and fp is a pointer to the fife which 1s
to be read from. For example, assuming that tp is a pointer to an open file:

inti=10;

float x = -2.356;

charch=‘x;

fseanf (fp, “%d %l %ec”, &1, &x, &ch):

The remarks which were made about scanf{) also apply to this function: tscanf() is a ‘dangeroys’
function in that it can easily get out of step with the input data unless the input is properly formatted,

#include <stdio. >
nt fscanfiFILE *stream, const char *format, '...);
int scanf{const char *format, ...);

mnt sscanf{const char *s, const char *format, ...);

[154]

The fscanf finction reads input from the stream pointed to by stream, under control of the string
pointed to by format that specifies the admissible sequences and how they are to be converted for assignment,
using subsequent arguments as pointers to the objects to receive converted input. I there are insufficient
arguments for the format, the behavior is undefined. If the format is exhausted while arguments remain, the
excess arguments are evaluated (as always) but are otherwise ignored, The format shall be a multibyte
character sequence, beginning and ending in its initial shift state. The format is composed of zero or more
directives: one or more white-space characters; an ordinary multibyte character (neither % or a white-
space character); or a conversion specification. Each conversion specification is introduced by the character
%. After the %, the following appear in sequence:

An optional assignment-suppressing character *,
An optional nonzero decimal integer that specifies the maximum field width.

Anoptional h, I (ell) or L indicating the size ofthe receiving object. The conversion specifiers d, i,
and m shall be preceded by h if the corresponding argument is a pointer to short int rather thana pointer to
int, or byl if it is a pointer to long int. Similarly, the conversion specifiers o, u, and x shall be preceded by
h if the corresponding argument is a pointer to unsigned short int rather than unsigned int, or bylifitisa
pointer to unsigned long int. Finally, the convetsion specifiers e, f, and g shall be preceded by lif the
corresponding argument is a pointer to double rather than a pointer to float, or by L ifit is a pointer to long
double. Ifan h, 1, or L appears with any other format specifier, the behavior is undefined.

A character that specifies the type of conversion to be applied. The valid conversion specifiers are
described below.,

The fscant function executes each directive of the format in turn. Ifa directive fails, as detailed
below, the fscanf function returns. Failures are described ag input failures (due to the unavailability of input
characters) or matching failures (due to inappropriate input). A directive composed of white-space
character(s) is executed by reading input up to the first non-white-space character (which remains unread)
or until no more characters remain unread, A directive that is an ordinary multibyte character is executed
by reading the next characters of the stream. If one of the characters differs from one comprising the
directive, the directive fails, and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as described
below for each specifier. A conversion specification is executed in the following steps: Input white-space
characters (as specified by the isspace function) are skipped, unless the specification includes a[, ¢, orn
specitier. (The white-space characters are not counted against the specified fiefd width.) An input item is
read from the stream, unless the specification includes an o specifier. An input item is defined as the longest
matching sequences of input characters, unless that exceeds a specified field width, in which case it is the
initial subsequence of that length in the sequence. The first character, if any, after the input item remains
unread. Ifthe length of the input item is zero, the execution of the directive fails; this conditionis a matching
fatlure, unless an error prevented input from the stream, in which case it is an input failure. B

Except in the case of'a % specifier, the input item (or, in the case of a %n directive, the count of
input characters) is converted to a type appropriate to the conversion specifier. If the input itemisnot a
matching sequence, the execution of the directive fails; this condition is amaiching failure. Unless assignment
suppression was indicated by a *, the result of the conversion is placed in the object pointed to by the first
argument following the format argument that has not already received a conversion result, Ifthis object
does not have an appropriate type, or if the result of the conversion cannot be represented in the space
provided, the behavior is undefined. The following conversion specifiers are valid: - '

d: Matches an optionally signed decimal integer, whose format 15 the same as expected for the subject

sequence of the strtol function with the vatue 10 for the base argument. The corresponding argument
shall'be a pointer to integer.

[155]

%% ¢

Matches an optionally signed integer, whose format is the same as expected for the subject sequence
of the strtol function with the vatue 0 for the base argument. The corresponding argument shall be
apointer to integer. :

Matches an optionally signed octal integer, whose format is the same as expected for the subject
sequence of the strtoul function with the value 8 for the base argument. The corresponding argument
shall be a pointer to unsigned integer.

Matches an optionally signed decimal integer, whose format is the same as expected for the subject
sequence of the striovl function with the value 10 for the base argument. The corresponding argument
shail be a pointer to unsigned integer.

Matches an optionally signed hexadecimal integer, whose format is the same as expected for the
subject sequence of the strtoul function with the value 16 for the base argument. The corresponding
argument shall be a pointer to unsigned integer. '

Matches an optionally signed floating-point number, whose format is the same as expected forthe
subject string of the strtod function. The corresponding argument will be a pointer to floating.

Matches a sequence of non-white-space characters. (No special provisions are made for multibyte
characters,) The corresponding argument shall be a pointer to the initial character of an array large
enough to accept the sequence and a texminating null character, which will be added automatically.

Matches a nonempty sequence of characters (no spectal provisions are made for muhitbyte '
characters) from a sei of expected characters (the scanset). The corresponding argument shall be
apointer to the initial character of an array large enough to accept the sequence and a terminating
muli character, which will be added automaticalty. The conversion specifier includes all subsequent
characters in the format string, up to and including the matching right bracket (]). The characters
between the brackets (the scanlisf) comprise the scanset, unless the character after the left bracket
is a circumflex (*). in which case the scanset contains all the characters that do not appear in the
scanlist between the circumflex and the right bracket. If the conversion specifier begins with Jor
[~], the right-bracket character is in the scanlist and the next right bracket character is the matching
right bracket that ends the specification; otherwise, the first right bracket character is the one that
ends the specification. If a - character isin the scanlist and is not the first, nor the second where the
first character is a**, nor the last character, the behavior is implementation-defined,

Matches a sequence of characters (no special provisions are made for multibyte characters) of the
pumber specified by the field width (1 ifno field width is present in the directive). The corresponding
argument shall be a pointer to the initial character of an arvay large enough to accept the sequence.
No null character is added.

Matches an implementation-defined set of sequences, which should be the same as the set of
sequences that may be produced by the %p conversion of the fprintffumction. The corresponding
argument shall be a pointer to void. The interpretation of the input then is implementation-defined.
If the input item is a value converted earlier during the same program execution, the pointer that
results shall compare equal to that value; otherwise the behavior of the %p conversion is undefined.

No input is consumed. The corresponding argument shall be a pointer to integer into which is to be
written the number of characters read from the input stream so far by this call to the fscanf function.
Execution of a %n directive does not increment the assignment count returned at the completion of
execution of the fscanf function. '

Matches a single %; no conversion or assignment occurs. The complete conversion specification
shall be

[1561

% %. : If a conversion specification is invalid, the-behavior is undefined. The conversion specifiersE, G,
and X are also valid and behave the same as, respectively, e, g, and x.

Ifend-of-file is encountered during input, conversion is terminated. Ifend-of-file occurs before any
characters matching the current directive have been read (other than leading white space, where permitted),
execution of the current directive terminates with an input failure; otherwise, unless execution of the current
directive isterminated with a matching faiure, execution of the following directive (if any) is terminated with
an input failure. If conversion terminates on a conflicting put character, the offending input character is left
unread in the input stream. Trailing white space (including new-line characters) is left unread unless matched
by adirective. The success of literal maiches and suppressed assignments is not directly determinable other
than via the %n directive. The fscanf finction returns the value of the macro EOF if an mput failure occurs
before any conversion. Otherwise, the fscanf funciton returns the number of input items assigned, which
can be fewer than provided for, or even zero, in the event of an early matching failure. The scanffunction is
equivalent o fscanf with the argument stdin interposed before the arguments to scanf, ltsreturn valpe is
similar to that of fscanf. The sscanf function is equivalent to fscanf, except that the argument s specifiesa
string frorn which the input is to be obtained, rather than from a stream, Reaching the end of the string is
equivalent to encountering the end-of-file for the fscanf function, If copying takes place between objects
that overlap, the behavior is undefined. '

fprintf()

Thisisthe highest level fonction which writes to files. Its name is meant to signify “fileprint- formatted”
and it is almost identical to its stdout counterpart printf(). The form of the fprintf{() statement is as follows:

fprintf (fp,"string”, variables);

where fpisafile pointer, string is a control string which is to be formatted and the variables are
those which are to be substituted into the blank fields of the format string.

- For example, assume that there is an open file, pointed to by tp:
inti=12;
- float x.=. 2.356;
charch="*s’;
tprintf (fp, “%d %f %c”, 1, x, ch);

The conversion specifiers are identical to those for printf(). In fact fprintf) is related to printf{) in a
very simple way: the following two statements are identical.

printf (“Hello world %d”, 1);

fprintf (stdout,”Hello world %d”,),

#include <stdarg h>

#include <stdio.h>

irtt fprintfFILE *stream, const char *format, ...);

int printf{const char *format, ...);

int sprintf{char *s, const char *format,),

int viprintfFILE *stream, const char *format, va_list arg);
intvprintf{const char *format, va_list arg);

int vsprintf{char *s, const char *format, va_listarg);

[1571

Note: Some length specifiers and formal specifiers are new in C'99. These may not be available
in older compilers and versions of the stdio library, which adhere to the C89/C90 standard. Wherever
possible, the new ones will be marked with (C99).

The fprintf function writes output to the stream pointed to by stream under control of the string
pointed to by format that specifies how subsequent arguments are converted for output. If there are insufficient
arguments for the format, the behavior is undefined. If the fornat is exhausted while arguménts remain, the
excess arguments are evaluated (as always) but are otherwise ignored. The fprintf function returns when
the end of the format string is encountered. The format shall be a multibyte character sequence, beginning
and ending in its initial shift state. The format is composed ofzero or more directives: ordinary multibyte
characters (not %), which are copied unchanged to the output stream; and conversion specifications, each
of which results in fetching zero or more subsequent arguments, converting them, if applicable, according
to the corresponding conversion specifier, and then writing the result to the output stream. Each conversion
specification is introduced by the character %. After the %, the following appear in Sequence:

7ero or more flags (in any order) that modify the meaning of the conversion specification. An
optional minimum field width. Ifthe converted value has fewer characters than the field width, it is padded
with spaces.(by default) on the left (orright, if the left adjustment flag, described later, has been given) to
the field width. The field width takes the form of an asterisk * (described later) or a decimal integer. (Note
that 0 is taken as a flag, not as the beginning of a field width.) An optional precision that gives the minimum
number of digits to appear fox the d, i, 0, u, X, and X conversions, the nomber of digits to appear after the
decimal-point character fora, A, e, E, f, and F conversions, the maximum nurnber of significant digits for
the g and G conversions, or the maximum number of characters to be written from a string in s conversions.
The precision takes the form of a period () followed either by an asterisk * (described later) or by an
optional decimal integer; if only the period is specified, the precision is taken as zero. If a precision appears
with any other conversion specifier, the behavior is undefined. Floating-point numbers are rounded o fit
the precision; L. printf(“%1.1fw”, 1.19); produces 1.2. An optional length modifier that specifies the size
of the argument. A conversion specifier character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk, In this case,
an int argument supplies the field width or precision. The arguments specifying field width, or precision, or
both, shall appear (in that order) before the argument (it any) to be converted. A negative field width
argument is taken as a - flag followed by a positive field width. Anegative precision argument is taken as if
the precision were omitted. The flag characters and their meanings are:

-3 The result of the conversion is left-justified within the field. (It is right-justified if this flag is not
specified.) ' :

+: Theresultofasigned conversion always begins witha plus or minus sign. (It begins witha signonly
when a negative value is converted if this flag is not specified. The results of all floating conversions
of anegative zero, and of negative values that round to zero, include a minus sign.)

space : If the first character of a signed conversion is not a sign, or if a signed conversion results in no
characters, a space is prefixed to the result. If the space and + flags both appear, the space flagis
ignored, .

#: The resultis converted to an “alternative form™. For o conversion, it increases the precision, ifand
only if necessary, to force the first digit of the result to be a zero (if the value and precision are both

0, asingle 0 is printed). For x (or X) conversion, a nonzero result has 0x (or 0X) prefixedtoit. For - |

a,A, e, B, f F, g and G conversions, the result always contains a decimal-point character, even if
no digits follow it. (Normally, a decimal-point character appears in the result of these conversions
only if a digit follows it.) For g and G conversions, trailing zeros are not removed from the result.
For other conversions, the behavier is undefined.

[158]

hh:

I{ell):

Ford,i,0,u,x,X,a,A, ¢ E, fF, g and G conversions, leading zeros (following any indication of
sign or base) are used to pad to the field width; no space padding is performed. If the 0 and - flags
both appear, the 0 flag is ignored. For d, 1, 0, u, x, and X conversions, if a precision is specified, the
01lagis ignored. For other conversions, the behavior is undeﬁned The length modlﬁers and their
meanings are:

(C99) Specilies that a following d, i, 0, u, x, or X conversion specifier applies to a signed char or
unsigned char argument (the argument will have been promoted according to the integer promotions,
but its value shall be converted to signed char or unsigned char before printing); or that a following
n conversion specifier applies to a pointer to a signed char argument.

Specifies that a following d, i, 0, u, X, or X conversion specifier applies to a shott int or unsigned
shoit int argument (the argument will have been promoted according to the integer promotions, but
its value shall be convetted to short int or unsigned short int before printing); or that a following n
conversion specifier applies to a pointer to a short int argument.

Specifies that a following d, 1, 0, u, X, or X conversion specifier applies to a long int or unsigned
long int argument; that a following n conversion specifier applies to a pointer to a long int argument;
(C99) that a following ¢ conversion specifier applies to a wint_t argument; (C99) thata following
s conversion specifier applies to a pointer to a wehar_t argument; orhas no effect ona following a,
A, e B, f F g orG conversion specifier.

Il (ell-el) : (C99) Specifies that a following d, i, 0, u, x, or X conversion specifier applies to a long long int

LT
o

or unsigned long long int argument; or that a folowing n conversion specifier applies to a pointer to
along long int argument. :

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t or
uintmax_targument; or that a followingn conversmn specifier applies to a pointer to an intmax_t
argument.

(C99) Spevifies that a following d, i, 0, u, x, or X conversion specifier applies to asize_tor the
corresponding sigried integer type argument; or that a following n conversion specifier dpphes toa
pointer to a signed integer type correspondmg tosize_targument,

(C99) Specifies that a following d, 1, 0, u, X, or X conversion specifier applies to a ptrdiff torthe
corresponding unsigned integer type argument; or that a following n conversion specifier appliesto
apointer to a pudiff_targument.

Spéciﬁes thata following a, A, e, E, f, F, g, or G conversion specifier applies to a long double
argument. Ifalength modifier appears with any conversion specifier other than as specified above,
the behavior is undefined. '

The conversion specifiers and their meanings are:

d,i:

‘The int argument is converted to signed decimal in the style /*/dddd. The precision specifies the
minimuim number of digits to appear; if the value being converted can be represented in fewer
digits, it is expanded with leading zeros. The default precision is 1. The result of converting a zero
value with a precision of zero is no characters.

,11, x, X : The unsigned int arguiment is converted to unmgned octal (0), unsigned decimal (u), or unsigned

hexadecimal notation (x or X) in the style dddd; the letters abedef are used for x conversion and
the letters ABCDEF for X conversion. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it is expanded with leading
zeros. The default precisionis 1. The result of converting a zero value with a precision of zero is no
characters.

[159]

f,F:

e, E:

g,G:

a, A

A double argument representing a (finite) floating-point number is converted to decimal notation in
the style /*]ddd.ddd, where the number of digits after the decimal-point character is equal to the
precision specification. If the precision is missing, it is taken as 6; if the precision is zero and the #
flag is not specified, no decimal-point character appears. If a decimal-point character appears, at
least one digit appears before it. The value is 1'0unded to the appropriate number of digits.

(C99) A double argument representing an infinity is converted in one of the styles /-Jinf or /-
Jinfinity -— which style is implementation-defined. A double argument representing a NaN is
converted in one of the styles /-/nan or [~Jnan(n-char-sequence) — which style, and the meaning
of any n-char-sequence, is implementation-defined. The F conversion specifier produces INF,
INFINITY, or NAN instead of inf, infinity, or nan, respectively. (When applied to infinite and NaN
values, the -, +, and space flags havé their usiial meaning; the # and 0 flags have no effect.)

A double argument representing a (finite) floating-point number is converted in the style
[]d.dddexdd, where there is one digit (which is nonzero if the argument is nonzero) before the
decimal-point character alkd the number of digits after it is equal to the precision; if the precision is
missing, it is taken as 6; ifithe precision is zero and the # flag is not specified, no decimal-point
character appedrs. The value is rounded to the appropriate number of digits. The E conversion
specifier produces a number with E instead of e introducing the exponent. The exponent always
contains at least two digits, and only as many more digits as necessary to represent the exponent,
If the value is zero, the exponent is zero. (C99) A double argument representing an infinity or NaN
is converted in the style of an for F conversion specifier.

A double argument representing a (finite) floating-point number is converted in style fore (or in
style F or E in the case of'a G conversion specifier), with the precision specifying the number of
significant digits. If the precision is zero, it is taken as 1. The style used depends on the value
converted; style e (or E)is used only if the exponent resutting from such a conversion is less than —
4 or greater than or equal to the precision. Trailing zeros are removed from the fractional portion of
the result unless the # flag is specified; adecimal-point character appears only if it is followed by a
digit. (C99) A double argument representing an infinity or NaN is converted in the style ofan f or
F conversion specifiet. '

(C99) A double argument representing a (finite) floating-point number is converted in the style
[*]0xh.hhhhpd, where there is one hexadecimal digit (which is nonzero if the argument is a
normalized floating-point number and is otherwise unspecified) before the decimal-point character
(Binary implementations can choose the hexadecimal digit to the left of the dectmal-point character
so that subsequent digits aligr to nibble [4-bit] boundaries.) and the number of hexadecimal digits
after it is equal to the precision; if the precision is missing and FLT _RADIX 1s a power of 2, then
the precision is sufficient for an exact representation of the value; if the precision is missing and
FLT RADIX is not a power of 2, then the precision is sufficient to distinguish (The precisionpis
sufficient to distinguish values of the source type if 16p—1 > bnwhere bis FLT RADIX andnis
the number of base-b digits in the significand of the source type. A smaller p might suffice depending
on the implementation’s scheme for determining the digit to the left of the decimal-point character.)
values of type double, except that trailing zeros may be omitted; if the precision is zero and the #
flag is not specified, no decimal-point character appears. The letters abedef are used for a conversion ‘
and the letters ABCDEF for A conversion. The A conversion specifier produces a number with X

-and P instead of x and p. The exponent always contains at least one digit, and only as many more .

digits as necessary to represent the dectmal exponent of 2. If the value is zero, the exponent 15 Z€e1o.

A double argument representing an infinity or NaN is converted in the style of an for F conversion)
specifier.

(160]

Yo

If no length modifier is present, the int argument is converted to an unsigned char, and the resulting
character is written. (C99) If an | length modifier is present, the wint_t argument is converted as if
by an |s conversion specification with no precision and an argument that points to the initial element
of atwo-element array of wehar_t, the first element containing the wint_t argument to the Ic
conversion specification and the second a null wide character.

Ifno Hength modifier is present, the argument shall be a pointer to the initial element of an array of
character type. (No special provisions are made for multibyte characters.) Characters from the
array are written up to (but not including) the terminating null character. If the precision is specified,
no more than that many characters are written. If the precision is not specified or is greater than the
size of the array, the array shall contain a null character. (C99) If an | length modifier is present, the
argument shall be a pointer to the initial element of an array of wehar_ttype. Wide characters from
the array are converted to multibyte characters (each as if by a call to the wertomb function, with
the conversion state described by an mbstate_t object initialized to zero before the first wide
character is converted) up to and including a terminating null wide character. The resulting multibyte
characters are written up to (but not including) the terminating null character (byte). If no precision
is specified, the array shali contain a null wide character. If a precision is specified, no more than
that many characters (bytes) are written (including shift sequences, if any), and the array shall
contain a null wide character if, to equal the multibyte character sequence length given by the
precision, the function would need to access a wide character one past the end of the array. In no
case is a partial multibyte character written. (Redundant shift sequences may result if multibyte
characters have a statedependent encoding.)

The argument shall be a pointer to void. The value of the pointer is converted to a sequence of
printable characters, in an implementation-defined manner.

The argument shall be a pointer to signed integer into which is written the number of characters
wrilten to the output stream so far by this call to fprintf. No argument is converted, but one is
consumed. If the conversion specification includes any flags, a field width, or a precision, the
behavior is undefined.

A % character is written. No argument is converted, The complete conversion specification shall
be %%. Ifa conversion specification is invalid, the behavior is undefined. If any argument is not the
cotrect type for the corresponding coversion specification, the behavior is undefined. In no case
does anonexistent or small field width cause truncation of a field; if the result of a conversion is
wider than the field width, the field is expanded to contain the conversion result. Fora and A
conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a hexadecimal
floating number with the given precision. It is recommended practice that if FLT RADIX isnota
power of 2, the result should be one of the two adjacent numbers in hexadecimal floating style with
the given precision, with the extra stipulation that the error should have a correct sign for the
current rounding direction. It is recommended practice that for e, E, f, F, g, and G conversions, if
the number of significant decimal digits is at most DECIMAL _DIG, then the result should be
correctly rounded. (For binary-to-decimal conversion, the result format’s values are the numbers
representable with the given format specifier. The nurber of significant digits is determined by the
format specifier, and in the case of fixed-point conversion by the source value as well.) If the
number of significant decimal digits is more than DECIMAL_DIG but the source valué is exactly
representable with DECIMAL _DIG digits, then the result should be an exact representation with
trailing zeros. Otherwise, the source value is bounded by two adjacent decimal strings Z < U, both
having DECIMAL_DIG significant digits; the value of the resultant decimal string D should satisty
Ld” Dd” U, with the extra stipulation that the error should have a correct sign for the current
rounding direction.

[161]

The fprintf function returns the number of characters transmitted, or a negative value if an output or
encoding error occurred. The printf function is equivalent to fprintf with the argument stdout interposed
before the arguments to printf. It returns the number of characters transmitted, or a negative value ifan
output error occurred.

The sprintf fimetion is equivalent to fprintf, except that the argument s specifies an array into which
the generated input is to be written, rather than to a stream. A null character is written at the end of the
characters written; it is not counted as part of the returned sum. If copying takes place between objects
that overlap, the behavior is undefined. The function returns the number of characters written in the array,
not counting the terminating null character.

The viprintf function is equivalent to fprintf, with the vanable argument list replaced by arg, which
shall have been initialized by the va_start macro (and possibly subsequent va_arg calls). The viprintf function
does not invoke the va_end macro, The function returns the number of characters transmltted oranegative
value if an output error occurred.

- The vprintf function is equivalent to prinif, with the variable argument List replaced by arg, which
shall have been initialized by the va_start macro (and possibly subsequent va_arg calls). The vprintf function
does not invoke the va_end macro. The function returns the number of characters transmitted, or a negative
value if an output error occurred.

The vsprintf function is eqmvalent to sprintf, with the variable argument list replaced by arg, which
shall have been initialized by the va_start macro (and possibly subsequent va_arg calls). The vsprintf
function does not invoke the va_end macro. If copying takes place between objects that overlap, the
behavior isundefined. The function returns the number of characters written into the array, not oountmg the
terminating 1inll character. :

11.4.8 Other file access functions
The fflush fﬁnction . |
#include <stdio.h>
int Aush(FILE *streaim);

If stream points to an output stream ot an update stream in which the most recent operation was
not input, the fllush function ¢auses any unwritten data for that stream to be deferred to the host environment
to be written to the file; otherwise, the behavior is undefined.

If stream is a null pointer, the flush function performs this flushing action on all streams for which
the behavior is defined above. '

The fflush functions returns EOF if a write error occurs, otherwise zero.

The reason for having a fflush function is because streams in C can have buffered input/output; that
is, functions that write to a file actually write to a buffer inside the FILE structure. If the buffer is filled to
capacity, the write functions will call fflush to actually “write” the data that is in the buffer to the file. Because
fflush is only called every oncein a while, calls to the operating system to do a raw write are minimized.

The setbuf function
#include <stdio.h>
void setbuf{FILE *stream, char *buf);

- Except that it returns no value, the setbuf function is equivalent to the setvbuf function invoked with
the values_TOFBF for mode and BUFSIZ for size, or (if bufis a null pointer) with the value TONBF for
mode.

[162] .

The setvbuf function
“#include <std10 h> . o
int setvbuf{FILE *stream, char *buf, int mode, size tsxze), -

The setvbuf function may be used only after the stream pomted to by stredm has buen assocnatecl)
with an open file and before any other operation is performed on the stream. The argument mode determines’
how the stream will be buffered, as follows: IOFBF causes input/output to be fully buffered;. I0LBF
causes input/output to be line buffered; IONBF canses input/output to be unbuftered. Ifbufis nota null
pointer, the array it points to may be used instead of a buffer associated by the setvbuf function. (The buffer
must have alifetime at least as-great as the open. stream, so the stream should be closed before a buffer that
has automatic storage duration is deallocated upon block exit.) The argument size spec;ﬁes thc sme of the __
array. The contents of the array at any time are indeterminate. :

The setvbuf function returns zero on success, or nonzero if an invalid value is g;ven for mode orif
the request cannot be honored. R o

Functions that Modify the Flle Position Indicator

The stdio h library has five functions that a:EFect the file posmon indicator bemdes those that do’
reading or writing; fgetpos fseek, fsetpos, ftell, and rewind. S T TR TR

The fseek and ftell functions are older than fgetpos and tselpos
‘The fgetpos and fsetpos functions
o finclude <stdioh> 0 e e e e
int fgetpos(FILE *streamfpos t*pos);
int fsetpos(FILE *stream const fpos_t *pos);

The fgetpos function stores the current value of the file position indicator for the stream pomted to
by stream in the object pointed to by pos. The value stored contains unspecified information usable by the
fsetpos function for repositioning the stream to its position at the time of the call to the fgetpos. function. If -
suceessful, the foetpos function retums Zeto; on failure, the fgetpos fuiction netum'; notizero zmd stores an.
unplementatlon-deﬁned posmve value iy errno. Thc fs_etpos function séts the ﬁle pOSlthl‘l indicator for the "

stréam pomted to by stream aocmdmg to'the value of the object pomfed to by poa, whlch shall be’ a value
obtamed from an earher call to the faetpos fu11ct1on onthe same streaim. i

A successful call to the fsetpos functlon clears the end-of- ﬁle mchcator for the stream and undoes
any effects of the ungetc function on the same stream. After an fsetpos ¢ call, the next operauon on anupdate
stream may be either input or output. if successful, the fsetpos function returns Z610; 0N féulure the fsetpos
ﬁmctlon returns nonzero and stores an nnplementatlon-deﬁned posuwe value inerrno; - ¥

The standard hbraly prowdes an error functlon/macro whlch retums a trueffafse rebult accmdmg to _
whether ornot the last filing fiinction call remmed an error conthlon "[h1s is called ferror() Ta cht,ck'_ or an"
error in an open ﬁlc pointed to by fp: ' e

COBIEMR
.1f(ferror(fp))
“error_handler();

[163].

This function/macro does not shed any light upon the cause of errors, only whether errots have
* occurred at all. A detailed diagnosis of what went wrong is only genetally possible by means of a deeper
level call to the disk operating system (DOS). : :

11.4.9 Error Handling Functions
The clearery furfction
#include <sidio h>
void clearerr(FILE *stream); | |
The clearerr function clears the end-of-file and etror indicators for the stream pointed to by stream.
‘_T]l'c feof function - | | |
~ #include <stdio.h>
int feof(FILE *stream),

The feof function tests the end-of-file indicator for the stream pointed to by stream and returns
nonzero if and only if the end-of-file indicator is set for stream, otherwise it returns zero.

The ferror function
#include <stdio.h>
int ferror(FILE *stream);

The ferror function tests the error indicator for the stream pointed to by stream and returns nonzero
if and only if the error indicator is set for stream, otherwise it returns zero. '

~ The perror function
#include <stdio.h>
'void perror(const char *s);

* The perror function maps the error number in the integer expression errno toan error message. It
writes a sequenice of characters to the standard error stream thus: first, if s is not a null pointer and the
character pointed to by s is not the null character, the string pointed to by s followed by a colon () and a
space; then an appropriate error message string followed by a new-line character. The contents of the

- error message are the same as those returned by the strerror function with the argument errno, which are
implementation-defined. -

11.5 File handling through programs

We frequently use files for storing information which can be processed by our programs. In order

“to store information permanently and retrieve it we need to use files. Files are not only used for data, Our

progrants are also stored in files. The editor which you use to enter your program and save it, simply

manipulates files for you. For eg. the Unix commands cat, ¢p, cmp are all programs which process your
files. ' co -

In order to use files we have to learn about File 1/0i.¢. how to write information to a file and how
to read information from a file. We will see that file /O is almost identical to the terminal /O that we
generally use. The primary difference between manipulating files and doing terminal I/0 is that we must
specity in our programs which files we wish to use. : ‘

As youkiow, you can have many files on your disk. If you wish to use a file in your programs, then
- youmust specity which file or files you wish to use. Specifying the file you wish to use is referred to as

[164]

opening the file. When you opéna ﬁle you must also specify what you wish to do with iti.e. Read from
the file, Write to the file, or both.- Because you may use a number of different files in your program, you
must specify when reading or writing which file you wish to use. This is accomplished by using a variable
called a file pointer. Every file you open has its own file poiriter variable. When you wish to write to a file
you specify the file by using its file pointer variable. You declare these file pointer variables as follows

FILE *fopen(), *fpl *{p2, *ip3;

‘The variables fpl, fp2, fp3 are file pointers. Youmay use any name you msh You should note that
afile pointer is simply a variable like an integer or character. It does not point to a file or the dataina file.
It is simply used to indicate which ﬁle your [/O operatlon refersto.

" The file <stdio.h> contains declarations for the Standard VO hbraty and should always be mcludecl
at the very begmmng of C programs usmg files. Constants such as FILE, EOF and NULL are defined in
<stdio.h>. .

The function fopen isone of the Standard mery ﬁmctlons and returns a file pointer wlnch you use -
to refer to the file you have opened e.g.

- fp= fopen(“nrog.c”, “r");

" Theabove statement opens a ﬁle called prog.c for readmg and associates the file pointer fp with -
the file. When we wish to access this file for /O, we use the file pointer variable fp to refertoit. Youcan
have up to about 20 files open in your program - you need one ﬁle pointer for each ﬁle you mtend to use
(Check out the manual of the language version). : :

File I/O

* The Standard I/O Library provides similar routines for file [/O to those used for stanclard 1/0.
The routine getc(fp) is similar to getchar() and pute(c,{p) is similar to putchar(c). Thus the statement

¢ = getc(fp);
reads the next character from the file referenced by fpand the stdtement

RULE: Always check when opening files, that fopen succeeds in opening the files appropnately If
you attempt toread fmm annon-exnstent file, your programwnll crash!! T

tC(G,fp), : *
wntes the charqeter ¢ into file reiereneed by fp
Files of records

Most darabase files are binary. ﬁIes which can logteally be chv1ded into fixed length I'GCOI‘db Each
record will consist of data that conforms to a previously defined structure. In C, this structure is a struct
data type. You should recall that struct data types were defined and discussed in C defines a number of
features, additional to the ones already defined for text files, to assist programmers to mampulate bmary
files, and in particular ﬁles of records These include the ablhty to: :

. " read and write to the one file without closing the file afterareadand reopening it before a write

o read or write a block of bytes (which generally correspond to a 10gxcal record) without readin of
writing the block one character a a time : :

. posmon the file pointerto any byte within the ﬁle, thus glvmg the ﬁle direct access capablhtles

[165]

Processing files of records . R
The key functions reqmrccl o process a fi le ofrecmds arer

_ fopen Thts ﬁmctlon is almost 1denncal to the functnon used to opcn tcxt ﬁlcs It the ﬁle is opcned '
concct!y then the functlon will return a non-zero value. Ifanerror occurs sthe | functlon w11} return a NULL
value. The nature of the error can be determined by the ferror ﬁmclxon '

felose: This fimetion is common to both text and bmary fi les The functlon closes the spec1ﬁcd file
at ﬂushes the output bui:fer todisk: oo , A

| fseek fseek w1ll posmon the ﬁle pomter to a parncular byte w1thm the ﬁlc Thc ﬁle pomtcr isa ;'
parameter maintained by the operalmg syslcm and del tcnnmes whcnc the ncxt 1ead wxll comes from orto
where themext wrlte W1li go ‘ - : o e R -

"fread: The fread functlon W111 reada spccnﬁed number of bytes frofn the current file posmon and'
store them in a data variable. It is the programmet’s responsibility to ensure that the data type of the
variable matches the data being read; and that'the number of characters that are read wﬂl fit 4 mto thc
allocated data space. - fo S e

fwrite: The fwrite function will write a specified number of bytes transferréd from the specified
data variable to the disk starting at the current file >position. Itis the programmer’s mspons1b111ty to ensure
that the file posntlon is located correctly beiorc the block is \mtten to thc ﬁle L

* fervor: This function-will return the status ofthe last disk operation, A valuc of Zero: mdlcates that '
no error has occurred. A nonzero value indicates that the last disk operation resulted in an error, Consult ‘
the manual for an explanation of the error numbers returned by this function. ny

. The following examples show how these functions can be used ina:C program. Consu:ler the -
proglam [BINARY—W Cl. ThlS program meatcsahlc of four rccords I :
Each record contains four fields.

#include “stdio.h™ |

#include “string. h” o

. .'.:r'StrLlCtleCOI“d{

char lastﬁ_name[20] ;

char first_name[15];

intage; | T I S

float salary;

-+ typedef structrecord person; feee CELLL T
CoFILEfpeople; Lo
" personemployee; o : il
7 people=fopen(“PEOPLE.DAT™, “wb™); - .~ '« .o o o
strepy(employee.last_name, “CAMPBELL?), ~* - 07 et
"‘ef'sﬁ?cibyﬁcmployee.ﬁr_stqname-, “MALCOLM”);, - -0 wovvt el s
employee.age =40,
employee.salary =35123.0;

[166]

ﬁwite(&emplojzee, sizeof(employee), 1, people); - -
su‘cpy(employee.lasft*name',-“GOLDSl\/ﬂTH_’-’.-); e
strepy(employee.first. name, “SALLYT);
employee.age =35; |

 employee.salary = 30456.0; ‘ | |
fwnite(&employee, sizeof(employee), I, people); ik ot S e b
strcpy(employee.last name, “GOODMAN"), - U
strepy(esmployee.first_name; “ALBERT”); - R T

" employegage =42, 7 S
employee.salary = 97853.0; |
fwrite(&employee, sizeof(employee), 1, people);
strepy(employee Jast_name, “ROGERS”); - -2 -
strepy(employee first_name, “ANNE");: ...
employee.age = 50; T o
employee.salary = 100254.0; _
fwrite(&employee, sizsoi{empidyee), 1, people);
felose(people);
}

116 Summary

All files, irrespective of the data they contain or the methods used to process them,ihave certain
important properties. They have a name. They must be opened and closed. They can be written 0, or read
from, or appended to. Conceptually, until afile is opened nothing can be done to its When itis opened, we
may have access to it at its béginning or end. To prevent accidental misuse, we must teli the-system which
of the three activities (reading, writing, or appending) we will be performing on it, Whén we are finished
using the file, we must close it. If the file isnotclosed the operating system cannot finigsh-updating its own
housekeeping records and datainthe filemay belost. |

11,7 Glessary _ L o _

(99 is amodern dialect of the C programming language. It extends the previous version (C89) to
make better use of available computer hardware and to better employ the latest advances in compiler
technology. (The C standard is often reféred to as CXX, where XX i the year in which it was adopted.
So, C99, is just the nickname for the latest-version of the standard.) . C :

- .. file Anobject that can be written to, or read from, or both. A file has certain aftribut__@&;including

access permissions and type. File types include regular file, character special file, block special file, FIFO-

special file and directory. Other types of files may be supported by the implementation.

file access permissions The standard file access control mechanism uses the file permission bits,
as described below. These bits are set at the time of file creation by functions such as open(}, creat(),
" mikdir() and mkfife() and are changed by chmod(). These bits are read by star() or fstat().

_ filename A name consisting of 1 to {NAME_MAX} bytes used to name a file. The characters
composing the name may be selected from the set of all character values excluding the siash character and
~ the null byte. A filename is sometimes referred to as apathname component. Filenames should be constricted
from the portable filename character set becausé the use of other characters can be confusing or ambiguous
in certain contexts. (For instance, the use of a colon (:) in a pathname could cause ambiguity ifthat pathname
were included in a PATH definition.)

f167]

open file A file that is currently associated with a file descriptor. _
standard error An output stream usually intended to be used for diagnostic messages.
standard input An input streamlusuall}r intended to be used for pri'mary data input.
standard output An output siream usually 1ntended to be used for primary data gutput.
standard utilities The utilities described in the XCU specxﬁcahom

stream Appearing in lower case, a stream is a file access object that allows access to an ordered

' sequence of characters, as described by the ISO C standard. Such objects can be created by the fdopeny),
- fopen() or popen() functions, and are associated with a file descriptor. A stream- pr ovides the addmonal
services.of user—selectable buffering and formatted mput and output.

11.8

L T

I I

_ Further Readings -

Programmmg in ‘O Ba.lagmwwanty, Tata McGraw-Hill Publicati(f)ns
The C programming language - —Dennis thchw Prentice Hall, Delhi . |
LetusC ’Yashwant Kanetkat BPB Pubhcatlon

Unit end qutstlons

- What are the following?

File name

File poirﬁer

File handle

What is the difference between tugh and low level filing?

‘Write a statement which opens a high level ﬁle for readmg

- Write a statement Wlnch opensa low level file for writing.

Write a program whjch checks for illegal ehaxacters in text ﬁles Vahd characters are ASCTI codes -
10,13,and 32..126. Anything else is illegal for programs, S

Whatstatement perfonns formatted wntmg totext files?

Print out all the header files on your system' so that youcan see what is defined where,

. Descnbe the dlfferent ways in which data files can be categorized in C.
_ What 1s the purpose of library function feof ‘? How the feof tunctlon be utilized withina program

that updates an meormatted data file

[168] ‘.

Unit 12 : Additional features of C

Structure of the Unit
12.0 Objective |
12.1 Introduction
122 Preprocessor directive & their use
123 Macro Substitﬁtfon directives
124 Fileinclusion directives
12.5 FEnumeration |
126 Storage classes
12.7 Command line arguments
12.8 Multifile programs using own header files'
12.9 Summary
12,10 - Glossary
12.11 Further Readings
12.12 Unitend questions
-12.6 Objective
Students who complete this unit should be ableto understand the following tasks:
. Understand the types of Preprocessor | | '.
e Understand the fundamental of following:
o Enumeration-- '
o Storage classes
o Commandline arguments
0 Mullti-ﬁle programs using own header files
12.1. Introduction

This chapter focuses on the additional features of C Language : Enumeration, IStorage classes,

Command line arguments, Multifile programs using own header files.

12.2 Preprocessor directive & their use

The C preprocessor implements the macro language used to transform C, C++, and Objective-C
programs before they are compiled. The C preprocessor, often known as cpp, is a macro processor that
is used automatically by the C compiler to transform your program before compilation. It is called a macro

processor because it allows you to define macros, which are brief abbreviations for longer constructs.

The C preprbcessor is intended to be used only with C, C++, and Objecti\fé-C source code. In
the past, it has been abused as a general text processor. For example, apostrophes will be interpreted as -

the beginning of character constants, and cause errors.

11691

Wherever possible, you should use'a’'preprocessor geared tothe language you are writing in.
Modern versions of the GNU assembler have macro facilities. Most high level programming languages
have their own conditional compilation and inclusion mechanism, If all else fails, try a true general text
processor, such as GNU M4, - '

12.3 Macro Substitution directives

A more advanced use of macros is also permitted by the preprocessor, This involves macros
which accept parameters and hand back values. This works by défining a macro with some dummy
parameter, say x. For example: a macro which is usually defined in one of the standard libraties is abs()
which means the absolute or unsigned value of a number. It is defined below:

#define ABS(x) ((x) <0) 7-(X) : (x)

- The result of this is to give the positive (orunsigned) part of any number or variable. This would be
no probler for a function which could accept parameters, and it is, in fact, no probleni for miacros, Macros
can also be made to take parameters. Consider the ABS() example. If 3 programmer were to write
ABS(4) then the preprocessor would substitute 4 for x. If'a program read ABS(i) then the preprocessor
would substitute i for x and so on. R S

t

(There is no reason why macros can’t take more than one parameter too, The prcigfaihmer Ji"ust
includes two dummy parameters with different names. Notice that this definition uses a curious operator
which belongsto C: : - '

<test>? <true result> ; <false resulr>

This is like 2 compact way of writing an if..then..else statement, ideal for macros. But itis also
slightly different: it is an expression which returns a value, where as an if..then. else is a statement with no
value. Firstly the test is made. If the test is true then the first statement is carried out, otherwise the second
is carried out. As a memory aid, it could be read as: _ L : :

if <test> then <true resule> else <false result> _ _ _

(Do not be confused by the above statement which is meant to show what a programmer might

think. It is not a valid C statement.) C can usually produice much miore efficient code for this construction
than for a corresponding if-else statement. N

Macros versns Functions

- Inthe hbov_e example a macro was us_éd to calculate the area of the circle. As we know, even a
function can be written to calculate the area of the circle. Though macro calls are ‘like’ function calls, they
are not really the same things. Then what is the difference between the two?" - R

Inamacro call the preprocessor replaces the macro template with its macroékPaﬁsibﬁ,”iﬁ a btllpld,

-unthinking, literal way. As against this, in 2 function call the control is passed to a fimetion along with certain

arguments, some calculations are performed in the function and a.useful value is returned back from the
function.

_ This brings us to aquestion: when is it best to use macros with arguments and when isit better to
use 3 function? Usually macros méke the program run faster but increase the program size, whereas
fonctions make the program smallet aid compact. T T

-+ Ifweyse amacto hundred times.in a program, the macro expansion goes into our source code at
hundred different places, thus increasing the program size. On the other hand, if a function is used, then

cvenifitsalled from hundred differen

i places inthe program, it would take the same amountof' spacein

[170]

@

But passing arguments to a function and getting back the returned valuié does take fime and would
therefore siow down the program. This gets avoided with macros since they have already been expanded
and placed in the source code before compilation. '

.. Moral of the story is—if the macro is simple and sweet like m qur-(—;_;;ampl_es?, it makes nice shorthand
and avoids the overheads associated with function calls, On the other hand, if we have a fairly large macro
and itis used fairly often, perhaps we ought to replace it with a fimction, | e

When and when not to use macros with parameters - |
o Itis temptmg to forget about ;he':dis'tin(':_tilc'm; bé't'Wéen macros and fllllOthl'iS, th.mkmgthatltcan be
ignored. To some extent this is true-for absolute beginners, but it is not a pood idea to hold on to. It should
.- always be remembered that macros are substituted whole at every place wherethey are used in a program:
this is potentially a very large amount of repetition of code: The advantage of 4 macro, however, is speed.
- No time is taken up in passing control over to a new function, because eoritrol neverleavesthe home
function when a macro is used: it just makes the finction a bit longer. There is 4 limitation with macros
‘though. Function calls cannot bs used as their parameters, sichas; - - = .. e
ABS(function())
. hasnomeaning, Only variables of umber constants willbe substitued. Masros e also severely
. restricted in complexity by the limitations of the preprocessor. It is simply not viable to copy complicated
sequences of code all over programis. S ') .
~ €Choosing between functions and macros isamatter of pi_arsqnal Judgement, No simple rules can be
given. In the end (as with all programming choices) it is experience which counts towards the final ends.
Functions are easier to debug than macros, since they allow usto sing_lé step through the code(with TRACE

utility). Errors in macros are very hard to find, and can be very confusing,* * +
Example Listing
/***********$*#***!i=*=k*$$*************_****f&#******#*_ﬂ;*;*f! h
/* MACRO DEMONSTRATION */ S o
f**%********$*********’****%*************’#*ﬁ:************!&*{
*#include <stdio.h> o |
#define STRING] “Amacro definitiont”
. #define STRING2 “mustbe allonone linelt” -~ . T
- #define EXPRESSION 1 +2+3+4" .-+ S T SERTICRE SRR,
‘#define EXPR2 EXPRESSION + 10" Lo T e
#define ABS(x) ((x)<0) ? «(x) : (x)
#define MAX(a,b) {a<b) ? (b) : (a) | |
#define BIGGEST(a,b,c) (MAX(a.b) <c) ? (¢} : (MAX(a,b))
: **************H**..*.*.*_**w*****'***.****_*w*.mm***-*‘**‘W**,**/ S
miain ()7* No #idefinitions inside fumctions! */ o
{ |
printf (STRING1);
printf (STRING2);
printf (“%d\n”,EXPRESSION);
printf (“%d\n”, EXPR2);

iy

printf (“%d\n” ABS(-5));
printf (“Biggestof 1 2 and 3 is %d™ BIGGEST(I 2 3)),
} .

'WARNING: Preprocessor macros, although tempting, can produce quite unexpectcd resultsif not
done correctiy Always keep in mind that macros are textual substitutions done to your source code before
anything is compiled. The compiler does not know ariything about the macros and never getsto see them.
This can produce obscure errors, amongst other negative effects. Prefer to use language features, if there
are equivalent (In example use const int or enum instead of #defined constants). That said, there are cases,
where macros are very useful (see the debug macro below for an example)

The #define directive is- used to define values or macros that are used by the preprocessor to
manipulate the program source code before it is compiled. Because preprocessor definitions are substituted
' before the compiler acts on the source code, any errors that are introduced by #define are difficult to trace.
‘By convention, values defined using #define are named in uppercase. Although doing so isnot a requirement,
it is considered very bad practice to do otherwise. This allows the values to be easily identified when

readmg the source code.

Today, #define is primarily used to handle compxler and platform dlﬁ'erences E.g, a define might
hold a constant which is the appropriate error code for a system call. The use of #define should thus be
limited unless absolutely necessary; typedcf statements and constant variables can often perform the same
functions more safely. -

_ ' Another feature of the #define cormnand isthat it can take arguments makmg 1t rather useﬁll asa
pseudo function creator. Consider the following code:

#define ABSOLUTE | VALUE(x) (((x)<0) ?-(x): (%))

intx=-1;
whlle(ABSOLUTE_ VALUE(x))

}

- It’s generaﬂy a good idea to use extra parentheses when using complex macros. Notice that in the

" above example, the variable “x” is always within its own set of parentheses. This way, it will be evaluated

" in whole, before being compared to 0 or multiplied by -1. Also, the entire macro is surrounded by
‘parertheses, to prevent it from being contaminated by other code. If you're not careful, yourun the risk of
having the compller misinterpret your code. Because of 51de-effects it is considered a very bad idea to use

macro ﬁmctlons ds described above.

intx=-10;
inty —-ABSOLUTE _ VALUE(x++);

HFABSOLUTE VALUE() was areal function ‘x would now have the value of °*-9°, but because
itwasan argument ina macro it was expanded 3 times (in this case) and thus has a value of -7.

Example:
- Toillustrate the dangers of macros, consider this naive macro
#define MAX(a,b) a>b%a:b |
andthecode
i=MAX(2,3)+5;
J=MAX(3,2)+5;

[172]

Take alook at this and con51der what the the value after execution mlght be. The statements are
tumedmto _
' inti= 2>3?2:3+5;
intj=3>273:2+5;

Thus, after execution i=8 and j=3 instead of the expected result of i=j=8! This is why you were
cautioned to use an exira set of parenthesis above, but even with these, the road is fraught with dangers.

The alert reader might quickly realize thatif a,b contains expressnons the definition must parenthesize
every use of a,b in the macro definition, like this:

#define MAX(a,b) (()>(b)?(a):(b))

This works, provided a,b have no side effects. Indeed,
=2
=3
k= MAX(1++ jH); ,

K would result in k=4,i=3 and j_5 This would be hlghly surpnsmg to anyone expectmg MAXO to
behave like a function, So what is the correct solut10n‘7 The solution is hot to use macro at all. A global,
inline function, like this

inline max(irit a,mtb) {
return a>b?a:b
b . R
-~ has none ofthe pitfalls above, but will not work withall types.

_ NOTE Actually the explicit inline declarationis not really necessary, since your compiler can infine
fimctions for you). The compiler isusually beter than the programmer at predicting which functions would
be worth inlining. Also function calls are not really expensive (they used tobe).

The compiler is actually free to ignore the inline kcyword Ytisonly ahint.
(#, ##) Concatenatlon

It is often useful to merge two- tokens into one whlle expandmg macros. This is called token
pasting or foken concatenation. The ‘##° preprocessing operator performs token pasting. When a macro
is expanded, the two tokens on either side of each “##’ operator are combined into a single token, which
thenreplaces the “##° and the two original tokens in the macro expansion. Usually both will be identifiers,
or one will be an identifier and the other a preprocessing number. When pasted, they make a longer
identifier. This isn’t the only valid case. It is also possible to concatenate two numbers (or 4 numberand a
name, such as 1.5 and &3) into a number. Also, multi-character operators such as += can be formed by

token pasting,

" However, two tokens that don’t together form a valid tokcn cannot be pasted togethcr Forexample,
you cannot concatenate X with + in either order. If you try, the preprocessor issues a warning and emits the
two tokens, Whether it puts white space between the tokens is undefined. It is common to find unnecessary

- uses of ‘## in complex macros. If you get this warning, it is likely that you can simply remove the W

Both the tokens combined by ‘4’ could come from the macro body, but you could just as well

- write them as one token in the first place. Token pasting is most useful when one or both of the tokens

- comes from a macro argument. If either of the tokens next to an *## is a parameter name, it is replaced by

-~ itsactual argument before “4#’ executes. As with stringification, the actual argument is not macro-expanded
first. I the argument is empty, that ‘##’ has no effect, - :

[_173]

-+ Keep1 in mind'that the C; preprocessor tonverts comménts to whitespace before mactos are even
considered, Therefore, you cannot create a comment by concatenating °/ and **”. You can put as much
whitespace between “##” and its operands as you like, including comments; and you'can put comments in
arguments that will be concatenated. However, it is an error if “4#" appears at either end of a macro body.

ConsideraC program that interprets named pommands There probably needs to be a table of
. commancls perhaps an atray. of structures declawd asfollows: - - RPN
: : stnict command ' ' "
{
char *name;
void (*function) (voidy;
¥
struct command commands[] =
{
. {-quit?, quit_command }, .
o { “help” help conmnand }’

}s |
Tt would be cleaner not to have to give each command name twice, once in the stnng constant angd -
once in the function name. A macro which takes the name of a command as an argument can make this
unnecessary. The string constant can be created with stringification, and the function name by. ooncalaenatmg
the argument with * connnand’ Here is how itisdone: L
‘ #deﬁne COMMAND(NAME) { #NAME NAME ## command }
struct command commandsf]= . Ly : :
{ TR o
COMMAND (quit),
COMMAND (help),

“Ttis possﬂ:ﬂe to mncatcnate amacro argument with a oonstant prcﬁx or sufﬁx 'to obtam a Val 1d

: idcnnﬁeras 111 :
o ' #deﬁne make ﬁmctlon(name) mt my ## name (mt foo) {}
“make functlon(bar) P -

. which will define a function called my, bar(). But itisn’t posmble to integrate amacro argument into
ar constant strmg using the concatenation operator. In.order to obtain such an effect, one can use the ANSI
C property that two o more consecutive string constants are-considered equlvalent toa smgle string

constant when encotmtered __ , : S N -

Usmgthlsproperty,onecanwme cee : » T ST Iy

#deﬁne eat(whai) puts(“I’m eatmg “ #what * today ?) EEEERE

whlch themacro-proc&esorwﬂltummto o

(1747 "

o puts(“T'm eating “fruit” « today ?): i . R SR
which in turn will bé mterpreted by the C parserasa smgle sfrmg constant The tollowmg trlck can
be used to turn a numeric constants into string literals e
... Hdefine num2str(x) str(x)
#deﬁne str(x) #x..-
#define CONST 23
puts(munZstr(CONST)),

., Thisigabittricky, since it is expanded.in 2 steps; Flrst num2stt(CONST) is replaced wnth str(23),
whichiin turn is replaced with * 237, This can bc useful inthe. followmg example §oNd :

s#ifdef]j)I:BUG e SPTITRP S
#define debllg(msg) fPUtsLFILE v ntun2§tf(_;LlNE;)' “ -3"".'1'1'1"Sg,: S o
-stderr) : L FUPH IS T A
" cifidefinedebug(msg) '
#endif

" “This will g glve you a nice debug niessage mcludmg the ﬁle ancl the lme where the message was
issued. I DEBUG is not defined however the debugging message will complétely vanish from your code.
Be careful not to use this sort of construct with anything thet has side effects, since this can le'td to bugs
that appear and dlsappear dependmg on the COlnpllathIl parameters :

More about MACtos: ... - oo o et |
-Magros aren’t type-checked and so they do not evaluate arguments. Also; they donot obey scope
i properly, but simply take the string passed to.them and replace each ocourrence-of the macro, argument in
the text of the magro with-the actual string forthat parameter (the cocle is 11temlly into the 100at10n it was °
called fiom), : _ . : S
.. Anexampleonhowtouseamacror ..« L L T el
S finclade <stdioh> * :
. MdefineSLICESS .
" #define ADD(x) ((x)/ SLICES)
int main()
inta=0,b=10,c=6;
a=ADD(b+c¢);
printf{*“%ed\n®, a);
return (;
b _
The result of “a” should be “2” (b+c=16->passed to ADD > 16 /SLICES fesult is “2”))

NOTE: It is usually bad practice to define macros in headers. A macro should be deﬁned only
when it is not possible to achieve the same result witha function or some other mechamsm Some compilers

[175]

are able to optimize code to whete calls to small functions are replaced with inline code, negating any’
possible speed advantage. Using typedefs, enums, and inline is often a better optior.
#pragma

The pragma (pragmatlc information) dlrectlve is part of the standard, but the meamng of any
pragma depends on the software nmplementatmn of the standard that i is used. Pragmas are used within the
source program.

#pragma token(s)
* You should check the software implementation of the C standard you intend on using for a list of
the supported tokens. For instance one of the most implemented preprocessor directives, #pragma once

when placed at the beginning of a header file, indicates that the file where it resides will be skipped if
included several times by the preprocessm

12. 4 File inclusion directives

As wehave readin Unit 10, the preprocessor directive “Hinclude file name” canbe used to include
any filein to' your program if the functions or macro definitions are present in an external file they can be
included in your file - ‘ '

In the directive the filename is the name of the file contammg the requu'ed cleﬁmtlons or ﬁmcﬂons
alternatively the this dlrecuve can take the form

#include< filename > _ _) _
Without double quotatioﬁ marks, In this format the ﬁle will be searched in only standard directories.

If using angle brackets like the example above, tlle preprocessor is insttucted to search for the_
include file along the development environment path for the standard includes. '

#inchude “other.h” If you use quotation marks (“ *), the preproc;essor isexpected to search iri some
additional, usually user-defined, locations for the header file, and to fall back to the standard include paths
only ifit is not found in those additional locations. It is common for this form to include searchmg in the same
directory as the file containing the #include directive.

The ‘#include’ directive works by directing the C prepmcessbr to scan the specified file as input
before continuing with the rest 0f the current file. The output from the preprocessor contains the output
already generated, followed by the output resulting from the included file, followed by the output that
comes from the text after the ‘#i nclude’ directive. For example, ifyou have aheader ﬁle heacler h as
follows,

char *test (void); _
and a main program called program.c that uses the header file, like this,
intx; ' ‘ '
#include “header.h”
int” -
* main (void)
f
- puts {test ());
h

- the compiler will see the same token stream as it would if program.cread

[176]

intx;
char *test (void);.
int
main (void)
(}
puts (test ());

Included files are not limited to declarations and i_nécto definitions; those are merely the typical
uses, Any fragment of a C program can be included from another file. The include file could even contain
the beginning of a statement that is concluded in the containing filé; or the end of a statement that was
started in the including file. However, an included file must consist of complete tokens. Comments and

string literals which have not been closed by the end of an included file are invalid. For error recovery, they
are considered to end at the end of the file. : - ['

To avoid confusion, itis best if header files contain only oompléte syniactic units—finction declarations
or definitions, type declarations, etc. ‘ S

The line following the ‘#include’ directive is always treated as a separate line by the C preprocessor,
even ifthe included file lacks a final newline. -

12.5 Enumeration

An enumeration is a data type consisting of a set of named values that represent integral constants,
known as enumeration constants. An enumeration also referred to as an enumerated fype because you
must list (enumerate) each of the values in creating a name for each of them. Ini addition to providing a way
of defining and grouping sets of integral constants, enumerations are useful for variables that have a small
number of possible values. o

It is used to:
* namea ﬁnite set. - |
. declare clements of that set (enumerators).
. Usea as programmer-specified constants,
Eg. enum color {red, blue, green, yellow};/*color s the tag naine*\

The enumerated type in C, specified with the enum keyword, and often just called an “enum,” isa
type designed to represent values across a series of named constants. Each of the enumerated constants
has type int. Each enum type itself is compatible with char or a signed or unsigned integer type, but each
implementation defines its own rules for choosing a type. o

Enumeration type definition

Anenumeration type definition contains the enum keyword followed by an optional identifier (the
enumeration tag) and a brace-enclosed list of enumerators. A comma separates each enumerator in the
enumerator list. . : ' ' ' ‘

An enumerated type is declared with the enum specifier, an optional name for the enum, a list of
one or more constants contained within curly braces and separated by commas, and an optional list of
variable names. Subsequent references to a specific enumerated type use the enum keyword and the name
of the enum. By default, the first constant in an enumeration is assigned value zero, and each subsequent
value is incremented by one over the previous constant. Specific values may also be assigned to constants

[1%7]

in the declaration, and any subsequent constants without specific values will be given incremented values
from that point onward.

For example, consider the following declaration:
enum colors { RED, GREEN, BLUE =5, YELLOW } paint_colot;

Which declares the enum colors type; the int constants RED (whose value is zero), GREEN
(whose value is one greater ihan RED, one), BLUE (whose value is the given value, five), and YELLOW
(whose value is one greater than BLUE, six); and the enum colors variable paint_color. The constants may
be used outside of the context of the enum, and values other than the constants may be assxgned to
palnt coIor or any other varlable of type enurn colors g

The Iag :a’entgﬂer gwes aname to the enm‘netanon type If you: do not prov1de a tag name; you -
mus_t put.all variable definitions that refer to the enumeration type within the declaration of the type, as
described in Enumeration type and variable definitions.in a single statement. Similarly, you cannotuse a
" type qualifier with an enumeration definition; type qualifiers plaoed in front of the enum keyword can only
apply to vanables that are deplaned w1th1n the type deﬁmtlon

E'numeranon members :
- The list of enumeration members, or enumeralors, prov1cles the data typewith asetof values.

InC, an enumeration constant is of type int. If a constant expresmon isused asan mlt:lahzer the
value of the expression cammot exceed the range of int (that is, INT_MINto INT_MAX as defined in the
headu lmnts h)

, In C++ each enum,eratwn constant has a yalue that can be promoted toa 31gned or un51gned
1nteger value and.a distinct type that does not have.to be integral. You can use an enumeration ¢constant
~ anywhere an integer congtant is allowed, or anywhere a value of the enumeratlon type is allowecl

The value of a constant is determined in the following way

1. Anequal sign(=)and a constant expression after the enumeration constant gives an exphclt value
to the constant. The identifier represents the value of the constant expression. . '

2. Ifno explicit value is assigned, the leftmost constant in the list receives the value zero (0), .

3. Identifiers with no explicitly assigned valuesreceive the integer value that is one greater than the
value represented by the prevmus xdentlﬁer

The following data typc declardtlons hst oats, wheat barley, com, and nce as enumeratlon constants.
The number under each constant shows the 1n‘ueger value ' :

enum gam { oats wheat barley, corn, nce}
* 0 1 2 3 4 A
enum grain { oats—l wheat barley, cotn, rice }

: /* - 1 2 4 g /

enum gram loats wheat—lO barley, com—ZO nce}
S0 10, J1E 200 021 ¥

It1s possﬂ:ie to assoc1ate the same mteger w1th two dlfferent enumeratlon constants For example,

enum status 1un, clear-S suspend resume, hold 6}

178

k056 ._7. 6 ¥

Each enumeration constarit must be unique within the 5cope in wluch the enumneration is deﬁned In
the followmg exa.mple, the second decla;rations of average and poor cause compller eftors:

- enum'score { poor, average, ood }, |
enum ratmg{ below, ave1age, bove},. IR
You cati declare an enumneration type separately hom the deﬂnmon of vauables of that type, as
described in Enumeration type definition and Enumeration variable declarations; or you can define an

* enumeration date type and all varlables that hiave that type irione statement, as descnbed in Enumeramn
' _type and variab]e definitions ina single stateiient. _ |

Soriie cempllers warh if afi object with enumerated type is assngned avalue that is not one of its
constants. However, such an object can be assigned any values in the range of their compatible type, and
enum constants can be used anywhere an integer s expected For this reason, enum values are often used
in place of the preprocesser #define dlrectlves to create.a series of named constants

o]:,numeratmn type smd val‘lnble definitionﬁ i a single statement

You can define a type and a variable i i tme statement by usmg a declarator and an optional
- -initializer after the type definition. To specify & stotage class speufier fer the varlable you must put the
storage class spe01ﬁer at the beginning of the declaration. For example: - SAUERRTIE

register enum score { poor=1, average, good J rating = g_ood; -"-.:
Either of these examples is equivalent to the following two declarations: - .

enum score'{ poor=1, average, good };

register enum score rating = good;

Both examples define the enumeratlon data type score and the varlable rating, rahng has the storage
 class specifier register, the data type enum score, and the 1n1t1a1 va]ue good)

_ Combining a data type definition with the deﬁmuons of all vanables havmg that data type lets you
leave the data type unnamed. For example:”

enum { Sunday, Monday, Tuesday, Wednesday, Thursday, Fnday, ' __ -
Saturday} weekday,

defines the variable weekday, which can be assigned any of the specified eﬁumerat_ion constants.
However, you can not declare any additional enumeration variables using this set of enumeration constants.

Storage durat/on specifiers

Every ob}ect has a storage class, which may be automatlc, statlc, of allocated Vanables declared
within a block by default have automatic storage, as do those explicitly declared with the auto or register
storage class specifiers. The auto and register specifiers may only be used within functions and function
argument declarations; as such, the auto specifier is always redundant. Objects declared outside of all
blocks and those explicitly declared with the static storage class specifier have static storage duration.

1791

Objects with automatic storage are local to the block in which they were declared and are discarded
when the block is exited. Additionally, objects declared with the register storage class may be given higher
priotity by the compiler for access to registers; although they may not actually be stored in registers,
objects with this storage class may not be used with the address-of (&) unary operator. Objects with static
storage persist upon exit from the block in which they were declared. In this way, the same object can be
accessed by a function across multiple calls. Objects with allocated storage duration are created and
destroyed explicitly with matloc, free, and related functions.

The extern storage class specifier indicates that the storage for an object has been defined elsewhere.
When used inside a block, it indicates that the storage has been defined by a declaration outside of that
block. When used outside of all blocks, it indicates that the storage has been defined outside of the file. The
extern storage class specifier is redundant when used on a function declaration. It indicates that the declared
function has been defined outside of'the file.

12.6 Storage classes

From C compiler’s pomt of view, a variable name identifies some physical location within the
computer where the string of bits rep1esentmg the variable’s value is stored. There are basically two kinds
of locations in a computer where such a value may be kept— Memory and CPU registers. It is the
variable’s storage class that determines in which of these two locatlons the value is stored.

Moreover, a variable’s storage class tells us:

(a) Where the variable would be stored?

(b) What will be the initial value of the variable, if' 1111[1'11 value isnot spec1ﬁcally assigned.(i.c. the default
initial value)?

~ (¢) Whatisthescope of the variable; i.. in which functions the value of the variable would be available?
(d) Whatis the life of the Vanable, i.e. how lonU would the variable exist?

There are four storage classes in C:
{(2) Auto@atic storage class
(b) Register storage class
{c) Static storage class
(d) Bxternal storage class
The géneral form for declarin.g' astorage class is:
storage class declarator;

For example:
- extern int value;
aufolong p=5;
autoint q;
static ntx;
Let us examine these storage classes one by one.
Automatic Storage Class

The features of a variable defined 1o have an automatic storage class are as under:

Storage Memory.

[180]

Default initial value Anunpredictable value, which is often called a garbage value.

Scope Local to the block in which the variable is defined.
Life Till the control remains within the block in which the variable is
defined.

Following program shows how an automatic storage class variable is declared, and the fact that if
the variable is not initialized it contains a garbage value.

main()
{
auto inti,] ;
printf (“\n%d %d”, 1,) ;
} | |
The output of the above program couid be...

1211221

where, 1211 and 221 are garbage values of i and j. When you run this program you may get
different values, since garbage values are unpredictable. So always make it a point that you initialize the
automatic variables properly, otherwise you are llkely to getunexpected results. Note that the keyword for
this storage class is auto, and not automatic.

Scope and lifé of an automatic variable is jllustrated in the followmg pr ogrdm

main() '

{

autointi=1;

f
t

printf (*“\n%d*,i);
}
printf (“%d “,1);
\ ‘
printf (“%d”,1);

}

3
The output of the above program is:

[

This is because, all printf() statements ocour within the outermost block (a block is all statements
enclosed within a pair of braces) in whiclti has been defined. It means the scope of i is local to the block

- inwhich it is defined. The moment the control comes out of the block in which the variable is defined, the
 vatiable and its value is irretrievably lost, To catch miy point, go through the foliowing program. '

main()

[181]

autointi=1;
{
autointi=2;
{
autointi=3;
printf (“n%d “,i);
3
printf(“%d “,1};
)
printf(“%d”,1);
¥
The output of the above program would be:

321

Note that the Compiler treats the three i’s as totally different variables, since they are defined in
different blocks. Once the control comes out of the innermost block the variable i with value 3 is lost, and
hence the i in the second priati() refers to i with value 2. Similarly, when the control comes out ofthe next
innermost block, the third printf() refers to the i with vale 1. i

Understand the concept of life and scope of an automatic storage class variable thoroughly before
proceeding with the next storage class.

Register Storage Class

The features of a variable defined to be of register storage class are as under:

Storage | CPU registers

Default initial value Garbage value.

Scope Local to the block in which the variable is defined.

Life : Till the control remains within the block in which the variable is
defined.

A value stored in a CPU register can always be accessed faster than the one that is stored in
memory. Therefore, if a variable is used at many places in a program.it is better to declare its storage class
as register. A good example of frequently used variables is loop counters. We can name their storage class
as register. :

main()

{ .

register janti;

for (i=1;i<=10;i++)
printf(“n%d”,i);
}

Here, even though we have declared the storage class of i as register, we cannot say for sure that
the value of i would be stored in 2 CPU register. Why? Because the number of CPU registers are limited;

[182]

and they may be busy domg some other task. What happens in such an event... the Vanable works as if'its
storage class is auto.

Not every type of variable can be'stored in a CPU register.

‘For example, if the microprocessor has 16-bit registers then they cannot hold a float value ora
double value, which require 4 snd 8 bytes respectwely However, if you use the register storage class for
-afloat or a double variable you won't gét'any eéror messages. All that would happen is the compiler
would treat the variables to be of autogorage class.

Static Storage Class

The features of a variable deﬁﬁcd to have a static storage class are as under:

Storage Memory.

Defaultiniial value Zero

Scope ' Local to the block in which the variable is defined -

Life * Value of the variable persists between different function calls.

Compare the two programs and their output given in Figure 6.3 to understand the difference
between the automatic and static storage classes.

Figure 6.3

_ The programs above consist of two functions main() and increment(). The function increment
() gets called from main() thrice. Each time it increments the value of i and prints it. The only difference in
the two programs is that one uses an auto storage class for variable i, whereas the other uses static
storage class. - :

main() ‘ main()

A {
increment() ; increment();

- increment() ; increment() ;
increment(); increment();
T
mcrement() { staticinti=1; increment()
printf (“%dwn”,i); { |
i=i+1; autoi.ntirl'"
} _ printf (“%d\n” i);

| 1"1+1
}
The output of the above programs would be:

i 1
2 1 .
3 ‘] .

[183]

Like anto variables, static variables are also local to the block in which they are declared. The
difference between them is that statie variables don’t disappear when the function is no longer active.
Their values persist. If the control comes back to the same function again the static variables have the
same values they had last time around.

In the above example, when variable i is auto, each time increment() is called it is re-initialized to
one. When the function terminates. i vanishes and its new value of 2 is lost. The result: no matter how many
times we.call mcrement(), i is initialized to 1 every time.

Onthe other hand, if iis static, it is initialized to 1 only once. It is never initialized again. During the
first call fo inerement(), i is incremented to 2, Because i s static, this value persists. The next time
increment() is called, i is not re-initialized to 1; on the contrary its old value 2 is still available. This current
value of i (L.e. 2) gets printed and then i=1i+ 1 adds | to i to get a value of 3. When increment()} is called
the third time, the current value of i (i.e. 3) gets printed and once again i is incremented. In short, if the
storage class is static then the statement static inti= 1 is executed only once, irrespective of how many
times the same function is called.

Consider one more program.
main()
{
it
int* fun)
j=fon(};
printf (“n%d”, *j) ;
}
int *fun{)
{intk=35;
return (&k) ;
}

Here we are returning an address of k from fun() and collecting it in j. Thus j becomes pointer to
k. Then using this pointer we are printing the value of k. This correctly prints out 35. Now try calling any
function (even printf()) immediately after the call to fun(). This time printf() prints a garbage value, Why
does this happen? In the first case, when the control rehurned from fun() though k went dead it was still left
on the stack. We then accessed this value using its address that was collected in j, But when we precede
the call to printf() by a call to any other function, the stack is now changed, hence we get the garbage
value. If we want to get the correct value each time then we must declare k as static. By doing this when
the control returns from fun(), k would not die.

All this having been said, a word of advice—avoid using static variables unless you really need
them. Because their values are kept in memory when the variables are not active, which means they take up
space in memory that could otherwise be used by other variables.

External Storage Class

The features of a variable whose storage class has been defined as external are as follows:

Storage Memory

Defaultinitial value Zeto

Scope - Global.

Life As long asthe program’s execution doesn’t come to an end.

[184]

External variables differ from those we have already discussed in that their scope is global, not
“local. External variables‘are-declared outside all functlons yet are anllable to all ﬁlncuons that care 1o use
- theri. He1e 18 an example to 1lluatrale thls fact

RN

o 1 1n1 1
mam()

printf (“\ni =%d”, 1) ;

increment() ;

increment() ;

decrement() ;

decrement() ;

}

increment()

{

i=i+1;

printf “\non incrementing i =%d”, i)
}

decrement()

{
i=i-ly
printf (“\non decrémentin gl =%d”,1);
) o _
The output would be:
i=0
on incrementing i =1
on increinenting i=2
ondecrementing i = 1
on decrémenting i=0
- - Asisobvious from the above output, the value of i is available to the ﬁmctlons mcrement() and
decrement() since i has been declared outside all functions. '
Look at the following program.
intx=21 .;
main()
externinty;
printf (“‘n%d %d”, x,y) ;
-int y=31:;
Here, x and y both are global variables. Since both of them have been defined outside all the
functions both enjoy external storage class. Note the difference between the following;:

1185}

externinty
int y=31;

Here the first statement is a declaration, whereas the second is the definition. When we declare a
variable no space is reserved for it, whereas, when we define it space gets reserved for it in memory, We
had to declare y since it is being used in printf() before it’s definition is encountered. There was no need
to declare x since its definition is done before its usage. Also remember that a variable can be declared
several times but can be defined only once.

Another small issue—what will be the output of the following program?
mntx=10;
main()
{
intx=20;
printf (“\n%d”, x);
display();
} N
display()

(
1

printf (“n%d”, x } ;
H

Here x 1s'defined at two places, once outside main() and once inside it, When the control reaches
the printf() in main() which x gets printed? Whenever such a conflict arises, it’s the local variable that gets
preference over the global variable. Hence the printf() outputs 20. When display() is _éallecl and control
reaches the printf() there is no such conflict. Hence this time the value of the global x, i.e 10 gets printed.

One last thing—a static variable can also be declared outside all the functions. For ali practical
purposes it will be treated as an extern variable. However, the scope of this variable is limited to'the same
~ filein which it is declared. This means that the variable would not be available'to any fiinctiori that is defined
in afile other than the file in which the variable is deﬁned : :

Whlch to Use When

Denms Ritchie has made aveulable to the € programmer anumber of storage classes with varying
features, believing that the programmer is ina best position to decide which one of'these storagé classes is
to be used when. We can make a few ground rules for usage of different storage classes in different
programming situations with a view to:

(a) economise e the memory space consumed by the variables:
{(b) improve the speed of execution ofthe program,
“The rules are as under‘

» Use static storage class only if you want the value of a variable to per sist between different
function calls. :

o Use register storage class for only those vatiables that are being used very often in a program.

 Reason s, there are very few CPU registers at our disposal and many of them might be busy doing
something else. Make careful utilization of the scarce resources. A typical application of register
storage class is loop counters, which get used a number of times ina program.

[186]

« Use extern storage class for only those variables that are being used by almost all the functions in
the program. This would avoid unnecessary passing of these variables as arguments when making
afunction call. Declaring all the variables as extern would amount to a lot of wastage of memory
space because these variables would remain active throughout the life of the program.

» Ifyoudon’thave any of the express needs mentioned above, then use the auto storage class. In
fact most of the tinaes we end up using the auto variables, because often it §0 happens that once we
have used the variables in a function we don’t mind loosing them.

Let try some experiment. First of all, let create a simple class. Create a header file namedobject.h,
save this file, do not run or compile this program.

12.7 Command line arguments
Command Line Parameters: Arguments to main(}

Accessing the command line arguments is a very useful facility. It enables you to provide
commands with arguments that the command can use e.g, the command

% cat prog.c

takes the argument “prog.c” and opens a file with that name, which it then displays. A technique to
write a function which takes variable umber of arguments, is called command fine argaments. The command
line arguments include the command name itself so that in the above example, “cat” and “prog.c” are the
command line arguments. The first argument i €. “cat” is argument number zero, the nextargument, “prog.c”,
is argument number one and so on. :

To access these arguments from within a C program, you pass pammeters to the functlon main().
-.The use of argumerits to main is a key feature of many C programs.

The declaration of main looks like thlS'
int main (int arge, char *argv]])
This declaration states that
1. main returns an integer value (used to determine if the program terminates successfully).

2. arge s the number of command line arguments including the command itself i.e arge must be at
least 1.

3. argvisanarray of the command line arguments.

Two special identifiers, arge and argv are used to pass to main() the number of command line
arguments and pointers to each argument we have to set up main() as follows,

main(int arge, char*argv|])

arge will then provide the number of command line arguments mcludmg the cormnancl itself so ar; gC
its never less than 1. ' :

The argv is an array of pointer to char or equivalently an array of strings. Each of argv[0}, argv[1],...
up to argv{arge-1] 1s a pointer to command line argument, namely a NULL terrnmated string. The pointer
argv{argc] is set to NULL to mark the end of the array.

Suppose these is a program Vkepy in which main contains argument arge, and argv means skeleton
of program is as follows

main(int argc, char * argv]])

1187}

[y

Suppose we now execute the program by typmg VK COPY Hellow.C I-lello CBK Here argc =
3(commandplus2a1guments) U ey

argv[0] points to “CAVKCPY\0”

argvl1] points to “HELLO.C\0”

argv{2] points to “HELLO.CBK\O”
argv[3]is NULL . '

Example Program to demonstrate command line arguments : prmt args echoes its arguments
to the standard output —is a form of the Unix echo command.,

/* print_args.c: Echo command line arguments */

#include <stdio.h> -
#include <stdlibh>
int main(int 'argc, char *argvf])
{
inti=0;
int num_args;
nwn_arés =arge ;
whiie(-lluln"args >0)
d |
printf(*“<esn”, argv[il);
i+t
num_args-—--;-"
;.
R

If the name of this program is print_args, an example of its execution is as follows:
%o priiit_args hello goodbye solong -
print_args
hello
goodbye

[188}

solong
%

Exercise: Rewrite print_args so that it operates like the Unix echo command. Hint: Youonly need
to change the printf statement.

12.8 Muliifile ﬁrograms using own header files
Writing programs in multiple file

Writing header files is just past of writing C code in multiple files, While you will not need to write
C programs in multiple files (indeed most of the programs that you write during this course will be easily
small enough that a single file is the best way to go) it is a good technique to know — your project will
probably be large enough to be spread across multiple files. Individual .c files are often called modules.
Why write C programs where the source code is spread across more than one module? There are a
number of reasons:

1) Code which is related can be kept together making routines easier to find,
2} Two programmers can work on the same program by editing different files.
3} Onavery large program we can save time by only recompiling part of the program.

4) If, for some reason, we need to rewrite part of a program, the bits being rewritten may be th one
file.

The how fo of writing programs in multiple modules is fairly straightforward. Remember that you.
should never have more than one main (indeed you should never have two functions with the same name).

If you use a struct or a typedef a #define or an enum in a module then that module should include the

header file containing the appropriate bit of code for the struct, typedef, #define or enum. If you are
foliowing the rules we setip above, then you’re including all these things in header files anyway.

IMPORTANT RULE: Any module that calls a function should have access to the prototype for
that function. (That s, in fact, what you’ve been doing all the time you’ve been #include ing headers —
making sure that the protofype for printf, or whatever, was available). The best way to do that is to put the
prototype into a header file and #include the header in any module which wishes to use the function.

The problem with talking about this topic is that any program which is large enough to require
multiple files is probably too large to consider in detail. Instead let’s consider an abstract example of how
we might split up functions between files. Our imaginary program might be a program to deal with the pay
packets of university lecturers, The program would need (amongst other things) the following features:

1) Inputinfo for a new lecturer.

2) Deletealecturer who leaves.

3) Promote alecturer who gets an individual pay-rise.
4) Read and write this information to disk.

5) Inspectan individual lecturer’s record.

~ 6) Print off a months wage packets for all lecturers.

[189]

We might therefore decide to split the functions up between files like so;

pay.h
- Prototypes and
- definition
of constants for the
_ / program \\

‘pay.cpp fileio.cpp printout.cp p | | updatecpp
Main bit of progra | - | Reads records for Printsa‘cheque - Inp.ixt file for new .
m, Gets input lecturers. run” on pay days. Lecturer.
from user. Calls Writes updated Prints records of Change file for
appropriate - I'reco rds. Makes individual lectures existing _
routine bac-ukp copies of for inspection. lecturer (for eg
depending (_Jh_ ; files so that nothing , pay rise or name

- userinput, - ‘_ listost. _ : : change).

~ Note that all the .cpp files would include the file pay.h. This is quite normal, small C programs in
only two or three files will typically only have one or two header files. Larger programs in more files may
needumore header files. One common question is “how many functions should be in each module?” Really,
itisupto the prograrruner Too many is a paih because each module is long, it’s hard to remember where
in the file you put the code and each module takes a long time to complle It also may be harder for another
programmer looking at your code to know which functions are the most important if they’re all together.
Too few functions ina module is a pain because you have a large number of modides to fhaintain. Generally,.
somewhere between 1 and 100 functions is the right number butitisuptothe preterence of the individual

programmer.
The extern statement -

Tl}e extem statement isused in multlple file programming, It i isused to say “the global variableused
inthis file isinitialised in another file”. Put extern in front of a global variable when it is declared in another
fite. In the following example we declare three vanables (two arrays and one char) i in testprog1.c and use
them in testpr0g2 c :

[190]

festprog.h
/* function prototypes */
void tesff_unc(void);
testprogl.cpp testprog2.cpp
#include “testprog.h” ~ #include “testprogh”
/* Define some global 7 Globals from testprogl .c must
variables */ be defined as extern here/ |
float farray[1000}; extern float farray[1000];
int iarray[500]; extern int iarray{ 500];
charc; externcharc; -
intmain() void testfunc (void)
{ { .
c="n’; printf (“farray[0] is %fw”, .
. farray[0]=1.2; farray[0));
iarray[0}= 3; printf (“cis Yeckn”,c);
testfunc(); printf (“iarray[0] is %od\n”,
/* Rest of code™*/ farray[0]);
retumn 0; /* Rest of code*/
j - }

Every file (sometimes called amodule) in the progfam which uses the global variables, except for
the one where they are declared, must have them declared asextern to say to the compiler “don’t worry
about this variable, you will find out about it from another file.” It we had forgotten to declare the variables
asextern in testprog2.cpp this would be equivalent to having two global variables with the same name in
the program (confusing and probably will stop your program working). If we had not declared them at all -
in testprog2.cpp then the compiler would flag an error because it wouldn’t know what farray, iarray and ¢
were.

: The extern statement is used to tell the compiler that a global variable will be declared in another
file in the program. '
12.9 Su_nimary _

The # and ## operators are used with the #define macro. Using # canses the first argument after
the # to be returned as a string in quotes. For example, the command

' ~ #define as_string(s)#s | -

will malke the compiler turn this command

puts(as_string(Hello World!) };
puts(“Hello World!™);

- Using ## concatenates what’s before the ## with what’s after it, For example, the command

1191

#define concatenate(x, y) x ## y
Intxy=10;

will make the compiler tum
printf{ “%d”, concatenate(x, y));

into .
printf{ “%d™, xy);

which will, of course, display 10 to standard output.

Storage Classes

Storage class slééciﬁers tell compiler the duration and visibility of the variables or objects declared,
as well as, where the variables or objects should be stored, :

In C++ program we havemultiple files, In these files we may have normal variables, array, functions,

structures, unions, classes etc. So, variables and objects declared must have the vistbility, the

lifetime and the storage, when values assigned.

In C/ C++there are 4 different storage classes available:automatic,external, static and register,

Storage class Keyword
Automatic auto
External extern
Static static
Register register

Autematic Variable - auto

*

Local variables are variables declared within a function or blocks (after the opening brace,{ of the
block). Local variables are automatic by default, This means that they come toexistence when the
function in which it is declared is invoked anddisa ppears when the finction ends.

Automatic variables are declared by using the keywordauto. But since the variables declared in
functions are automatic by default, this keyword may be dropped in the declaration as you found
in many source codes. '

The same variable names may be declared and used in different functions, but they are only knowr -
in the functions in which they are declared. This means, there is no confusion even if the same
variables names are declared and used in different functions.

External Variable - extern

]

Extetnal variables are varidbles that are recognized globally, rather than locally. In other words,
once declared, the variable can be used in any line of codes throughout the rest of the program.

* Avariable defined outside a function is external, An extemal variable can also be declared within

the function that uses it by using the keywdrde'xtem- hence it can be accessed by other code in

- other files.

Static Variable - statie

Inasingle file program, static variables are defined within individual functions that they are local to
the function in which they are defined. Static variables are local variables that retain their values

[192]

throughout the lifetime of the program. Tn other words, their same (or the 1atést)_values are stillavailable
when the function is re-invoked later. :

e Their values can be utilized within the function in the same manner as other variables, but they
cannot be accessed from outside of their defined function. - S

e Thestatic has interral linkage (that isnot visible from outside) except for the static members of a
class that have external linkage. The example using the static variable has been presented in Module
13 and some other part of the program-examples in this Tutorial.

Register Variable - register

e The above three classes of variables are notmally stored in computer Memory. Registe} variables
however are stored in the processor registers, where they can be accessed and manipulated faster.
Register variables, like automatic variables, are local to the function in which they are declared.

o Defining certain variables to be register variables does not, however, guarantee that they will actually .

be treated as register variables.

o Registers will be assigned to these variables by compiler so long as they.are available. If a register

_declaration cannot be fulfilled, the variables will be treated as automatic variables. So, itisnota
mandatory for the compiler to fulfill the register variables. -

» Usually, only register variables are assigned the register storage class. If all things equal, a program
that makes use of register variables is likely torun faster than an identical program that uses just
antomatic variables.

Global Variables are defined outside of atl fumction bodies ({...}) and are available to all parts of
the program. The lifetime or availability of a global variable last until the program ends. As explained
before, if extern keyword is used when declaring the global variable, the data is available to this file by
telling it the data is exist somewhere in another files. : '

Local Variables are local to a function, including the main() function. They are automatic variables,
exist when the scope is entered and disappear when the scope closes.. '

12.10 Glossary

Directive A directive is an instruction by the programmer for a compiler. Most programming

languages have directives. In C, #include isused to include header files. You can use the #define directive

to give ameaningful name to a constant in your program

Enumeration Short for enumeration, an enun? variable type can be found in C (Ansi,not the
original K&R), C++and C#. The idea is that instead of using an int to represent a set of values, afype with -

a restricted set of values in used instead.

Global These variables can be accessed (ie known) by any function comprising the program.

They are implemented by associating memory locations with variable names. They do not get recreated if

the functionis recalled.

Local These variables only exist insicle the specific function that creates them. They are unknown
to other functions and to the main program. As such, they are normally implemented using a stack. Local
variables cease to exist once the function that created them is completed. They are recrgated each time a
fimction is executed or called. ' '

Maero In C and C-++, aMacro is a piece of text that is expanded by the preprocessor part of the
compiler. This is used in to expand text before compiling.

[193]

[————

o Preprocessor The préprocessor is the part of the compllt,r in C and C++ that reads the source
code files and expands text whereveér i it findsa#in column one. .

-12,1% Further Readings N S L
* Programming in "C’— Balaﬂwuswamy TataMcGraw-l—[tll Pubhcatlons
. 'lheCpmgrammmg languagc Denms Rmchie, Prentloe Hall Dc,lhl
"o Letus C—Yashwant Kanetkar BPB Publication .~
12.12 Unit end questions

~® Defineamacro called “bn'thday” whlch descr 1bes the day of the month upon whlch your birthday
. fcxll& _ . o

- & Writea command to the prepr(}cessor to mclude tomaths llbrary math h.
¢ Amacrois always a number. Trueé or fafse? ' "

- * Amacro is always a constant. True or false?

[194]

