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UNIT 1 : Number System

1.3

1.4 '

“Structure of the Unit
1.6 Objectives
11 Introduction
1.2 Number systeﬁn

1.2.1 Data representation in computers
1.2.2 Decimﬂlnumbersystem _

1.2.3 Binary number system

12.4 Octal number system
1.2.5 Hexadecimal number system _ _
Conversion to decimal number system from another nmnber system

. 1.3.1 Biparyto decimal

132 Octal fo decimal
133 Hexadecinmlto decimal — . ._-__'

Convetsion to another pumber system from declmal numbc:r system

1..4.1 Decimal to binary

1.42 Decimal to octal

143 Decimal to hexadecimal e L
Conversion from a base other than 10 (b_inary, octal, hexadecunal)toabaseother thanl{) ) .

1.5
(binary, octal, hexadecimal)
1 5.1 Binary to octal and vice-versa
152 BinarytoheXadeciIﬁal_and vice-vé_rsa
1.6 Sunimary'
1.7 Answérsm self-learning exercises
1§ Exemises
1.0 Objectives - | L

After going through this Jnit student will be able to':
+ To learn how data is represented in the computer.

+ Undetstand various number system . pos1t10nal and non-positional.

¢ Leamnto convert number from one number system to another.
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11  Introduction

Eﬁer since people discovered that it was necessary to count objects, they have been looking for

easier ways to count them. The abacus, developed by the Chinese, is one of the earliest known calculz-

tors. It is still i in use in some parts of the world. Man's earliest number or counting system was probably

developed to help determine how many possessions a person had. As daily activities became more com-

plex, numbers became more important in trade, time, dlstance, and all other phases of human llfe

- We are familiar with the decimal number system in which digitsare 0, 1,2, 3, 4, 5, 6 7,8 and
9. Computer cannot understand all these characters because computer is an electronic device. It is a bi-
stable device means with two states "On" and "Off". Therefore, computer deals with data converted into

snnplest form which can be processed electronically, that is in binary form, where it substitutes "On" w1th o

1" and "Off" with 0.
The computer uses binary drglts for its operation, In Ihe binary system there are only two digits
0 and 1. The programmer feeds instruction and data in alphabets and decimal digits. But for the operatlon

of the computer these are converted to bmaly bits.

To store and process data in a binary form, a codmg scheme had been devised to represent
characters as standardized methods. Data stored in a coded form is basically of three types-Numeric,
Alphabetic and Alphanumenc Every computer stores these data types ina coded form i.e. in binary
number system.

This chapter deals with the conversion of binary numbers to decimal numbers and vice versa. It
also deals with hexadecimal and octal system. Computer circuitry is usually designed to process
hexadecimal or octal number. Before going into the details, it is essential to have a basic understanding

of the number system. -

1.2 Number system

Until now, you have probably used only one number system, the decimal system. You may also
be familiar with the Roman numeral system even though you seldom use it. Number systems are basi-
cally of two types :

+ Non-Positional

¢ Positional

Non-positional number system :

In early days, lﬂm"nan begins counted on fingers. When ten fingers were not adequate, stones,
pebbles, or sticks were used to indicate values. This method of counting uses an additive approach or

the non-positional number system. In this system, we have symbols such as I for 1, If for 2, HI for 3,

2




131 for 4, 11 for 5, ete. is known as Roman Number Systen. Each symbol represents the same value
regardless of its position in the umber and the symbols are simply added to find out the value of 2
particular number. Since it is very difficult to pexform arithmetic with such 2 number systen, positional
systems were developed. - '

Positional number system :

Positional notation is 2 system where ihe value of a number is defined not only by the symbot
but by the symbol's position. In a positional number system, there are only a few symbols called digtts,
~and these symbols represent different values depending on the position they occupy. in the nuber.

Each position in the positional notation system represents 2 power of the base, or radix.

APOWER is the pumber of times a base is multiplied by itself, The power is written above and to the
right of the base and is catled an EXPONENT. Examine the following base 10 line graph :

I

e

Radix point
10° 107 10" 10° 107 1072 107

0 =10%1, Tor 10

e

10° = 1(any number raised to the "i;ower‘cf 0 equals; 1)

i

107 =1+ 1000, or 001

e

The value of each digit in such a number is determined by three considerations:

1. The digit itsclf, | | |

2. The position of the digit in the number, and

3. The base of the number system.

Base or Radix :

The base, or radix, of 2 number system tells you the number of symbols used in that system. The
base of any systerm is always expressed in decimal numbers. The total number of digits available in the
number system Le. decimal number systefn contains 10 digits (f.e. 010 9) having base 10. Therefore
aumbet in this system is represented by (number)pyee -6 2775=275No -

Computing the value of a positional puxaber

o A npumber= Digit x Base(position of the digit)

fe.  (275)p=2x 107 HTx 10t + 5% 10%
Hence the value of a gumber can be viewed as the sum of the positional values of the symbols in
the number. The rightmost symbol in the number has the lowest weight, whereas the leftmost symbol in
, _



Number system Base Base set Largest 4 digit number . -
Decimal 10 10,1,2,3,4,5,6, 7,89 9999
Binary - 2V To1 1111
Octal 8 10,1,2,3456 7 . 7777
Hexadecimal 6 10.1,23,456789 | FFFF

A A,B,C,D,E, F - |
— ]

1.2.1  Data representation in computers :

The computér_system is made up of a number of electronic circuits, These circuits work on the
basis of 2 states - ' ' |

* Low charge

The computer manipulates these different States so that it can do something useful, The binary
system is ideal for this manipulation, since it s also based on the same concept of 2 states (numbers).
The binary system js used to represent the 2 states in the computer — “(” for low charge and “1” for

high charge. Other number systems can be used, but for them more than 2 states will have 1o be created,
which is not practical, '

122 Decimal Number System :

System is represented by 4740
| . 847 =8 5102+ 4 x 101 + 7 x 100
=800 +40+7=2847.

4



The successive positions to the Jeft of the decimal point represent units, tens, hundreds, thousands,
lacs efc. Eaéh position represents a specific power of the base 10. The principles that apply to the decimal
system apply in any other positional number system.

The following graph illustrates the progression of powers of 10 :

- Radix Point __———l

ot 100 10* 10" 10 - 107 02 107

Gk

i - Al numbers 1o the left of the decimal point are whole numbers, and all numbers o the right of
the decimal point are fractional numbers. When you use any base other than the decimal system, the
division between whole umbers and fractional numbers is referred to as the RADIX POINT, The decimal
point is actually the radix point of the decimal system, but the term radix point is normally not used with
the base 10 number system. -

12.3 Binary Number System :

The simplest possible number system is the BINARY, or base 2, system. You will be able to use

the information just covered about the decimal system to easily relate the same terms 10 the binary system. - |

The base, or radix—you should feméf’nber from our decimal section—is the number of symbols
used in the number system. Since this is the base 2 system, only two symbols, 0 and 1, are used. The base
is iﬁdicated bya subécript, as shown in the following' example :

1
When you are working with the deciiﬁal system, you pormally don’t use the subscript. ‘N-ow that

you will be working with number systems other than the decimal system, it is important that you use the

subscript so that you are sure of the system being referred to.

Why Binary? " |

Almost all computers use binary numbers. Therefore, the question that arises is “Why do we use
binary numbes instead of decimal numbers?” The reasons arc as under : |

o Information is handled in a computer by clectronic/electrical components, such as 1ransistors.
semiconductors etc., all of which can only indicate two states o conditions —on(1) or off(0). All information
_ is represented within the computer by the presence o1 absence of these types of signals. The binary
nﬁmber system, which has only two digits (0 and 1), is most suitable for expressing the two possible
states. ' _

o Computer circuits only have to handle two binary digits; this greatly simplifies the internal circuit
design of computers. |

o Everything that can be done in decimal number systein can also be done in binary number

system.



The prefix ‘i means 2. Binary system thus refers to a number system which has only two unique '

digits. Binary numbers contains two unique digits 0 and 1. It is known as Base 2 system. The number
thus formed is the combination of these two digits such as (1001),. |

(1001), =1 x22+0x22+0x21+1x20=8+0+ 0+ 1 =(9),,,
(100101), =1 %25+ 0x24+0x 23+ 1 x 2240 x 21 41 x 20
=324+0+0+4+1=(37),,

Decimal and Binary Comparison :

Decimal Binary
10° 0 0 20
1 1
2 10 2!
3 11
4 100 22
5 101 '
6 110
7 111
8 1000 2
9 1001
10 10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
16 10000 2
17 10001
18 10011
19 10011
20 10100

1.2.4  Octal Number System :

The octal, or base 8, number system is a common system used with computers. Because of its
relationship with the binary system, it is useful in programiming some types of computers.

In octal number system, there are 8 unique digits available in octal number system. These are
from 0~ 7. Thus, any number formed by these digits is combination of these digits. It is known as Base
8 system. The base, or radix, is indicated by the subscript 8. The value of a digit in a number depends
upon its position in the number. Therefore, the number 502 of octal number system can be expressed as:

6
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(502)g =5 x 8%+ 0% gl+2 %80
C =5x64+0+2
=320+0+2
= (322)o-
12.5 Hexadecimal Number System : |
The hex number system is a mMOTe complex system in use with computers. The name is derived
from the fact the system uses 16 symbols. it is beneficial in computer programming because of its
relationship to the binary system. Since 16 in the decimal system is the fourth power of 2 {or 24), one
hex digit has a value equal to four bmary digits.

In Hexadeclmal Number System, there are 16 digits available. These are from 0~ 9 and 4, B,
C, D, E, F where A denotes 10, B denotes 11 . _and F denotes 15. Thus, any number tormed is
combination of these digits. It is known as Base 16 system. The value of a digit in a number depends

upon its posmon in the number. Therefore, the number 458 of hexadecimal number system canbe -

expressed as: :
(458),5 =4 (10) X 167 +5 % {6t +8x 160
=10 %256+80+8
=2560 + 88 |
= (26485

The hexadecimal notations are used not only to represent pumbers, but also used to represent
binary pumbets in compact form. This is so because in most of the computers data occupy multiple of 4
bits which is equivalent to smgle hexadecimal digit. -

1.3  Conversion to decimal number system from another number system

Usually numbers expressed in decimal number systern are much more meamngfl.ﬂ to us, because

we have been asing decimal numbers in-our daily routine life. Any number in one numbet system can
-. be represented in any other number system. There are many methods, which can be used to convert
' ambers from one base 10 another. The following steps are sequired to convert a rfumber from any base

to base 10 :

For conversion of a number from any number system to decimal number system (base 10),
multiply each of digit of the number by (Base Value)posttion of the digit gnq then add the Iesult ie.
e Determine the column (positional) value of each dlglt This depends on the position of the

digit and the base of the number system.
7




* Multiply the obtained column-values-by the-digits-in-the-corresponding-colurms;

¢ Sum the products calculated in the above step. The total is the equivalent value in dec1mal

Fractional Numbers : |

In any number system, fractional numbers are formed in the same general way as in the decimal
number system. For example, in the decimal number system :

0.475 = (4 x 1071) + (7 x 102) + (5 x 10)
= 0.4+ 0.07 + 0.005.

1.3.1 Bina:ry to Decimal :

For conversion of a number from binary number system to decimal number system, follow the
above procedure 7e. multiply each of binary digit by 2position of the digit and then add the result.
' ‘Example : | _ |
- | (10001), = (%),
Step 1 : Determine the column values

Column number (From right) | Column value.
1 - 2%=1
2 2'=2
3 2%=4
4 2’ =8
5 2'=16.
Step 2 : Multiply column values by corresponding column digits
16 8 4 2 1
x 1 X () % ) %0 x 1
16 0 0 0 i
Step 3 : Sum the products

16+0+0+0+1=17 ° |
or  Ix2040x23+0x22+0x2141x20=16+0+0+0+1=17
Hence (10001),=(17);p. |
Exaniple:. |
L (100101), =)y, | -
(101.101), = 1x 2240214 0x 20+ 1 x 21 +0x 22+ 1 x23
—4+0+0+12+04+18 |
=4+05+0+0.125
—@628),




>

132 Octal to Decimal : ' i
For conversion of a number from octal number system to decimal number syétem, multiply each
of octal digit by 8Position of the digt and then add the result.
E{Lample :
(3067.51)g = D10 |
(3067.51)g =3 X 83 +0 x 8246 gl +7x80+5x8l+1x87
=3 x512+0+48+7+5/8+1/64
- 1536 + 55 + 0.625 +0.015625
(3067.51)g = (1591 640625);¢- '
133  Hexadecimal to Decimal
Similarly, for conversion of a number from hexadecimal pumber system to decimal ey systém,
multiply each of hexadecimal digit by (16)1:"3*‘“3"n of the digit and then add the result.
Example : |

(C1B.20)5 = (Mo
=Cx162+1x161 +Bx 169 +2 x 161+ C x 162

—12% 162+16+ 11 x1 +2/16 + 121256
= 13072 + 27+0.125+0.046875
(C1B.2C)6 = (3099.171875)¢-

1.4 Conversion to another number system from decimal number system

As decimal numbey may contain only integer or integer part along with fractional part, thus
calculation shall be done in two patts. The following steps are used to convert a number from decimal to
another base :

Intéger Part:
1. Divide the decimal number by the value of the new base.
3. Record the remainder.
3. Repeat the step @
(i) With the quotient and then step. : _
- () Until the gquotient becomes 0 or less than the value of the new base.
Fractional Part:
1. Multiply the fractional part by the value of the new base.
2. Record the integer part, if it exists, else record 0. a
3. Repeat the step :
(i) with the result of the previous multiplication and then step.
(1) wntil the fractional part becomes 0.
In case of infinite calculations, generally 6 digits are taken.

9



1.4.1 Decimal to Binary :
Example ;

Bl =),
Here the new base is 2 '

31/2 =15 Remainder 1 or 2131

15/2 =7 Remainder | 2115 1

7/2 =3 Remainder 1 2 1

3/2 =1 Remainder 1 213 1.

11
—_—
Now start writing in the order from the last obtained till the first remainder. Thus the binary
equivalent of R ' o
(1)1 =(11111),

Example :

(31.625),, = (7),

Convert integer part i e, 31 into binary as above = 11111 -
Convert fraction part 0,625 into binary as below -
0.625 x 2 = 1.25 take away integer part and record = 1
0.25 x 2 =0.50 take away integer part and record = 0
0.50x 2=1.00 take away integer part and record = 1
Thus binary equivalent of fraction part is 101.
Hence (31.625),9 = (11111.101),
1.4.2 Decimal to Octal ;

(953)9 = (2
Here the new base s 8.

953/8 = 119 Remainder 1 or - 81953

119/8 = 14 Remainder 7 811191

14/8 = 1 Remainder 6 - 8114 |7
' 1|6

Nowsmmngm'mcomﬂﬁomﬂﬁlastobwmedﬁﬂﬂaeﬁmtremaiﬁdeﬂhusmeoctaleqaivalem- |
of | o | - ' -
o (953),9 = (1671)
143 Decimal to Hexadecimal :
| (953)10 = (Mg
10




Here the new base is 16.

953/16 =59 Remainder 9 or
59/16 = 3 Remainder 11(B)

16] 59 9
3 11(B) |

——

Now start writing in the order from the last obtained {ill fhe first remainder. Thus the hexadecimal

equivalent of
(953)y9 = 3By o

1.5 Conversion from a base other than 10 (binary, octal, hexadecimal) to a base other |

than 10 (binary, octal, hexadecimal)

The following steps arc ased to convert a number from a base other than 10, to a base other
than 10 i.e. binary to octal, hexadecimal and vice-versa . | |

(i) Convert the original number t0 2 decimal number (base 10),

(#) Convert the decimal number obtained in step-I to the new base number.

1.5.1 Binary to Octal and vice-versa:

o (100010), = (g |
Step 1 : Convert 100010 to base 10
(100010), =1 ><25+0><24+0><23+0x22+1 x21+0x20
—32+0+0+0+2+0=0Gp
Step 2 : Convert (34);, to base 8
34/8 = 4 remainder 2
4/8 =0 remainder 4

Hence (34)0= 42)

Therefore  (100010),= (34);0 = (42)g

Shortcut method for Binary to Octal Conversion :

A binary number is easily converted to a octal number by dividing the bits of the binary number
into groups of 3-bits. This is because of the fact that the maximum value of one digit is equal to the
maximum value of three digits in binary. Therefore, the value of one octal dlglt is equivalent to 3 bits of
pinary. |

11



Binary Coded Octal Numbers

Octal number Binary coded octal number Decimal equivalent

0 000 . 0
1 001 1

2 010 2
3 011 3

4 160 4
5 101 5 ¢
6 110 6
7 111 7

(100010, = (?), __
 Divide the bits into group of 3 from right as 100 - 010 -

-

As per the above table, 010 is equivalent to 2 in octal number and 100 is eijuivalent to 4 in octal
number. Therefore octal equivalent of the given binary mumber is (42), -
Hence (1 00010), = (42)g Which is same as converted above, _
Now for fluick conversion of octal to binary, each digit of octal number is converted into its 3-
* bits of s binary equivalent. -
152 Binaryto Hexadecimal ahd vice-versa
(100010), = (2),
Step 1 : Convert 100010 to base 10 _
| (100010, = 1% 2540 x 24 0% 210 x 224 | x 214 x 20
=3240+0+0+2+0=(34),, |
Step 2 : Convert (34), , to base 16 )
- 3416 = 2 remainder 2
2/16 = 0 remainder 2

Hence (34);9 = (22),,

Therefore (100010), = (34), = (22),
‘Shorteut method for Binary to Octal Conversion :

A binary number is easily converted t a hexadecimal number by dividing the bits of the binary
. numper into groups.of 4-bits. This i$ because of the fact that ﬂle_-maicimmh value of _dne"djgit is equal t"_o'
. the maximum value of four cllglts in binary. Therefore, the value of one hexadecim_al dlgltls eqmvalentto

4 bifs of binary, | | " -

12 °




Binary Coded Hexadecimal Numbers: -

Hexadecimal Binary coded octal number - .-+ Decimal eqtuvalent T
number

0000 _
T T T
0010 '
TO0L ¢ e e e
0100,
0101
_””0110f' | |
'011 1 TET AT a2 a e R
R0

- 1001
1010 . el
1011,
1100
1101

Con R0 e e b
Ak 11

lo|e|~ijolnisie| —~|ol

—
_—
=

—
b2

—
L

[
e

’ﬂtﬂtﬂ(‘)bﬂ}mmqmm.&-mm—ao

o

(1000105 =D

- Divide the bits into group of 4 from nght as 0010-0010. o

-+ As per the above table; 00101s’ equlvaient to2-in hexadecimal number and 00 10 is 'eqlii\;alent
o 2 Hexadegitial amber. Therefors hexadecithal eiiivalent of the given bmary ntm’iber is (22)16

Hence (100010), = (22)16 ' ovhichis samie As converted above. o L

to 'bmaxy ‘each d1g1t of octal nUmber i oonvertccl into

Now for quick cOnVErsmn ‘of hexadecunal
its 4-bits of s bink

equwalent

0

(, TR L

e "'3 it yotr vise any basé otbier thidn the decxtnal syStem, the d:msmn betWeen whole numbers and’
ﬁacﬁonalnumberslsreferredas""” ot TR AL T

{c) Matrix point (d) Decimal point

113



4. Which of the following statement is flase ?
{a) Allthe natural numbers are integers
(b) All the rational numbers are integers
(¢} All the rational numbers are real numbers

(d) Al the integers all real numbers _ ' 1]
5. The octal representation of the binary number 110011, is :

(@) (303)y ®) (634

© (33) . (d) Noneofthese L
6. The hexadecimal representation of the binary number 10101010 is :

(@ A4 | () 1010

() BB @9 []
7. The conversion of 3CF to decimal notation is : -

(@ 759 ' ' ®) 597

@© 965 | @ 976 _ [
8. What s the equivalent of decimal number 39.625 in binary form : 5

@ 100111.101 () 110110.100 |

@ 110011101 @ 1000010.100 []7

1.6  Summary

You should have a basic understandmg of number systems. The number systems that were dealt
with are used extenswely in the microprocessor and computer Selds. SR a

A NUMBER is a symbol used to represent one or more units. The RADIX is the base of a |
positional number system. It is equal to the number of symbols used in that number system.'

APOSITIONAL NOTATION is a system in which the value or magnitude of a nwnber is defined
not only by its digits or symbol value, but also by its position, Each position represents a power of the
radix, or base, and is ranked in ascending or descending order. '

Data stored in a. coded form is basically of three types : Numeric, Ali_)habeﬁc and Alphanumeric.
Every computer stores these data types in a coded form i.e. in binary othér number system. Number i
system is of two types : Non-Positional Number System and Positional Number System, Almost all
computers use binary numbers. Information is handled in a computer by electronic/electrical components,
- such as transistors, semiconductors etc., all of which can only indicate two states or conditions : on 1 |
or off (0) All information is represented within the computer by the presence or absence of these types
of 31gnals The binary number system, which has only two digits (0 and 1), is most suitable for expnessmg
the two possible states. '

14




The OCTAL NUMBER QYSTEM is a base 8 system and is quite useful as a tool in the
conversion 6f binary numbers, This system works because 8 is an integral power of 2: that is, 23 = 8.
The use of octal numbers reduces the number of digits required to represent the binary equivalent of 2
decirnal number. _ ' '

The HEX NUMBER GYSTEM is a base 16 system and is sométimes used in computer systems.

A binary number can be converted directly to a base 16 numnber if the binary qumber is first brokeninto

groups of four digits.

To CONVERT A WHOLE BASE 10 NUMBER to another system, divide the decimal number
by the base of the number system to which you are converting, Continue dividing the quotient of the
previous division until it can no longer be done. -

Glossary :
~ Base:The total number of digits used in 2 positional pumber systern. It is also known as radix.

Binary : A characteristic or property involving a selection, choice or condition in which there
are two possibilities. Tn number system, it refers to the system in which the base used is two, each number
expressed in powers of two by using only two digits Z.e. (and 1.

Bit : Acronym for Binary Digit i.e. 0 and 1. It stands for one binary piece of information.

Byte : A fixed number of adjacent bits, which represeﬁt a particular character or symbol.
Normally a byte consists of eight bits. _ |

Character : A single alphabet numeric or special symbol that is used to represent data.

Decimal number : A pumber system with a base of 10, The ten allowable

System : Digits are 0,1,2,3,4,5.6,7.8.9. | |

. Hexadecimal : A numbetsystem with a base of 16, Its digits range from 0

Number system : To - | ' |

Octal Number : A pumber system with a base of 8. The octal digits range from 0 to 7.

Further Readings : ',

The following books are suggested for further reading :

1. Computer Fundamentals, PX. Smhé, BPB publication.

2. Computer System Arcitecture, M. Moxris Mano, PHL

3. Digital Principles and applications, Malvino,Leach, TMH.

1.7 Answers to self-learning exercises

Self-learning exercise-1

L. ¢ 2. ¢ - 3. b ' 4. b
'S, b 6. C 7.d 8. a
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'l vercises

18

_‘_’:od }Q :;’.'-L

.. (6 10011011,

‘e Why bmary number system Is nnportmll in 1'cpresenung data bit} computer ? Explam

Explain the significance of base/radix of a number systen,

.. What isthe dlﬂ:‘ercnoe betwecn posmonal and non-pqgt;_ongﬂ gup;l;_gr_gystglng? Give examples
- 9t hoth types of number systems, , '

Find the dec;rml equivalent of the followmg bmaly numbels

~f@)10100011010 . +(B): 11000101 .

ARDSAS, .A44)..1011,
b Convert the followm,g numbers to de(fmwl nmnbem

b g e (c_l) 1001011
Convertihe deumal mlmbers mtobmaxy T N SO
(@)347.125 (B) 954. 525 '

(aD ’(100011)2 R I T N T R TR
(c) (2416)8 (af) (162F)16 R T S

v Convert octal numbers, to hexadeclmal number sys'tem R
e TRT i (85416

(c) 6472 (@ 5627

.. Convert the following whole hexadecundl numbers to thelr decnnal equalents

(6) ABC.D St i S T - i R SRR TIPS

‘Convert the foﬂowmg bmaly numbers to thelr hexadecnnal equwalents
© (@) 10011111 o (5. 110101, 011001, .
fc) 10100111 111011 (d) 10000001.1101

R




UNIT 2: NumberArlthmetlcandCemputerCades o

Sir“Ctlll‘eofthc Umt T LRI
20 Objectives
21 " Infrodiction
2.3 signedbmaxyimeg@??-__. e s -
24 Computercodes -. -. [
2.4.1 BCD and EBCDIC -
~24.2" ASCII ~
243 UNICODE

2.6 -_ Summary

2.7 _AllSWel‘StO Se}i'leam'mg EXQTGLSGS AL IEIITEIRETIVRE I RPN P PR DR SR LU

2.0 Ob]ectlves

" After poing throught}us anit stodent \mllbeableto A

+ To learn number anthmetlc like addmon, subtractlon lﬂbmary nmnber Systcm o
ke Undefs‘anch%ofﬂoatmgpomtnmnbers ) ST
o' Léarn different computer codes

Unsigned and sngned mtegers
“Am integer 1S a uriibér withi nb fractional part; it can be posmve, négatiVé ot Zero, In ordinary
usage, ofieuses & thinus sign to designate'a negatwe integer. However, -2 computer cai only store

information in bits, which can only have the values zero ot one; We miglit expect therefore, that the

storage of negative integers ina oompMer wightt reguire some- special tﬁchrﬂque
Consider a single digit decimal number: inasingle decimal digit; you can write a: number between
0 and:9; In two. decimal digits, you can write a number: between 0-and 99, and so on. Since nine s
equivalent to 10 1_1,99 is equivalent to 103~ 1, etc., inn decimal digits, you can write a number

between 0 and 107 — 1. Analogously, in the binary number system, -
17



An unsigned integer containing n bits can have a. value between 8 and 27 — | (which js
2 different values) : | | | _

When a computer performs an unsigned integer arithmetic operation, thefe are three pdssible
problems which can oceur :

L. If the result is too large to fit into the number of bits assigned to it, an “overflow” is said to have

occurred. For example if the result of an operation using 16 bit integers is larger than 65,535, an -

overflow results.

2. In the division of two integers, if the result is not itself an integer, a “truncafion’; Is said to have
occurred: 10 divided by 3 is truncated to 3, and the extra 1/3 is lost. This is not a problem, of
course, if the programmer’s intention was to ignore the remainder!

3. Any division by zero is an error, since division by zero is not possible in the context of arithmetic,
Signed Integers :

Signed integers are stored in a computer using 2’s complement. As you recall, when computing

the 2’s complement of a number it was necessary to know how many bits were to be used in the final

result; leading zeroes were appended to the most significant digit in order to make the number the
appropriate length. Since the process of éomputing .the 2’s complement involves first computing the 1%
complement, these leading zeros become leading ones, and the left most bit of a negative number is
therefore always 1. In computers, the left most bit of a signed integer is called the “sign bit”. |
~ Consider an 8 bit signed integer: let us begin with 0 000000 0 » and start counting by repeatedly
adding 1 : | _
When you get to 127, the integef hasavalueof0111111 L, thjé is easy to see because
you know now that a 7 bit integer can contain a \}alue between 0 and 27 - 1, or 127. What happens
when we add 1? _ _ '
* If the integer were unsigned, the next value wouldbe 10000 0 0 0,, or 128 (27). But since
this is a signed integer, 1000000 0, is a negative value: the sign bit is 1t '_ S
* Since this is the case, we must ask the question: what is the decimal value corresponding to the
signed integer 1 00000 0 0, ? To answer this question, we must take the 2’s complement of

that value, by first taking the 1% complement and then adding one,

® The 1’s complementis0 11111} 1,, ordecimal 127. Since we must now add 1 to tha,t, our

conclusion is that the signed integer 1 00000 0 0, must be equivalent to decimal -128!
0dd as this may seem, it is in fact the only consistent way to interpret 2’s éomplemeﬁt signed
integers. Let us continue now to “count” by adding 110 10.000000,:
*10000000,+00000001,is10000001,. |
18




o To find the decimal equivﬁlent of10000001,,we again take the Vg complement: the s |
complement is 0 1 11111 Ozandagiding._‘l weget011111 11,(127)s0 10000001,
is equivalent 0 -127. ' '

« We see then that once We nave accepted the fact that 10000000, is decimal -- 128,
counting by adding one works as we would expect.

e Note that the most negative number W ich we can store in an 8 bit signed integer is 128, which
is — 281, and that the largest posiiive signed infeger we can store in an 8 bit signed integer is
127, which is 251 - 1.

o The number of integers between — 128 and + 127 (inclusive) is 256, which is 2% ; thisisthe
same nuraber of values which an unsigned 8 bit integer can contain (from 0 to 253)-

« Eventually we will count all the way up‘ t011111111,The 1’s complement of this numbet
is obviously 0, so 1 111111, mustbethe decimal equivalent of-- 1. E
Using our deliberations on 8 bit signed integers as a guide, we come tothe following observations
about signed integer arithmetic in general :

« If a signed integer has 1 bits, it can contain a nuniber between = An-lgpd + (271 - 13

o ince both signed and unsigned integers of 1 bits in length can represent 2" different values,
there is no inherent way {0 distinguish signed integers from unsigned integers simply by looking
at them; the software designer is responsible for using ther correctly. - :

o No matter what the length, if a signed integer has a binary value of all 17s, it is equal 10
decimal - 1. -
You should verify that a'signed short integer can hold decimal values from -32.,768 to+ 32,767,

a signed long integer can contain values from — 2,147,483,648 o+ 2,147 483,647 and a signed double
integer can represent decin®l values from | | '.
--9,223,372,036, 854,775,808 to + 9,223,372,036,854,775,807.

vt e T

52 Binary arithmetic

s

As in decimal number systenﬁ, binary arithmetic involves mainky four operations like Addition,
Subtraction, Multiplication and Division. The operéﬁons of each are described below ©

(A) Addition :

“To perform addition on binary numbers following rules may be applied :

0+0=0
0-+1=1
1+0=1

14+1=10 or 0 with carry over 1.
19 '



Example :
| Camies | 10000
oF10001  +17

L +H0 46 -

Example: =~ S L |

(B)Subtractlon SRS L it e S B
To pelfonn subtractlon on bmary numbers followmg rules maybcapplled"i' R

-0 = 1

Simple subtraction :
Example :

Example :

- 1010 - 10

11 15

20




Subtraction of Binary number by 2’s comphment method :

:_ 1 $ eomphment of a bmaly number is obtamed by ﬁjppm.g the easch dlglt 1 . makmg

and all l;e:tQO S. E_ CEREE

| 278 compliiﬂem mL a bmary numbe1 is obtamed by addmg 1 to its I’s eomphment

W‘mle performing subtxaction on bmary numbers followmg steps may | be followed

. Both the numbers should be ef the saime sxze If not then make both the numbers of the same_

:_ 3126 by a.ddmg leading zeros.

. (,omphment the number to be subtracted by ﬂ1pp1ng the each d1g1t Le. changmg 1 s o0 0 s and _

0 sto 1’s. The oomphment of 1001 is 0110

. Pe1fom1 bmary addmon as above ie. Adcl the ﬁrst number to the result obtamed in the above |

step.

o Tt the result of the addmon is increased by one digit means there is a carry of 1, then remove this

(ignote the left most digit) and add to the ﬁnal result.

o If the: size.of the result'is not increased (equal 10 the ongmal sme), then re-comphment the answer

and attach a negative (-) sign in front of the ntimber. -

Example :

L1010

Stop 1 1 (Make the number of samesize) .

11001 |

all 0’sio 1’s.

I’s compliment S b el

" s compliment

Step 3 | (Add the first number to the result obtained "m"sft’eps;;é_)f R

14001 |-
+10110 |

Step 4 : (Size is more the original size, hence ignore the left most digit)

—

101111

21



Example :

1101 13
=10101 ' =21 _
Step 1 : (Make the number of same size) 01101
— 10101
| _
Step 2 : (Take 2’s compliment of second number)  1's compliment 01010
2’s compliment +1
| | 01011
Step 3 : (Add the first number to the result obtained in step-2) : 01101
' +01011
11000
Step 4 : (Size is equal to the original size, hence ro- compllment the - 00111
result and attach a-ve sign '
1
-1000

(C) Multiplication :
The multiplication of binary numbers follows the same convention as of decnnal number system
The result may be obtained by sequence of addmons and shifts,

Example :

1101 13
x101 X3
1101 65
1101xx
1000001 -

(D) Division :
The division in binary number system is also same as of in decimal number system. It may be
perfonnecl as sequence of subtraction and shifts. o
Example : 11100 divided by 100 (28 + 4) _
i1 Quotient
100V 11100 -
100

T 0110

100
0100
100 :

000 _ Remainder
Therefore answer is 111 - '
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2.3 Signed binary integers

It was noted prewously that we will not be using a minus sign (-) to represent negative nurnbers.

We would like to represent our binary numbers with only two symbols, 0 and 1. There are a few ways
to represent negative binary numbers. The simplest of these methods is called ones complement, where
the sign of a binary number is changed by simply toggling each bit (0’s become 1’s and vice-versa). This
has some difficulties, among them the fact that zero can be represented in two different ways (for an
eight bit number these would be 0000 0000 and 1111 1111)., we will use a. method called two’s
oomplement notation which avoids the pitfalls of one’s complement, but which is a bit more complicated.

To represent an n bit signed binary number the- leftmost bit, has a special significance. The

= difference between a signed and an unsigned number is given in the table below for an 8 bit number.

The value of bits in signed and unsigned binary numbers _ —| '
Bit 7 "Bt |Bits |Bit4 |Bit3 | Bit2 |Bitl |Bit0
Unsigned | 27=128 Foer |2=32 | 2=16 |2°=8 |2=4 |2'=2 |2'=1
Signed | - (@2)=-128 |2°=64 |2°=32 Y=16 |2=8 |2=4 [2'=2 [2°=1

Now see the changes of the value of some binary numbers :

Binary Unsigned _ Signed

0010 0011 B 35 35
1010 0011 163 L =93
1111 1111 | 255 -1
1000 0000 128 - -128

If Bit 7 is not set (as in the first example) the representanon of signed and un51gned numbers is.
the same. However, when Bit 71 is set, the number is atways negative. For this reason Bit 7 is sometimes
called the sign bit. Slgned numbers are added in the same way as unsigned numbers, the only d1ﬂ°erence '
is in the way they are mterprcted This is important for de51gncrs of arithmetic cmcmtry because it means
that numbers can be added by the same circuitry regardless of whether or not they are s1gned

To form a two’ s complement number that is negative you simply t take the oorrespondmg positive
| numbey, invert all the bits, and add 1. The examplé below illustrated this by forming the number negative

35asatwo’s complement integer :
| 35,5 = 0010 0011,
invert— > 1101 1100,
add1—>1101 11012 S , .
. So 1101 1101 is our two’s complement repmsentatlon of - 35. We caﬁ check this by adding up
'_ thc conm"bui:lons from the individual bits. | '
1101 11012——128 +64+0+ 16+ 8 +4+0+ 1 ~-—35

23




The same procedure (invert and add 1) is used to convert the negatlve number to 1ts posrtwe :
equalent If we want to knowwhat ‘what number is represented by 1Hir 1101 we apply the pnooedure
- - 9 - 1111 11.012'-_ IS A

- dnvert=>0000 0010,
add 1300000011, ¢ |

Slnce 0000 0011 represents the numberB we know that 1111 1]01 represents the :iitoﬁberi?' 3

2.4 Computer codes

- ‘Numgric data is not the only foimm of data handled by a computer, We often require to process

alphanumeric data also. Ax alp’hamunenc data isa strmg of symbols; where a symbol may be one of the' =

letters 4, B, C .. Z, or one of'the dlglts 0 1 2,850.9-0r ‘special character; such as +, -5 Qete. .
Alphabetlc data eonsmts of only the:letters ziid blank spaoes and 1 numerlc data consists only the digits.
A compuler aocepts data and 1nstructlons in machme language (0 s and s form) Data must be .
nepresented mtemally by the bits 0 and 1."The. bmary codrng schemes ateused to represent data mtema]jy
in the computer memory. In binary coding, every symbol of text data is represented by a-group of bits.
The group of bits used to represent a symbol is ca]led a byte Modern computers use, 8 bltS to represents
a symbol. I : . : T
The most popular text code systems are :
¢ BCDand EBCDIC

e ASCH -
¢ UNICODE |
’GI’aYCode g

“BCD: The BCD stands for blﬂ‘df)’ coded deciinal The BCD eode system is e e of the early'E
code systems. It was defined by IBM for its-eatly comiputer Tt was oné of the Tirst code systems to”

represents data in binary form. This code System consisted of 6= bt code to represent a smgle character e

and maximum 64 (26) characters can be represented inside the computer,” -
<To-encode a decimal number using the conimon BCH encoding, each decimal 'digit is storéd ina”
4-bit nibbie : _ R
Decimal : 0 1 2 3 4 506 70 7 8 9
BCD: 0000 0001 0010 0011 0100 :0101.-0110- 0111 1000 1001
Thus, the BCD encoding for the number 127 would be ;..
. - 000100100111 T T _
:We have used a group of Tour bits to represent a digit (character) 1n BCL, 4-bits BCD codmg .
system can be used to represent only decimal numbers because four bits are insufficient to represent the
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various charaéters used by a computer. Hence, instead of using fout bits with only 16 possible characters,
computer designers commonly use sﬁx bits to represent characters in BCD. In 6-bit BCD code, the four
BCD numeric place positionare retained but two additional zone positions are addedd. With six bits, it is
possible to represent 64 different characters Thls is sugﬁicnent to code the decimal digits (10), alphabetic
letters (26), and other special charaoters (28) - '

The followmg table 111ustratcs the oodmg of alphabetlc and numrelc characters in BCD

BCD Code . Octal Ny
Character | Zonc | Digit Fquwalent
i :11 R 000:1?5'-_:!._ ; "61 .

11 1 0010/ 62"
T T R
11 0101 |~ 65 |t i
SV U ST S 1) B L SO P 66, | e
11 ot ) 67 -
DTS [ R 001] [T ST ISR
70 L0100 | A4 e
10 . 010 45
R T DA SRR 46 1o T
RarE LIPS SERTAY2 35 SREw I O o ST T IE| [N TREE IR ISR SR
10 | 1000 | 50 o
; I - 'o'«IO- N 11'001 FLACEEN P 51‘ Eapaee: L B S
Lo O 90105 = RETR s T FEPS R
01 0100 24 o '
0L ) 0101 25 ¢
”ﬂ'.Ql Wf.. 0110_?_ l”m_zﬁﬁ@
Rl | el VAT
ci0l o | 1000 530

N4&?3:@@@o@dzg@ﬁmgﬁd@muowg

700 | 70600 - [ - 00
00 7 50001 101
-ileO- ;';ZLOOIOJTIHHITOQ %
NS "1_'_"".0011 03
: 00 0110 1 - 06

A0 | 0ill o | 07
00 0| 1000 : 10

_OOM.T_...100151.. .Tll_d

\pooqq\m.p.wm-—uc:_
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Ex. Write the Binary digits used to record the word COMPUTER in BCD.
Sol. In BCD binary notation

C = 110011 - U=010100
O =100110 - T=010101
M = 100100 E = 110101

P =100111 R = 101001
Hence, the binary digits |
110011 100110 100100 100111 010100 010101 110101 101001

C 0 M P U T E R
Will record the word COMPUTER in BCD.
EBCDIC : '

EBCDIC stands for Extended Binary Coded Decimal Interchange Code.

In BCD, 6-bit code only 64 characters can be represented. Hence, the BCD code was extended
from a.6-bit code to 8-bit code and new code system is named as EBCDIC. In this code system, it is
possible to represent 256 (2) different characters. EBCDIC code system isdeveloped by IBM, still
used in IBM mainframe and midrange systern, but it is rarely used in personal computers.

Since EBCDIC is an 8-bit code, it can be esily divided into two 4-bits groups. Each of these

—blt groups can be represented by one hexadecimal digit. Hence hexadecimal number system is used 5
as shotcut notation for memory dump by computers that use EBCDIC for u_lj;g:gg!ﬁg@_g{gggptatlon of
characters. This results in a one-to-four reduction in volume of TH&HT L - ‘v h o

The following table shows the alphabetic and numeric characters in EBCDIC along with thelr

hexadecimal equivalent : :

EBCDIC Code = | Hexadecimal

Character | Zone Digit Equivalent
A 1100 0001 c1
B 1100 0010 C2
C 1100 0011 | 3
D 1100 0100 4
E 1100 0101 cs
F 1100 | 0110 - Cé
G 1100 | 0111 C7
H 1100 | 1000 C8
1 1100 1001 C9
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~ " EBCDIC Code Hexadecimal |
Character | - Zone - | Digit - Equivalent
T 1101 0001 Dl
K 1101 pot10 | D2
L ‘1101 | 0011 D3
M 1101 | 0100 D4
N 1101 | 0101 D5
0 1101 0110 D6
P 1101 o111 | = D7
Q 1101 1000 - D§
R 1101 11001 D9
s 1110 0010 B2
T 1110 0011 E3
U 1110 0100 | E4 -
\ 1110 | o101 ES
w 1110 0110 E6
X 110 ot - E7
Y 1110 ~.§ - 1000 ES
A 1110 1001 E9
0 _o1 0000 | FO
1 1 0001, F1
2 1111 0010 F2
3 1111 |- ool F3
4 1111 o100 | . F4
5 1111 0101 |  F4
6 1. | om0 | F6
1 11 0111 F7
8 e | 1000 F§
9 | o | ot | F9
Ex, Represent *QHORT" in EBCDIC code.
“Sol. By table we have : - o g
7 11100010 1100 1000 11010110 1101 1001 11100011
s = .H o R T
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24.2 ASCH:-
The Amencan Standald Code for Infonnaﬂon Interchange isa standard seven-bit code that was
proposed by ANSI in 1963, and ﬁnahzed 1n 1968 Othel sources also credit much of the work on ASCII
to work done in 1965 ASCH was establlshed to achieve compatlbxhty between various types of data
processing equrpment S SR : :
ASCII, pronounoed “ask-key ‘is the common code for m1crocomputer equipment. The standard
ASCII character ; set consists of 128 deelma] numbers ranglng ﬁom 2810 through 127 assigned to letters,
numbers, punctuatlon miarks, and the most ‘common speelal characters The Extended ASCII Character
Set also consists of 128 decrmal numbers and | ranges ﬁom 128 through 255 represenhng additional special,
mathematical, graphlc and forelgn characters. = o L C
~ ASCllis of two’ type : ASCII 7 and AbCI] 8 ASCII 7 isa 7 blt code that can represent 128
(27) different characters Computers using 8- b1t byte (group of 8 blts for 1 byte) and the 7-bit ASCII
either se the 8th bit (leftmost bit) of ¢ach byte as Zerb Of use 1t as a parity blt
ASCII-8 is an extended versmn of ASCII—'}’ 1ti is a.n 8- b1t code that can represent 256 (28)
different characters. The' addltlonal bitiig added to the left of the 7th bit (Ieﬂ:most bit) of ASCII-7 codes.
| ASCIY (Declmal) ki Character | ___ASCII 7 (Hexa Decimal) ASCII-8
65 A | 100001 | a1 0100 0001
6 '  B__ | 100 0010____._._ A2 0100 0010
67° ... ¢ T _te00011. | " 43 0100 0011
68 .| .p | 1o00100 | . 4 0100 0100 °
69 b B Lg000101 | 45 0100 0101
70 G . 1000111 ...... 47 0100 0111
o CUH ’_:_;;;. 100 1000 s 0100 1000
73 I . ____1500 1;:0":0;1; e 49 1 0100 1001
” ST J - 15_00_1'010_.._... T “AA 0100 1010
K
L
M
N
O
P
Q
R

S S R TR e oT00 1o
I ._,.f"1001100;'”"""5"" T 0100 1100
R R SR TT oo
R R I O T T iy e

» T o |t % o

80 101 0000 0 s s Q101 0000
CgL 101000 | 5] 0101 0001
e 1006010 | © 5 0101 0010
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F'%Eflﬁié;man Character | ASCIL7 | (Hexa Dec;mal) AsCns |
T s S 101 0011 53 01010011
T T i 1 se | 0101 0100
85 U 101 0101 55 mﬁi?ﬁﬁf{i """" |
86 v 1010110 T T 0100 0110 |
87 W 101 0111 57"”"'#"&"6“1‘5]“6”1_ o

B 88 X 101 1000 58 T o101 1000
RS Y Tlor 1 s | 0101 1001
90 [z i | T o010 |
07 a ool 1 e 0110 0001 |
100 d 1100100 | T T 01100100 |
! 101 e ol T e wii'iiaii_i&“ﬂ
T Ty 110 0110 s Wﬁﬁﬁmﬁi‘iﬁh—l
BT Ty 1 oo o T oot \
104 T iioi00 | 68 i 01101609___:l
105 i 110 1061 69 0110 1001 |
w06 | i 110 1010 6A 0110 1010
107 K 110 1011 @ [Tenorwon |

108 | 110 1100 e 1 ono1100 |

109 m 110 1101 6D “oL0 1101 |

110 n 110 1110 6E Fﬁh#ﬁi‘iﬁ'ﬁﬁ
1i 0 1101111 6F 0110 1111

12 111 0000 70 0111 0000
13 111 0001 7 o111 0001 |

114 r 111 0010 72 0111 0010
s s 1110011, 7 o111 0011 |
116 t 111 0100 74 0111 0100 4

117 T 111 0101 75 0111 0101
| 118 v 111 0110 76 ottt oo
19 w 1110111 7 | ontont |
120 X 111 1000 78 ﬂwwoﬂiﬁ'ﬁﬁéj

121 Ty 111 1001 79 0111 1001
122 z 111 1010 TA 0111 1010 |
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ASCH (Decimai) | Character | ASCILS (Hexs Decimal) | ASCILS
8 0 011 0000 30 - 0011 0000
49 1 011 0001 31 0011 0001
50 2 011 0010 32 0011 0010
51 3 011 0011 33 - 0011 0011
52 4 011 0100 34 0011 0100
53 5 011 0101 35 0011 0101
54 6 011 0110 36 0011 0110
55 7 0110111 37 0011 0111
56 8 011 1000 38 0011 1000 -
I 57 9 011 1001 39 0011 1001

Ex. Write the ASCII-7 coding for the word “BOY" in both binary and hexadecimal
notations. How many bytes are required to store thrs word using this codlngF’ |
| Sol. In ASCII-7

B =100 0010 in binary and 42 in hexadecimal
O =100 1111 in binary and 4F in hexadecimal
Y =101 1001 in binary and 59 in hexadecimal

Hence, the ASCII-7 coding for the word “BCY” will be -

| 1000010 100 1111 101 1001
in binary B o Y
| 4 4F 59
B 0 Y

Since each character in ASCIL-7 1 require one byte for its representation and thene are four character
in the word “BOY™, three bytes wﬂl be required to store this word using this codmg
Ex. Write the ASCU-8 coding for the word “John” in both binary and hexadec tmal
notations. How many bytes are required to store this word usmg this coding ? - |
Sol. In ASCII-§
J= 0100 1010 in binary and 4A in hexadecnnal
0 =0110 1110 in binary and 6F1nhexadecunal
h =0110 1000 in bmaryand 68 in hexadecunal
n=01101110in bmaxy and 6E in hexadecnnal
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Hence, the ASCII-8 coding for'the word *“John” will be

0100 1010 01101110 0110 1000 01101110
in binary J o - . h n
4A 6F ' 68 6F
\J 0 h | n

Since each character in ASCII-8 require one byte for its representation and there are four
chiaracter in the word “BOY?, four bytes will be required to store this word using this coding.

2.43 UNICODE: ’

Unicode provides a unique number for every character,

no matter what the platform,
no matter what the program,
no matter what the language.

Fundamentally, computers just deal with mumbers. They stote letters and other characters by
assigning 2 number for each one. Before Unicode was invented, there wer hundreds of different encoding
systems for assigning these numbers. No single encoding could contain enough characters: for gxample,
the Buropean Union alone requires several different «ncodings to cover all its languages. Fven for a single
language like English no single encoding was adequate for all the letters, pw_i&uation, and technical symbols |
in common use. _

These encoding systems also conflict with one another. That .is, two encodings can use the same
number for two different characters, or use different numbers for the same character. Any given computer
(especially servers) needs to support many different encodings; yet whenever data is passed between
different encodings or platforms, that daia always runs the risk of corruption:

Unicode is changing all that! |

Unicode provides a unique number for every character, no matter what the platiorm, no matter
what the program, no matter what the language. The Unicode Standard has been adopted by such industry
leaders as Apple, HP, IBM, JustSystems, Microsoft, Oracle, SAP, Sun, Sybase, Unisys and many others.
Unicode is required by modern standards such as XML, Java, ECMAScript (JavaScript), LDAP,
CORBA 3.0, WML, etc and is the official way to implement ISO/IEC 10646, Tt is supported in many
operating systems, all modern browsers, and many other products. The emergence of the Unicode |
Standard, and the aﬁailability of tools supporting it, are among the most sigrﬁﬁcant recent global software
technology trends. |

Incorporating Unicode into client-server or multl-txered apphcatlons and websites offers s1gmﬁcant

‘cost savings over the use of legacy character sets. Unicode enables a single software product or a single
website to be targeted across multiple platforms, languages and countries withoui re-enginecring, It allows -
* data to be transported through many different systems without comlptidn. - |
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Umcode Features :
Today, Unicode is intemnationally accepted as a universal character—enoodmg standard because:-

* It provides a consistent way of encoding multilingual plain text. This enables data transfer through -
different systems withot the risk of corruptlon '

o It defines codes for character used in all major languages of the world ussd for written
communication. _ _

* It also defines codes for special characters (such as various types of punctuation marks),
mathematical symblos, technical symblos, and diacritics are modifying character marks such _
astitdle, |

o Tthasthe capacity to encode asmany as a million chalsctcrs.

e [tassign each charactei‘ a unique numeric value and name keeping character coding sirple

 and efficient. | '

. it: reserves a part of the code space for prlvate use to enable users to ass1gn codes for their
own characters and symbols. :

e Ttspecifies an algorithm for presentatlon of text with bl-dmectlonal behawor

* It affords simplicity and consistency of ASCII. Unicode characters that conrespond to the

familiar ASCII character set have the same bypte values as that of ASCIL |

2.5  Floating point representation

The floating-point representatioﬁ_of a number needs two patts. Tﬁe first part repr_esénts a signed,
fixed-point number called the mantissa. The second part designates the position of the decimal (or binary)
point is called the exponent. The fixed point mantissa may be'a_ﬁ'aéﬁon or an integer. For example, the
‘decimal umber + 6132.789 is represented in floating point as fdl_lows : '

© Sign - Sign
0 6132789 1 0 o4
mantissa ; exponent

The mantissa has a 0 in the leftmost position to denote a plus. The mantissa here is considéred
fobea ﬁxed—pomt fraction, so the decimal point is assumed to be at the leﬁ of the most significant dxglt
The decimal mantissa, when stored in a register, requires at least 29 ﬂlp-ﬂops Thls representation is
eqmvalent to the number expressed as a ftactlon times 10 to an exponent, that is + 61 32780 x 1094,
because of this analogy; the mantissa is somctlmes called the fraction part. |

" Floating pomt is always interpreted to represent a numbser in the folIowmg form
mx re '
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_ ~ Only the mantissa m and the exponent € are physically represented in the register (including their

signs). The radix r and the radix-point position of the mantissa are always assumed. Arithimetic operations
with floating-point numbers are MOre complicated than arithmetic operations with fixed- -point numbers
and theit execution takes longer and requires more complex hardware. However, floating pomt

representation is must for scientific computations.

Self-learning exercise-1

1. 1’s compliment of the number 1011001 is :

(@ 0100110 (B 1100110 |

(¢ 0110010 -~ (d 0110011 ' | A
2. EBCDIC code expresses any character in bow many binaty digits : | |

(a) 2 : (b) 4 _

© 8 - @ 16 N oy
3. (11011),+(10011), is equal 10+ | - | -

(@ @5) | ®) @6}

© @) @ (49 []
4. (1000), - (111), is equal to: |

(@ 1101, | (B) 10001, | |

(c) 10111, | (d) None of these ' [ 1
5. If a number written in floating point notation is .6132784E + 4, then its mantlssa and exponent

are respectively : | _ _ '

(@ +4,.613284 | . (b) 6.1327884,+5

(©) 6132784, +4 (@ +5,6.132784 11
6. Tn ASCII, the symbols II stands for :
(@) Tnformation interchange {b) Interchange information |

(c) International information (@ Intemational intorchange | []
7. The decimal number 12 in natural BCD code can be written as .

(@ 001010 | (b) 1100

() 00010010 ' (d) None of these o | _ {1
8. The BCD code is also known as :

(@) 8420 code (b) 8421 code

(©) 3422 code (@) 8423 code N
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2.6  Summary

An integer is a number with no fractional part; it can be positive, negative or zero. In ordinary
usage, one uses a minus sign to designate a negative integer. However, a computer can only store
information in bits, which can only have the valﬁes zero or one. An unsigned integer containing 7 bits can
have a value between 0 and 22— 1 (which is 2 n different values). Signed integets are stored in a computer
using 2’s oomplemenﬁ In computers, the left most bit of a signed integer is called the “sign hit”,

The BCD code system is one of the early code systems. It was one of the first céde systems to
represents data in binaty form, This code system consisted of 6- bit code to represent a single character
and maximum 64 (26) characters can be represented inside the computer.

EBCDIC stands for Extended Binary Céded Decimal Interchange Code. In BCD, 6-bit code
only 64 characters can be represented. Hénce, the BCD code was extended from a 6-bit code to 8-bit '_
code and new code system is named as EBCDIC. In this code system, it is possible to represent 256
(2) different characters. EBCDIC code system isdeveloped by IBM, still used in IBM mainframe and
midrange system, but it is rarely used in personal computers. o | o

¢ The American Standard Code for Information Interchange is a standard seven-bit code that was
proposed by ANSI in 1963, and finalized in 1968, ASCI, pronounced “ask-key”, is the'common code
for microcomputer equipment. The standard ASCII character set consists of 128 decimal numbers ranging
from zero through 127 assigned to letters, numbers, punctuation marks, and the most common special
characters, The Extended ASCII Character Set also consists of 128 decimal numbers and ranges from
128 through 255 repméenting additional special, mathematical, graphic, and foreign characters. ASCI
is of two type- ASCII -7 and ASCIL-8. ' | '

Unicode provideé a unique number for every character, no matter what the platform, no matter
what the program, no matter what the'language: The Unicode Standard has been adopted by such industry
ieadels as Apple, HP, IBM, JustSystems, Micfosoﬂ, Oiacle, .SAP,,Sun, Sybase, Unisys and many others.

. Unicode is required by modem standards s_ilch as XML, Java, ECMAScript (JavaScript), LDAP,
CORBA 3.0, WML, etc., and is the official way to implement ISO/IEC 10646, It is supported in many
operating systems, all modern browsers, and many other products. | ' -

The floating-point representation of a number needs two parts. The ﬁrst part represents a signed,
fixed-point number called the manfissa, The second part d&elgnates the position of the decimal (or bin_aljr)
| point is called the exponent. The fixed point mantissa may be a fraction or an integer.

Further Readings : :

1. Computer Fundamentals, PK. Sinha, BPB publiéation,_ _

2. Compuiter System Arcitecture, M. Morris Mano, PHI.

3. Digital Principles and applications, Malvino,Leach, TMH..
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2.7

Answers to self-learning exercises

Self-learning exercise-1

1. a 2.¢c 3.5
5 ¢ - 6.a 7. ¢

4, d-

8. b

2.8

Exercises

TR T RN S R

What does ASCI stand for ?

. What are computer codes? Explain.

. What is mantissa 7

Explain 2’s compliment method in detail.

. What are signed and unsigned integers ?
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Unit3 :  Sets and Algebra of Sets

Structure of the Unit
3.0 Objectives
3.1 Introduction
3.2 Sets, their representation and notations
3.3 Owdered pair and Cartesian product of sets
34 Seis opemtions.

3.4.1 Union of sets |

3.4.2  Intersection of sets

343 Différence of sets

344  Symmetric difference of sets
3.5 Venn-diagrams

3.5.1 Set operations in Ven-diagrams
3.6 Laws of algebra of sets

3.6.1 Idempotent laws

3.6.2  Associative laws

3.6.3  Distributive laws

3.6.4  Commuiative laws

_ 3.6.5  De-Morgan laws

3.7  Summary | |
3.8 Answersto self-learning exercises

3.9 Exercises

3.0 Objectives

After reading this unit you will be able to
* Understand the notion of set.
* Learn various ways of sets representations
* Learn different set theoretic operations.
* Learn laws of algebra of sets.
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3.1 Introduction

The concept of set is founding stone in the development of field of “Pure Mathematics”. Pure
Mathematics is a discipline of notions which give rise to systems amenable to mathematical treatmeit. In
fact, set theory is the basis of algebra. The central aim of this unit is to present basic essentials of the set

theory.

3.2  Sets, their representation and notations

A set is well defined collection of objects. Here “well defined objects” means that the objects
are definite and distinguishable. The objects are called the elements or members of the set. Capital
letters 4, B, C.... and lower case letters g, b, ¢, .... are used respectively to denote sets and elements of
sets. A set may be of numbers, alphabets,' or anything else as defined. The elements of a set are written
in brace { }, however the order of elements in a set does not matter. The elements in a set are listed

with a comma (,) sign betweern them. For example

A=4%abcd
B =1{1,3,5}
c =15731)

. D = {Rajesh, Naresh, Haresh} _

Here, B and C represent the same set. A set may have finite or infinite number of elements. A set
with finite number of elements is called finite set. A set that contains infinite number of elements is
called infinite set. Since all the elements of an infinite set cannot be listed therefore some of the clements
are listed followed by a dotted line that indicates that the rest of elements are of the same fashion e.g.
E=13,57,9 .} There are two basic ways 10 write a set

() Roster form : The examples of sets given above ar¢ in roster form. In this form, a set is
specified by listing all its elements. o

(i) Set builder form : In this form, a set is speciﬁed by mentioning' properties that define the
 elements of the set as follows

: _ A={x| P )}

This means that 4 is set of those x which follow property P (x). Here the symbol “[” denote
“such that”. Set builder form is useful when a set cannot be represented in roster form: For example, if
we consider the set of those real numbers which are greater than 1 and less than 0, then it is conve-
nienﬂy represented as

- | A= {x|xisareal number and 1 <x <0}
,‘Jt.l. Specify the set A = {1,2,3,4} inset builder form.
Sol. A= {x | x is positive integer and 1 €x <4}
Sets can also be represented pictorially by Venn-diagrams. This will be illustrated after explain-

ing some basic concepts.
We, now list some sets of numbers and their notations.
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1. Setofintegers
Z = {x|xis an integer)
={e—4,-3,-2,-1,0,1,2,3, 4 veeivenn )
2. Set of real numbers
R = {x}xis areal number}
= (<0, )
3. Setof natural numbers
N = {x|xis a natural number}
={1,2,3,....}
4. Setofwhole numbers
W = {x|xisawhole number }
={0,1,2,3 ...}
3. Setof rational numbers
QO ={x|x=plg, pand q are integers and ¢ = 0}.
6. Set of complex numbers. | ,
C ={x|x=a+ib,aand b are real numbers and 2 = - 1
Cardinality of a set : The number of elements present in a finite set A is called cardinality of
the set A and is denoted as # (Ayor|A4]
The cardinality is a basis of principle of inclusion-exclusion,
Equivalént sets : Two sets 4 and B are said to be equivalent if there is one-one correspon-
dence between them. It is represented as 4 ~ B. For example,

-A={a;brerd e} B= oz sy are equivalent.

Equal sets : Two sets A and B are said to be equal and denoted as 4 = B if they have identical
clementse.g 4= {3,2 1, 4}:8={1,2,3,4} are equal sets. Here every element of 4 is in B and vice
versa, '
Null set : A set that contains no element is called null set or void set or empty set. It is denoted
. by ¢. | |
| Singleton set : A set that contains a single element is called a singleton set.

Sub sets : A set may have a set within itself. For example the set B = {2,4, 8,10} is present in
the setd={1,2,4,8,1 0, 12, 14}. This leads to idea of subset. We define, it every element of a set A4
is also an element of the set B, then 4 is called subset of B and itis denoted as 4 B, Here the symbol
"< stands for “is subset of”, 4 set may have many subsets. From the definition of subset it is obviousto .
conclude that every set is subset of itself, Similarly, a null set is considered as subset of all sets. There
are two types of subsets : proper subsets and improper subsets. If 4 is subset of B j ¢, A < Bbut
A= B, then A is called proper subset of B and is denoted as 4 — B. If a subset is nb,t propér thenitisa _

improper subset, -

38




Ex.2. Is N a proper subset of Z?
Sol. N={1,2,3 ...} |
Z={0,£1,+£2,£3, ...}

Obviously N= Zand N Z

= NcZ

Hence N is proper subset of Z,

 Power set : Power set of 4, denoted as P (4) is the set of all possible subsets of the set 4.

Thus, power set of A =P (4) = {X| X < 4}. For example, let 4 = {a, b}. Then power set of 4 is
P(A)y={0, {a}. {b}, {a b}}. .

Note that if the cardina]ity. of the set A is n then cardinality of its power set P(d)1s27

Universal set : In set theory, the universal set is largest fixed set such that all the sets under

study are subsets of it. For example, in student population studies the set of all students of the world

constitute a universal set. Similarly for any set of natural numbers the set of real numbers R will be a
universal set. Universal set is denoted by U. _
Complement of a set : Let 4 be aset and Ube a universal set. Then complement of 4,
denoted by A4 ‘or AC is the set that contains elements of U but no element of 4. Symbolically
' A’={x|xeUxgeAd}. -
Disjoint sets : Two set 4 and B are called disjoint sets ifnota singie element is common to

both 4 and B, e.g. sets A = {1,2,3, 4} ; B= {5,6,7, 8} are disjoint sets.
Self-learning exercise-1

1. Which ofthe folloﬁving isnotaset:
(@ A=[1,2] - , (b) B=1{1,2,3}
(c) C=ix|x=1} (d} None of these

2. Write the set 4 = {2, 4, 6 ....} in the set builder form.

x 3. Write the following set in roster form :
(i) Set of natural numbers multiple of 3 and less than 19 .
(ii) Set of squares of integers less than 26.
4, Isd= {x|3;:+ 1=2and3x+1=2}anull set?
5. IfU=1{1,2,3,4,5,6)} and A = {1,2}. Then write A"
6. Let A4 {x|x e N, 1 < x<7}. List all the elements of the set A4.
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IHustrative examples

Ex.1. List the elements of the following set

HA={x|xeN,0<x<5}

(i) B={x{xeN,7T+x=14)

Sol. (i) We know that N stands for set of natural numbers i.¢. N = {1,2,3 ..}. Ais set of
those natural numbers which satisfy the criterion 0 <x < 5. The natural numbers following the rule
O<x<S5arel,2,3,4.

Hence the set 4 = {1,2, 3, 4}.

(i) B is set of those natural numbers x such that

| T+x=14=x=7.

Thus B = {7} is a singleton set.

Ex.2. Show that A = {1, 2} is not a subset of B= {1, 4, 5, 6}.

Sol. We know that 4 is subset of Bif 4 ¢ B. In order to show that A is not a subset of B it is
sufficient to show that there is alleast one element of 4 that does not belong toB. Weseethat2 € 4is
not an element of B. Hence 4 & B.

Ex.3. Insert the correct symbols — or & between A, B, C where

4=1{1,2,3},B={1,2,3,4},C= {12345}

Sol,AcBcC.

Ex.4. Insert the correct symbol < or ¢ between A B, C Dwhere A ={1},B= {1, 2,3},
C={1,2,3,4},D={3,2,1).

Sel. 4 © B < C. Note that B and D are the same set as they hove some elements. Therefore,
B=Dhence B ¢ DorD ¢ B. |

Ex.5. Show that 4= {1,2,3, 4} is not a subset of Z = {x | x is an even integer).

Sol. Given that Z={0,+2,+4,£6....} 4isnota subset of Z because 1 and 3 don’t belong
to Z.

3.3 Ordered pair and Cartesian product of sets

An ordered pair is a pair of objects wherein the objects follow certain relatlonshlp and
accordingly constitute an ordered pair. An ordered pair is denoted as (a, b) where a is called the first
component and b is called the second component Obviously (a, b) # (b, a) in general. Note that
(@, b)=(b, a)ifand only if 4= b. To illustrate, let us cons1der the following information about persons
and the cities they come from is given as : _ '
Ramesh Jaipur

Suresh Delhi
Then this information can be presented in ordered pairs like (Ramesh, Jaipur), (Suresﬁ, Delhi).
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The concept of an ordered pair paves the way for the notion of Cartesian product of sets.
Let A and B be two non-empty sets. Then Cartesian product of 4 and B, denoted by 4 x B, is
defined as '
AxB={(a b)lacd,be B}
Note that AxB#BxA, in general.
Similarly, product of nsets A, Ay .. 4, s defined as _
Ay x Ay x Az . x A, ={ayp, ap walay €410 eAz, a, € 4,)

Here {a;, 0y, - a,)is called n-tuple of elements @y, &5, @ .- &

3.4  Sets operations

There are some operations defined in the theory of sets. When two or more sets undergo with
these operations they yield new sets. These operattons are of immense significance in corubinatorics.

| 3.4.% Union of sets :

The union of two sets 4 and B is the set of all elements which belong to 4 orto B. ‘Then union of
Aand Bis de_no_ted as A B and is read as “4 union B”. '

Thus, A W B= {xllx c Aorx e B} |

For example, let 4 = {1,2,3}, B= {1, 4,5}

Then4 v B={1,2,3,4,5}

3.4.2 Intersection of sets: _

The intersection of two sets 4 and Bis the set of all elements ﬁhicl1 belong to both 4 and B. The
intersectibn of A and Bis denoted by A n B and is read as “A intersecﬁ.on B”.

Thus,A AB={x|xedandx € B}

Thus, we observe that A N B is the set of those elements which are cornmon in A4 and B.

If A and B don’t have any element in common, then A B=19.

3.4.3 Difference of sets : _
_ Let 4 and B be two sets. ‘The difference of 4 and B (or the relative complement of B with
respect to 4), denoted as A B, is the set of those elements of A which don tbelong to B.

Thus symbolically,

A4 -B=f{x|xed,x¢ B}
Snmlarly, the dlﬂ'emnce of Band A is
B—A={x|xe B,xeAd}
As an illustration let us consider
A=1{1,2,3,4}, B=(4,5,6,7.8,9}
Then, 4~ B={1,2,3} and B~ A4 = {5,6,7, 8,9}
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3.44 Symmetric difference of sets ¢
Let 4 and B be two sets. The symmetric difference of 4 and B. denotedas 4 @ B ord A B, is
the set of those elements that bElong to 4 or to B but not to both, That is 4 ® Bris the set of elements
which -belong ‘rd exactly one of 4 and B.
Thus, : ABB =(4-B)U(B-4)
'h'=wum—unm
Note that the symmetric difference is also referred to as Boolean sum.
Ehmmk:LaA:{&i6JLB={Z&le
Then ASB=(4-Byu(B-4) |
4S8 U910
={4,5,6,8,9,100

3.5 Vemn-diagram of sets

A Venn-diagram of a set js a pictorial depiction by sets of points in a plane. The set is repre-
sented by disk lying in the rectangle where interior to the rectangle represents the universal set.
If two sets A and 8 are disjoint then they are shown by disks with no common space between
them [see figure 1].
If Ac B. Then the disk representing 4 is shown entirely within the disk representing the set B
[see figure 2] | |

U [ UI
OXO
Fig. 1 | Fig. 2 |

351 Set operations in Venn-diagram :
The various operations H:_sed in set theory are shown below in the diagrams by shaded areas.

L

A B v A B v
AU B | AN B
Fig. 3 Fig. 4
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A-B
Fig. 5

A.r
* Fig. 6

Fig. 7

A®B=(A-B)U(B-4)

=(4UB)~(ANB)

3.6 Laws of algebra of sets

We have seen that fundamental operatio
yield a new set. It is interesting to note that these

establish important relationship among the set operations.

and are followed by proofs of some of the laws :

ns of union, intersection and complementation of sets
set operations follow some al gebraic laws which help

‘These laws are listed in the table given below

S. No. Name of the law Law
1. - Idempotent Adud=Aand AnA=¢
2. | Associative ) AuBUO=UAUBNC
(i ANBNACO)=AnBNC
3, Distributive ) AU BNO=AUBNUAVO)
(i} A m(BuC)=(AnB)u(AmC)
4. Identity @) Aud=4;4AnU=4
' | () An¢=¢,A0U=U
5. Commutative (i) AuB=BUA;({HANB=B N4
6 Complement () AVA' =U ;ANnA"=¢
(i) § =U; U'=4
Involution A4y=4
De-Morgan (i) AN By =4’V B’

(i) (AW By =A'N B’
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3.6.1 Idempotentlaws: A 4=4.
Proof : In order to prove 4 L 4 = 4, we shall showthat A c 4 U dand 4 U 4 cA
[Recall that 4 © B,Bc A <> 4A=B]

Letx e A=>x e 4 or x € A (note)

= xeAud

. ' xeAandwefindthatx e 4 U 4

= dca0a (1)
Again,let xe 4 LU A4

= xed or xed

Thus Audcd : i (2)
From (1), (2), we find that 4 =4 L 4 | '
3.6.2 Associative laws : '
D AVBUO)=UUB)LC
(HANBACY=ANB)NC

LUy Yoy

Proof : (i} We shall show that _

AvBLUOcUuBUCand(duB)UCcAUBUO)

xedvuBul)

xed orxeBuC

xed orxeBorxeC

xedUB orxeC

xe(AUBUC
Sincexe AVBUC)=>xe(AUBUC _
Thismeans that4 v (B O)c 4 BLC 1)
Similarly, we can show that |

UUBUCCAUBUC) R @

From (1), (2) we find that | |

AOUByUC=4uBuU)
(i) Left as an exereise for you.
.3 Distributive laws :
DAVBAO)=(AUBNAUC)
@Anwud=mhmuumq
Proof : (i) Letx € A\ (B C)
= xed orxeBnC

= xcdorxeBandxeC




= xeduBandxe AUl
= xe(AuB)m(AuC)
Thus we have shown that

Au(Br\C)g(AuB)ﬁ(AuC) (1)
Again, let x e (AuB N4l '
= xeduBand xeAUC
= xe A orxeBandxeA-or xeC
= xedorxeBnC
= xed w BNO)
Thus, we see that

UUBNAUCO)cAUBNO) LD
(1)and(2):>Au.(BmC)=-'(AuB)m(AuC) |
‘Proof of (i) left as an exercise for the siudent.

6.5 De-Morgan laws :

() AuBy=A"NnDB’
(i) AnBy=4"V B’
Proof. (i) Letx € (4 W BY
= x does not belong to A B
= x does not belong to 4 and x does not belong to B
= xedA andxe B’ _ .
= xed nB’
Thus, _
(AwBYcd nB" S (1
Again, letx ced B =>xedand xe B
= x¢gAdand x € B
= X ¢ AUB
= xedv B)'
Thus, we.conclude that
S A B cAUBY R 2)
From (1) and (2), we find that

(AUB)Y=A'NnB’
Similarly, you can prove the (ii} result
Ex. Using laws of algebra of sets or otherwise prove the following
@A-B= ANB" | B B
(i) AVB= (4-B)VB
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Sel. (i) We know that
A-B={x|xed,x¢ B}
X€B = xeB’
Thus,
A~B={x]x_eA,xeB’}
Sincexe dandxe B’ = xe A B’
Hence,
A-B={x|xednB’'}
Consequently 4 - B=4 ~ B’
(i) Let us consider Ad-BuEB _
Now, (Ad-BYUB=(ANB)URB [ A-B=A4~RB"]

=BU{AnNB) [Commutativity]
=(BUd)n (BU BY) [Distributivity)
=(AvB) ()

=4AwRAB

Self-learning exercise-2

L Letd={1,2,3,4) B={4, 5} Then the set {4} stands for

(i) A UB (i} AN B
Gii) 4 (tv) B
2. Let4={2,4,6,8, 8= {2, 8}. Then find
) AUB (i) AN B
() AdDB (tv) A- B _
3. Using the following Venn-diagram examine whether the given statements are true -
U
() Cand A4 are disjoint _ : ud

(HAcC or Ccd’

()BAD cD

(WBcDorD =B

(v)AmBmDandB N C N D are disjoint sets.
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3.7

Summary

In this unit you have studied the theory of sets. Aset is well defined collection of objects, which

are amenable to many set theoretic operations such as union, intersection, complement and difference of

sets, After having gone through these concepts, you ome across with various laws of algebra of sets.

- 3.8

Answers to self-learning exercises

Self-learning exercise-1

. Aa) | 2. A= {x|xis even positive integer}

L@ (3,6,9,12,15,18}

@) {1,4,9,16,25}

. Yes, A is null set because there doesn’t exist a number x such thatx +1= 2 and3x+1=2

hold simultaneously

LA’ =1{3,4,5,6}

A4=1{1,2,3,4,5,6}

Self-learning exercise-2

1. (i) 2. (i) _
3. () True (i) True (iii) True (iv) True
3.9 Exercises
1. Consider the following sets
A ~“~‘--{x|xis an integer > 2}
- B={alais a positive integer multiple of 3}
Is Basubset of 4 ? |
2. Consider the following sets
A={1},B={1,2},C={1,2,3}, D= {3}, ¢
Which of the above are subsets of the set {1, 3, 2} 7 Is there any proper subset of the set
{1,3 2}?
3. Letd={1,2,3,4,5},B={L, a,b ¢}

Find4w B, 4 r\B,AwB,B—A and AD B

. Considering the problem 3, show 4w Band A N B in Venn-diagrams.
. Showthat 4 -B=ANB’
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6. Let A= {a, b, ¢, d}. Then find P (4).
7. Let 4 and B be two sets then show that
A-B=B" ~4’=4B’
8. For sets 4, B, C show that
i) A-(BUC)=A~-B)n(4-C)
A~(B~C)=(A~B)yuAnC)
9. Using Venn-d{agrmn for any sets A, B, C show that
(i) ADB=B® 4
(i) ANBBC)=UNB) S UNC)

00m
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UNIT 4 : Propositional Calculus

Structure of the Unit

40  Objeciives

4.1  Tntroduction

42  Proposition
42.1 Compound propositions and connectives
422 Tautologies and contradictions
423 Logically equivalent propositions

43  Lawsofalgebraof propositions

44  Conditional propositions and their negations
4.4.1 ]Inpliéation and its variations

' 442 Biconditional

4.5  Arguments

4.6  Summary

47 = Answersto self-learning exercises

4.8  Exercises

40 Objectives

After reading this unit you will be able to understand

« The notion of proposition

« Various connectives that give rise to compound propositions
« Laws of algebra of pmpoéitions

« Arguments, their validity and logic

4.1 Introduction

The notion of proposition is one of the important ingredient of theory of logic, which together

with other things serves as a basis for diverse areas of computer science. Infact, the notion of proposi-
tion has gota mathematical basis and is studied as “propositional caleulus”. The proposition calculus
deals with the analysis of statements which are either true or false but not both simultaneously.
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4.2 Proposition

A proposition is a declarative sentence that is either true or false but not both, A proposition has
a truth value accordingly its being true or false. Sentences volving commands, exclamations, question-
ing are not propositions, A proposition may have truth value T or 7, T stands for the case when the
proposition is true and F stands for the case when the proposition is false, Propositions are represented
by letters p, g, 7, ... which are known as proposition variables.
Ex.1. Which of the following are Propositions ?
(@) Jaipur is in Rajasthan,
B 2+5=6
(¢) How are you ?
(d) What a rainy day it was |
Sol. The expressions (@) and () are declarative statements. (a) is true and (3) is faise. Expres-
sions (¢) and (4) are not propositions since neither is trye or false.
Now the question arises whether we can make out a single proposition while using tWo or more
propositions. The answer is affirmative. It is done with the help of logical operators (connectives).
4.2.1 Compound proposition and connectives - _
A proposition is called a simple proposition if it cannot be reduced (sub divided) into another
simpler proposition. Connective are used to make compound proposition. A compound proposition is
obtained from combinations of Propositions with the help of connectives. The truth value of a co:ﬁpound
statement can be completely determined, A compound proposition obtained from simpler propositions
D g, 1... is denoted as P(p, 9 %..), where p, ¢, r.... are called variables of the compound proposition |
Pp, q,1..). | _ _
| There are three basic connectives : conjunction (A), disjunction (v) and negation (~),
Conjunction: Conjunction of propositions p and ¢ is denoted by p A g. Some authors write i
asp - q or pg or p and g. ' '
pAgisreadas “p and ¢, _
The proposition p A q 1s true whenever both pand g are trué; otherwise p A q is false, This can
easily be seen by the truth table. A truth table is a table that contains the truth values of a compound
proposition for all possible cases. Thus, the truth table of P A q s as given below :

P_| 4 |prq|

T 1] T

T | F | F

F | T | F
_F|F | F |

From the fitst line of the table, we find that p A ¢ is true when both p and q are true. Similarly
from the other Jines we get the respective meanings,
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Disjunction : Disjunction of propositions p and g is denoted by pV 4. Yome authors write it as
ptqa.
pvqtsreadas ‘porq”
The statement p Vv ¢ is true whenever either p or ¢ is true or both p and g are true; otherwise

pv qis false. This can be shown as follows in the truth table

Negation : Negation of a proposition p is denoted by ~ p. Some authors write it asp’, p
or - p.
Negation of p, that is ~ p is read as “not P oc “it is false that p” ot “It is not e that p”.

The truth table of negation is as follows:

Ex. 1, Write the following compound proposmons in symbolic from.
() Irisnot hot (ii) It is hot or if is not raining
(iiiy Helis dark but tall (iv) It is false that it is raining or it is cold
) Johnis neither tall nor intelligent.
Sol. We know that the symbols A, V and ~ stands for “and”, “@ » and “not” or “it is false that”
respectively. Hence, we will use these accordingly.
() Letpbe lt is hot today”
Then ~ p reads “It is not hot today”
(i) Letpbe“Rt is hot” and g be “Itis raining”
Then required symbolic form ispv~4q
(i) Letpbe“He is dark” and g be “He is tall”
Then the required synibolic formispA~q
(ivy Leipbe “ft js raining” and g be “Tt is cold”
Then the requn:ed symbolic form is~pV q
(W Letpbe “John is tall” and ¢ be “Jobn is intelligent”.
Then required form is ~pA~Yg
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Ex2. Letp: “It is hot today” and q : "It iy raining”. Then write simple verbal expression

o

which describes the Jollowing Propositions : ~
@) ~q (i)pv~q
(i) prg C (Wpvg
) ~pr~gq V) ~ (~p)
(i) ~pv ~g |

Sol. () ~ g =1t is not raining or it is false that it is raining

(i) pv~g=Ttishot today or it is not raining

(i) p A g=1tis hot today and raining

| () pvg=Itishot today or it is raining

' ~pA~g=Ttis neither hot today nor raining or It is not hot today and it is not ralmng

(V) ~(~p)=1tis false that it is not hot today '

(Vi) ~p v ~g=1tis false that itis hot today or it is not raining _

Ex3. Letp: “He is rich ", q 1 “He plays 8olf”. Assuming that “He is poor” is equivalent
of~pie |

He is not rich, write the Jollowing compound Dropositions in symbolic Jorm.

@ He is either rich or Plays golf.

(i) 1t is false that he is poor oy plays golf

(£i) He is not poor bur plays golf:

(iv) He is rich or he is poor and Plays golf;

() It is not true that he ig ROt rich or he does not play golf:

Sol. @ pv g | ()~ (~pvg)

(i) ~ (~p) n g W)y (~pag)

W ~Cpv~g) " |

Exd. Let p be “Ramesh plays cricket " let ¢ be “Ramesh plays hockey ", and let r pe
“Ramesh plays chess”. Then express i’hefoﬂom'ng Dropositions in ;s'y;nbolic Jorm.

() It is false that Rafnesh Plays chess or cricket but hockey

(i} Ramesh DPlays cricket gnd chess but not hockey

SOLO~[evDIng @) pvia~g

Self-learning exercise-1

.-Which is not true about a proposition ?
‘(@) Proposition has 'deﬁnjte truth value.
&) Pmpositioﬁ is a declarative sentence,
{¢) A proposition may be of the form p v q.
(@) A proposition can never be of the form ~ D-
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2. The symbol v stands for

(a) or () and

(c) not - (d) implication.
3. lﬁtp:JaipurisinDelhi g:2+2=4

(i) Thenthe truth value of p v ¢ is

@T | ® F
(ii) The truth value ofpAgis:
@ T | ®F

4. Letp:2+2=4 q:5+5ﬁ10;r:8+3=20.
Then truth value of (p v 9) vrand(p/\q)/\f respectively are :

(@) T,F : () I,T

@ FT @ FF

5. Ifullthvalueof~(pAq)1sTThenthetmihvalueof~pv~q:
(a} s F. () isT

(c) depends on the values of p and g. (d) can’tbe determined.
4. 2 2 Tautologies and contradictions :

A compound proposition P, q,.)1s called tautology if P is true for any truth value of its

variables i.e. P is tautology if it contains onlty T in the last column of its truth table. Similarly, a proposi-
tion P {p, 4> is a contradiction if P is false for any truth values of its variables i.e. P is contradiction if

it contains only F in the last column of its truth table. Note thatif P (p, ¢, .-} is @ tautology then
~P (P, g, )i isa contradiction, and vice versa. | |

Ex.1. Prove that (~p A~ @) A (pArgq)isnota tautology.

Sol. Let us construct the truth table (~p A~ @ AP A g) as given below :

pla\~p|~9 prg\~PA"~T (~pA~DAPAD
T|T|F | F T F - F
T|F|FI!T F F F
FIT| T} F F F _ F
FIF|T| T F T F

Since the truth value of (~p A~ DA isF for all possible values of p and g. Hence the
given proposition is not a tantology but a oomradiction.

Ex.2. Prove that the proposition ~ ~pvi~pv~lisa contradiction.

Sol. Let us construct the truth table of ~[p v (~p v~ @] as given below :

53




P14 ~pv~q | pvipv~g ~lpvpv~g)|

P4
TITIF|F. F T F
Il FT T T F
FIT| TI|F T T - F
FIF| T | T T T F N

Since the truth values of ~ [p v (~ PV ~q)]are F for all possible values of p and q, hence the
proposition is a contradiction,

Ex.3. Verify whether the proposition “He works hard or he does not work hard” s
tautology.

Sol. Let p be “He works hard”

Then ~ p is “He does not work hard”

" The given proposition is a tautol.ogy if p v ~ p is true for are possible values of p and ~ p. We

construct the following truth table for PV~p

P |\~P| pv~p
T!F T
F|T T

Since p v ~ p is true for all values of pand~p henceitisa tautology.

4.2.3 Logically equival__:'?nt propositions :

LetP (p, g, ..)and [ @J, 4....) be two propositions. Then P and @ are said to be logically
equivalent, denoted by P = O, if they have some truth tables,

For example, ~ (~ p v ~ 9) =p A g as can be seen in the following tables

e PV | ~(py~g)

Pia]| prg | Pla|~p

T{T] T | T|T| F | F F T

TIF| F TIF| F | T T F

FIT] F FIT| T |F T F
[F|F| F FIF] T |7 T F ]

T T3

Since both the propositions are true in first case and false in other three cases, the propositions

are logically equivalent i.e. p A g=~(~pv~gq)

Ex. Prove that the proposition “He neither studies nor dances” is logically equivalent to
the proposition “It is false that he studies or dances”. B

Sol. Let p be “He studies” and ¢ be “He dances”

Then the proposition “He neither studies nor dances” can be written in symbolic form as

~ P A~ q. The proposition “It is false that the studies or dances” can be represented as ~ [p v g].
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To see the logical equivalence of these propositions we consiruct the following truth tables :

N :
pla| pva [~V p ia|~p|~4 ~pAr~q |
T|T T F T|{T| F | F F
T|F T F T!F| F | T F
F|T T F F {T| T | F F
F|F F T | FIF] T T T |

1 1

We see that~p A~¢g=~({@pV g).

Self-tearning exercise-2

1. Prove that~pv~g=~{@ A q).

2. Showthatpf\(q/\r)s(p)\q)f\i:

3. Prove that p v'(QAr)E@vq)A@vr).
4, Show thafq A ~ g is not a tautology.

43 Laws of algebra of propositions

The theory of propositions has a beauty in the sense that the propositions follow certain alge;
braic laws which are not only quite useful in simplifying the expressions but also give an edge to the
notion. The laws have some parallels to their counterpart laws in standard algebra you are familiar with.
Infact, in some cases the connectives v and A act like -+ and - However all laws don’t follow same
analogy. '

The Iaws are listed in the following table :

Indempotent laws | pVp=p and pAp=p ]

@ pv@v=@vovr
() pA@ADN=@ADAT
@ pvigrn=@var@v?)
ﬁvaQVG=@A®vaﬂ

Associative laws

Distributive laws

Commutative laws (I.). pvqa=qvp
. ' (i) pAqg=qAp
Involution law ~(~p)=P

G pvF=p prT=p
@ pvT=T, prF=F
@ pv~p=T, pa~p=F
| Gy ~T=F, ~F=T
G ~pve=—pr~4q
@ ~@r@=~pVv=49

Identity laws

Complement laws

De’Morgan’s laws
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The Validily of the above laws can be established by the relevant truth table. Many other laws
can be given with the help of the laws listed above. '

For example, p v (p A @y=pandp A (pvgq)=phold good and are called absorption laws. .
These can be derived in the following manner. '

Let us consider
PVOAD=@ADVpag) [ pAT=p]
=pa(Tvg) . {Distributive law ]
=pAT [ Tvg=T]
=P

Now, wé prove some of the laws given in the table,
De’Morgan’s laws :

@ ~prp=~pv~q

@) ~pvg)y=~pr~g

P4 prg |[~pag|~p|~gq ~pV~g
T[T T F F | F F
T | F F T F (T T
FlT F T T|F T
| F [ F F T T! T T
From the table we see that
—@Prg=~pv~yg

Similarly, you can verify that
~PVg=~pr~gq
Ex.1. Show that p v (gvri=s(pvrve

Sol.
Pl rleve| qavr | pvigvy | pvgv r
T[T T T T T T
TI T} F T T T T
T|{F|T T T T T
T!{F|F T F T T
F|TI|T T T T T
F{T | F/!| T T T T
"F ) F [T F T T T
F|{F | F F F F F
)




From the last two columns of the table we find that
pvigvn=@vavr
Ex.2. Using laws of the algebra of propositions, show that

) ~pvevEpagy=~p

(i) ~gnpvq)=~qgAp

Sol. (i) We have

f(pvq)v(~pAq)ﬂ(~pA~q)V(~pf\q)

=~pAl~qve) _
:NPAT :
=~p

(i) We have

~gApvP=(grp)VI-q4r9)

=(~gAp)VF
S~gAp

Self-learning exercise-3

1. The idempotent law is : |
@pvqg=qvp (B)~Cp)=p ©@pv~q=T @pvp=p
2. p Ag v r)isequivalentto :
@pvigrr ®@rpvpan ©pvonr
~ 3, Which of the following is true 7

@pvF=p @ prF=p ©pAT=F

4. Which of the following is not true :
@ ~prgd=~pr=q B) ~prg)=~pV~q
© ~pvp=~pr~4q @pvp=p

5 Provethatp AlgAr)=@Ag) rr
6. Provethatpv(gar)=@v@)A(pvr)

4.4 Conditional propositions and their negations

Many a times, We coime across with the statements with imposed conditions. For example, “1
dance if it rains” or “I dance if and only if it rains”.
| Such statements are cailed conditional and biconditional respectively. Study of these is important
in the theory of logic. |
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4.4.1 Implication and its variations ;

A statement of the form “If p then ¢” is called an implication or a conditional statement and is

written as
pP>q
The other versions of p — g are :
() ponlyifg, (i} p is sufficient for g,
(iii) q is necessary for p, (iv} pimplies g.

~ The statement p — ¢ is true barring the case that pistrue and g is false i.e. p — ¢ is false when
pistrue and q is false, otherwise it is true for the remaining possible values of p and q.
The truth values of p — g is shown in the following table :

P | 49 p>q!l ~p | ~pvyg
T|T T F T
T F F F F
F | T T T T
F | F T T T
T |

From the above table, we observe that
prg=~pvyg
We, now describe the variations of 2 ~>g¢. The conditionals ¢ — p, ~p — ~ g and ~ ~g—>~p
are called respectively the converse, inverse and contrapositive of the conditional p — ¢.
Ex.1. Determine the truth values of the following statements
(@) If Jaipur is in India, then 2 + 6 = §
) IfA+4="7 then8+8=16
© If3+3=6,then5+5=9
@ If3+3=5thend+4=7
~ Sol. The given statements are of “p — g” form. We know that p — g is true except in the case
when p is true and ¢ is false. Therefore, statements (@), (5), (d) are true and (c) is false.
Ex.2. Find the truth value of (p v q)—> (- q).
Sol. We construct the following truth table :

P14 1pPvqg | p>q | pvp>(@p->g
T| T T T T
T | F T F F
F | T T T T
F | F F T T




Ex.3. Rewrite the following propositions without using the conditional :
(@) If share market sensex goes up, then prices rise.
(b) Ifit rains. he dances.
Sol. We know that proposition “If p then ¢ stands for p — ¢ which itself is logically equivalent
to ~p v ¢. Hence the given propositions can be written as o
(a) Share market sensex does not go up or prices rise
(b) It does not rain or he dances. _
4.4.2. Biconditional statement Peg:
Let p and ¢ are propositions then the compound proposition “p if and only if ” is called the
biconditional proposition and is denoted by p <> ¢. The other equivalents of p <> g are:
1. “p implies g and g implies p” i.e. p <> ¢ is logically equivalent to (p — ¢) A (g —> P)
and ‘
2. pis anecessary and sufficient condition for g.
Note that p <> ¢ is true when both p and ¢ are true or both p and ¢ are false. This is evident
from the following truth table for p <> g.

] 3
s R BB A

=== =T

Ex.1. Determine the truth values of the following statements .

(@ 5+7=06ifondonly if2+3=8

M 1+6=Tifandonly if2+4=06

(© 2+3=8ifandonly f2+2=4 |

Sol. We know that p <> q is true whenever both p and ¢ have the same truth values. Therefore,
following the reason we see that only statement (@) is true. |

Ex.2. Show thatp<>q=@ > g Ar(g—>p). ' .

Sol. In order to prove that p < ¢ = (p —> g} A (g — p) we construct following truth table :

Pl q|poq|la->p | poq | o> goD)
T | T T. T T T
T | F F T F F
F| T T F F F
F | F T T T T
1 c
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Ex.2. Wrile the negation of following statements :

(@) If it is humid, then he wears cotton shirt buf no cap,

(B) If he makes money, then he will purchase a car or airshfp.

Sol. (@} Let p denote “Tt is hurnid”

q denbtﬁ “He wears coiton shirt”

r denote “He wears a cap” | _

Then the given proposition is p — (g A~ F)

The negation of it is -~ ga~n)]
= [~pviga~r)
=pA~(gA~T)
=pA(rv~qh

Therefore, the negation of the statement is — |

It is humid and he wears a cap or no cotton shirt.

{b) Let p denote “He makes money”

¢ denote “He will purchase a car”

r denote “He will purchase an airship”

The given statement is of the formp — (g v 1)

Its negation is : ~[p— (g v
=~[~pvigvr)]
= pPA(~gAa~r)

Thus the required negation is :

He makes money and he will neither purchase a car or an airship.

Ex.3. Find the converse, inverse and contrapositive of the following conditional “only if
Rama works hard will he get monéy " | ' |

Sol. The given statement is equivalent to “If Rama gets money, then he worked hard”

Let p: Ramna gets money |

¢ : Rama worked hard.

The given statement is of p > ¢ form whose converse, inverse and contrapositive are g — p,
~p —> ~ g and ~ ¢ = ~ p respectively. o

Thus, the converse is :

If Rama worked hard, then he gets money.

Inverse is :

If Rama does not get money, then he did not work hard.

Contrapositive is : | :

If Rama did not work hard, then he does not get moﬁey.
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Ex.4. Write the negation of following statements in simplest possible form .

(@) He plays only if the weather is cold.

(b) If it ruins, then he does not wear rain coat.

Sol. (@) Let p be “He plays” and ¢ be “the weather is cold”.

The given statement is of p —> ¢ form.

Now,

~po>@=~~pvgr=Epr~q

Hence the negation of the given statement is:

He plays and the weather is not cold.

(b) Let p be “It rains”, ¢ be “He does not wear raincoat”

The given statement is of p —> ¢ form

Since

~(p>q)=pr~4q

The negation of the given statement is:

it rains and he wears raincoat.

Self-learning exercise-4

1. p—> gisknownas:
(@ Indication (b) Implication (¢) Intimation (d) Inclinaiion

2. g - pisequivalentto: -

@~qvp B ~pr-d (€ ~pVvqg @pv~q

3. p—qisequivalent to:

(a) qis sufficient for p (b) p is necessary for g

(c) pis necessary and sufficient for ¢ (d) pis necessary for~¢

4. p > gisequivalentto:
@ ErDvEaID ® g>p) A @D
© (pv~qQvig—=>p) @ @vrprg)

4.5  Arguments

Valid arguments and logic in proof :

An arguments is a sequence of propositions Py, Py, ... P, called premises that as a consequence

yields another proposition Q. Py, Py, s P, are called premises or assumptions or hypothesis and O is

called the conclusion. An argument with premises Py, Py, - P, and conclusion @ is denoted as

Py, Py Py Q

Valid argument : An argument is “valid” or “logical” if conclusion is true whenever all the pre-

nﬁﬁesmeuuc.An

argument which is not valid is called a fallacy.
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Working method : 1. To ascertain the validity of a.rgument'P] s Ppy oo P = O, make a truth
table and find truth values of Py APy~ .. P)— Q Ifitis atautology, then the given argument is a
valid statement, otherwise is a fallacy. -

| 2. Another way of verifying that an argument is valid or not, it is sufficient to check only those
. Tows of the truth table in which all the premises and conclusions have a true (7) as truth values,
- We, now state some standard laws which are quite useful in the theory of logic.

‘Modus Ponens : It states that “If the proposition p is true and the 1mphcat10n P —>qisalso

true, then, g must be true. Symbolically, we write
P9
P

g
In the above symbolic representation, the statements above the line are the given premises and
the premise below the line is the conclusion. The above law is also referred to as law of detatchment.

The authenticity of the above law can be viewed by constructing a truth table,

P 7 | pog pAp>q) | prlpog)—>g
T | T T T T .

‘T | F F F T

F (T T F T

F F T F T

Since p A (p = q) — ¢ is a tautology, therefore, g is a conclusion of the premises p — ¢ and p.
Another way of verifying that an argument is valid or not, it is sufficient to check only those rows of the
truth table in which all the premises and conclusion have 2 true (1) as truth values.

In the above table, we see that the first row has T for both premises p and p — g and the
conclusion ¢. _

Modus Tollens : If the proposition p — ¢ is assumed as true and also the statement ~ ¢ is
true, then, ~ p must be true. Modus tollens is a Latin word meaning denymg method simply because the

conclusion isa denial. In symbolic form this law can be written as
P—>q
s g

S~ p
The validity of the above law can be seen from the followmg truth table Note that

[(® > 9) A~ gl = ~pis atautology.
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P ap ~g \prqg | @TDAT p>Dr~al>~P
T|T|{F| F T F T
T|F!F | T F F T
g{T|T| F T F 1 T
FIE (T | T | T T T

3, Hypothetical syllogism : If two iinplications p->4q q —> r are true, then the implication
p -> ris also true. This law is called hypothetical syllogism.
Symbolically,
p—4

g—>r
Lpor

The validity of the above law can be seen in the following table. Note that [(p - @ ~g -1l

> {p-r) igatautology.

| : —
plglrip—oglg2r|p>r p>Dr@—=", po>)r@>N->@>0
1T|T|T| T T T T | T

T|IT!F| T F F F T

T|F|T| F T T F T ]
TIF|F| F T F F T

FlT|T|] T T T T T J
|lplT|Fj| T F T F T

F|F|T| T T T T T

FlF|F| T T T T T B

_ 4. Disjunctive Syllogism : It says that if propositions p v ¢ and ~ p are considered to be true,
then the conclusion ¢ is also true. Symbotically, |
pvdg

~ P

g
The validity of the above law can be seen in the following truth table. Note that [(p v ) A~P]

—» g is a tantology:
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P 4 | ~2 | pvag [@vera~p  [ovg)r~pl >q
T | T | F T F T
T|F | F T F T

CF T T T T
F | F | T F F T

5. Constructive dilemma : If propositions p — g A {r— s)and p v r be considered as true,
then the conclusion g v s is also true. Symbolically,
PgA(->s)

pPVr
L gvs

You can’ vc,rlfy the vahdlty of the above law by verifying from the truth table that
[p—a—qx\(rm)’s)]Aﬁgvr]~+qv315atautolog3r _
6. Destrucllve dilemma : If propositions p —» ¢ A (r -> s} and (~ q v ~ §) are considered to
be true then the conclusion ~ p v ~ r is also true. Symbolically,
P>GAFr—s)
~qv~s
Lo PV~ F
You can verify that [p — g A (r — SH A [~ qv~s]—>~pv~risatautology.
7. Addition : This law is stated as
P
_ Lpvg
You can seé that p — (p v ¢} is a tautology.
8. Simplification : This law is stated as

PAg

: P

You can verify that (p A ) — p is a tautology,

Ex.1. Prove the validity of the following argument “If I work hard and get rich then I
will get promoted. If I get promoted, then [ i_vill be wiser. I will nor be wiser. Hence, either I will
not be rich or I'will not work hard. ”

Sol.. Let the propositions are denoted by p, ¢, r and s as given below

1 | P : I'work hard
g :Igetrich
¥ :1get promoted
s Twill be wiser
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In symbolic form, the given argument is writien as
prgy—or.
r—>s
~ 8

Thus we have the following steps

@ prg)—r } ,

given
(ii) v — 8 .
(i) prg)—>s [using hypothetical syllogism in (), (i}]
(iv)~§ [given] _
»~@PAD [using modus tollens in (i), (iv}]
pi)~pv~q [ (PAQ)'-"‘PV‘““I]_

Thus the conclusionis~p v ~¢

Therefore, the given argument is valid.

Ex.2. Verify whether p — —5is vahd concluswn of the premises
p—>ig §r~4q

Seol. We have |

i) p—>4¢

(i) s—>~4q

(ii)qg =~ [vs—>~g=g—>~5]

(iv)p =~ " [using hypothetical syllogism in (3), i)}

Hence p —> ~ s is valid conclusion of the given premises

Ex.3. “If I work hard, -then I am rich

I work hard, therqfore- Tamvrich”

© Represent the above argument symbolically and verify its validity.
Sol, Let p be “1 work hard” and

g be “Lam rich”
Symbolic form can be written as
p—a
P
g

Acoﬁrding to the principle of modus ponens the argument is valid.
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4.6  Summary

A proposition is a declarative sentence with truth value true or false but not both sunultaneomly
Wxth logical connectives, two or more propositions give rise to another proposmons Int this unit, you
have learnt about compound propositions, conditional propositions and arguments. You have also learnt

many laws of logic which help in solving word problems with tacit logical situations.

4.7  Answers to self-learning exercises

- Self-learning exercise-i |
1. @ 2. (@) 3. ) (@), (B 4. (@) 5. (@
_ Self-learning exercise-3
L@ 2. (%) 3. () | i@

Self-learning exercise-4

L® 2@ 3. (¢ 4 (B

4.8 FExercises

1. Assign a fruth value to each of the following sentences :
() 6>7v8<9 '
(i) 3+4=8)v(8x4=20)
(i) (8 +8=16) A (4 x 4= 16)
() O+9=12) A (4 x 4=16)
[Ans. (i) True (i) False (5ii) True (fv) False -
2. Consider the following :
" p:Ramistall
¢ :Ramis strong
Write the following statements in symbol ic form :
(@) Ram s tall and strong,
(b} Ram is tall or strong,
(¢) Ramis neither tall nor strong,
[Ans. @ prg@®pva(c)~pa~g]
3. Write the negation of the following :
(@) Ifit rains, then they will not go for dinper.
{b) 1f Ram works hard, he will make money.
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10.

[Ans. (@) It rains and they will go for dinner.
(h) Ram works hard and be will not make money.}

Prove that the following are tautologies * '

@ (q N AL

B ~pA~QVEPAD

© [prpvPl—d

@ (prg)—p

Prove that :

@ prCava=p

(i) prg)vP=4

Prove that :

@) gop=CavpAEPVY

@) [pva -] =[@p->nnrlg—>n)

Find the converse, Tnverse and contrapositive of the -foﬂowixig D

(a) Iftodayis rainy day, then tomorrow is Sunday.
(b) 1fA is rectangle, then P is a square. |
(c) IfRamisgood, then he is honest.

Prove that :

0>~ QAT PP AL

Test the validity of the following argument © -

If Raju worked hard, then he purchased a car.

Raju p_urchased a éar.

Therefore, Raju worked hard.

[Ans. Not valid] .

Using laws of algebra for propositions, prove :

@ poDA@DACINAPYHASEL
® poDA~-a-~P. ,

@ p—>qgnt—9) Al~gqv~slbrpyv T

() (PVQ)A(Q-W)/\(p—*'f)f\“*il—'f’/\(pvq)
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Unit 5 : Rel_ations

Structure of the Unit
5.0  Objectives
5.1 Introduction
5.2 Relation
5.2.1 Relation and its representations
5 .3. Types of relation
5.3.1 Reflexive relation
5.3.2  Symmetric relation
5:3.3  Transitive relation
5.3.4  Antisymmetric relation
53.5 Partial ordering relation
5.4 Equivalence relations and partitions
5.4.1 Equivalence relation
54.2 Partition of a set
5:4.3  Equivalence classes
55  Summary
5.6 Answers to self-learning exercises

5.7 Exercises

5.0  Objectives )

After reading this unit you will be able to
* Understand the notion of relation and it representation
* Learn about relations defined on a set and its various types

5.1 Introduction

The notion of relatlon Is an important concept in mathematical sciences. A relation indicates as-
sociation between two objects. For example, o is less than b. Infact, in daily life we come across with -
various types of relations. The notion of relation i 1s amenable to mathematical treatment. A relation is

denoted as ordered pairs. This unit entails mathematical conceptualization of relations on sets and their
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classification. Equivalence relatior. and partial ordering relation are very important since equivalence
relation induces partition of the set on which it is defined whereas partial ordering relation copstitutes
poset which give rise to concept of lattice in as much as that every latticé is a poset buf converse is not
necessarily true.

5.2.1 IRelaﬁon and its representations :

A binary relation or simply relétion R from a set 4 to set B is subset of A x B, where ordered
pair (g, b) € R means ihat @ € A is related to b € B under relation R. If a is not related to & under the
relation R, then. we write (¢, b)e R.Ora K b or a is not R-related to b. If (a, b) € R, then'we write a

is Rrelated to bora R b. | |

Thus we conclude that if R is a relation from a set 4 to set B, then R is set of all those ordered
pairs (a, b) where a R b and hence obviously R = {(a, b) | a R bt cA*B. '

_ In this unit, we will emphasise on relations which are defined on a set 4 ie. those relations which
are subset of 4 x A. Hence, we define the following.

Relation on aset At ‘

I€ R is a relation from a set A to set A then we say that R is a relation on the set 4. Thus, in this
case R A x A |

Domain and range of relation ©

Let R be abinary relation

R={(a,b)|a R b}

Then the set of all &'s is called the domain of R and the set of B's is called the range of R.

[nverse relation : Let Rbea relation from é. setdtosetBie R ¢ A% B. Then inverse of R,
denoted by R, is the relatidn from set B "to A. And is defined as -

Rl-(hal@beh

ie. bR a & aRb

Thus to obtain R~ ! of the relation R we have to reverse the or'der.of thé ordered pairs of R.
Consider the relation R on the set 4 = {2, 3, 4,6} defined by “a R bifadivides b”

Then R = {(2,2) (3,3), (4,4, (6, 6)(2,4), 2. 6), 3, 6)}.

Then -1 = {2, 20, (3, 3) (b, 4), (6,6 (4,2), (6,2, 6,3))

Ex.1. Let R be a relation from a set A= {a, b, c} 10 s¢l B = {x, y, z} given by the set

R = {(@ ). (a,)), (b 2}

Then find the domain and range of the relation R.

Sol. The domain of a relation R is collection of first elements of ordered pairs which‘ belong to
relation set R. Similarly the collection of second elements of ordered pairs of R is the range of R.

. Hence, domain R = {a, b} '

Image R = {x, ¥, 2}
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Till now; we have dé'sc_ribed arelation as a set of ordered pairs. However, sometimes a pictorial
representation of relations on ﬁnite sets is found convenient, This is done through arrow diagram. To
explain, let us consider a relation R & A4 % B. The finite sets 4 and B are represented by two ilon over; |
lapping disks. If (x, ») e R, then a directed arrow from x to y denotes that x R ». For example, the '
relation R = {(a, x), (5, ), (a.2)} where 4 = {a, b, ¢}, B= {x,y, z} is shown is the following figure.

R

Fig. 1
Furthermore, matrix notation is also used to denote relations. _ _
Let R ¢ 4 x B, where 4 and B are finite sets. Then we consider a rectangular array, where
~ elements of 4 and B are placed in column and rows respectively outside the array. Weput { in respec'-
~ tive position if (@, b) € R, where a € 4,5 € Band other wise put 0 if (a, b) ¢ R. The array thus found
is called matrix of the relation R. Thus the relation R depicted in Fig. 1 can be presented in matrix nota-
 tion as given below | |

X y .z
a (1 0 1
b0 1 ¢
c |l 0 0 o
Fig. 2

We now consider the case where relation Risdefinedonaset 4. je. RcAx A A relation
defined on a set A can be depicted through “directed gfaph”. In this representation of a relation, all the
elements of the set 4 are placed encircled on a plane.

If @ R b, then a is connected to b by a directed arrow, For example, consider the relation .
R={02), 0030, (63, (5, 2), 0, 2)} onthe set d = {x, y, z}.

‘The directed graph of R is ag given below '

Fig. 3
Note that there is arrow from x to itself to represent (x, x) € R.
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Composition of relations : ‘
Let R and S be relations from set Ato Band set Bto C respectively. i.e Rc Ax Band

S B » C. Then we can constitute 2 relation ROS or RS, from 4 to C, known as composite relation
and defined by N |

ROS= {(a, &) |3 b € B, such that (a,b) & R, (b, ) € S} |

Ex. LetA=fa b ¢} B={x 3z} C={, 2, 3} be three sets. Let R and S are relations
fiom Ao Band Bio C defined as ' '

R={(a,x), (b, 3)}, S= {(x, 1), 0,2, &1), &, 3))
Then find composite relation ROS ' '
Sel.

ROS
We set that (¢, x) € Rand (x, 1) € 5. Thus (a_; 1) € ROS. Similarly (5,2} € ROS. No other

- pairs belong to ROS. Thus
| ROS= {(a, 1), (b, 1)}
" Note-1: If My, Mg and Mpnq denote the matrix of relations R, S and ROS respectively, then
' Mp - Mg= Mgos _

This equality means that the matrices Mg Mgand Mg have the same zero entries implying that
both My Mg and Mpog denote the same composite relation ROS.

For an illustration, consider relations, given in the above examples

x ¥ z 123

afl 0 0 x{1 0 0

M,=bl0 1 0] M;=y|0 10

clo oo z\1 0 1
X y z
aft 0 0
MROS=5010]
clo 00
100
Note that Mp Mg = 0 10
000
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Thus Mp Mg= Mpyg.

Now, we state a theorem (without proof) that if R, S and T are relations from set A to B,setB
to C' and set C'to D respectively, then

RO (SOT)=(ROS) OT.

This is known as associative law of composition of relations.

5.0  Types of relation

In this section, we will discuss various types of relations, Remember that the classifications to be
presented here is defined for relations on a set.
 Let® be a refation on a set 4. Then we define :
_ 3.3.1 Reflexive relation : R is reflexive if(a,a) € R v a e A. For example, consider
refations R and S on the set 4 = {1,2, 3} given by
R={1,1.(1,2),(1,3),(2,2),(3.3)}
S={(1,1),(1,2),2, D}.
Here R is reflexive since every element of A is R-related to itself, but S is not reflexive since, for
example (2,2) ¢ S.

Not reflexive : Arelation R 4 x 4 1:, not reflexive if there exists at least one element a in 4
such that (a, a) ¢ R. For example, the relation R defined on the set N = {1, 2,3, 4, ..} such that |

“(a, b) € Rif a <b is not reflexive because a ¢ a v aehN.

Snmlarly, the relation S = {(a, a) (b, b)} defined on the set B= {a, b, c} is not reflexive. Since
(c, ¢) & S.

5.3.2 Symmetric relation ;

Ris Syrmnéu'ic if(a, ) e R implies (b,a)e R.

- Forexample, let 4 = {1, 2, 3}. Let R = W1, D,(1,2), (2, 1)} and § = {(1 D, (2,2),3,2)}

" Then R is symmetric since (1,2) € Rand (2, 1) € R but S'is not synunetrlc since (3 2) € S but
2,3)e 8.

Not symmetric : A relation R defined on the set 4 is not symmetric if (@, b) € R but (b,a) ¢ R -
for example, “Relation R of divisibility” on the set of natwral numbers N is not symmetric since 2 | 4 does
not imply that 42 j.e. (2,4) € R, but (4,2) ¢ R.

5.3.3 Transitive relation :
Ris transitive if (a, b) € R, (b,c) e R=> (0, ¢) € R
For an example, consider the relations
R={(1,2).(2,3).(1,3))
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S={(1,1),(1,2).(2,3),(3,3)} on the set A = {1, 2, 3}. R is transitive but § is not transitive
| 1,2 eS,2,3)eShut(l,3) &S
Not transitive : A relation R defined on a set 4 is not transitive if there exist elements
a,b,c € Asuchthat (a.b) € R, (b, ¢) € R but (g, ¢) & R for example, let L be set of lines in a plane.
Let R be a relation defined on the set L such that “Ly RL, if lines Ly, L, & L are mutually perpendicu-
lar”, Then this relation is not transitive since if ’
"Ly RLy, L, RL3':>. L, is not perpendicular to L3 . .
53.4 Antisymmetric relation : ' _
Ris antisymmetric if (4, &) € R and (b, @) & R implies a=b.
+ Note fhat antisymmetric relation is not “opposite” of symmetric relation. Infact, @ relation can or
can’t simultaneously be symmetric and antisymmetric. _
For example, et us consider following relations R, T and § on the set 4 = {1,2, 3}
R={(1,2, 2. 1), 2.3 5 T={(1,2).23).(,3)}
S={(1,1),(2,2) (2.3, (3,2)} -
Note that both R and S are not antisymmetric relations
Smee (L) eR(21)eRbutl=2
Similatly (2,3)e8,(3,2) e Sbut2+3.
However, relation T is a_ntisymmetric
. Not antisymmetric ; A relation R defined on the set 4 is not antisymmetric if (@, ) € R, (b, a)
e Rbutazb. | ' | o
For example, “Relation R of divisibility” on the set of integers Z is not antisymmetric since 3

divides — 3 and — 3 divides 3 but 3 =—3. _
Exl. Let ZW = {1, 2, 3 ...} be the set of positive inlegers and a relation R on 7" is
defined as follows k '
| R={(a,b)la+2b=8)}
Is it reflexive ? Is it symmetric ?
Sol. We know that relation R on a set 4 is reflexive if (@a)e Ry ac A
Following this, we find that here the given relation R is not reflexive since for example
142128
ie.  (LDeR
Also, R is not symmetric since (6, ) € R [+ 6+ 2-1=8]
but (1,6) € R [because 1 +2-6=8].
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Ex.2. Let R={(1, 1), (2, 2),(2, 3)} be a relation on the set 4 = {1, 2, 3,4, 5}, Examine
whether R is

(a) reflexive (b) symmetric (c) antisymmetric (d) tramsitive,

| Sol. R is not reflexive since (o, a) ¢ R v a € 4. e.g (3,3) ¢ R, where 3 € 4

R is not symmetric since (2, 3) € Rbut(3,2) ¢ R

R is antisymmetric '

Ris transitive, _

Ex.3. Let < be a usual less than or equal to relation on the set of natural numbers N
defined as .

R={(@a,bla< b}

Is R reflexive, symmetric, antisymmetric and tramsitive ?

Sol. Ris reflexive sincea< avy ae N _

R is not symmetric since a< bdoesnotimply b < a.

R is antisymmetric since # < b and 5 < @ imply that a=5 -

Ris transitive since a < b, b < cimply ¢ < ¢.

Ex.4. Let P (4) denote the poWer set of a set A. Let ¢ denote the relation of inclusion (is
subset of). Examine C for various types of relations.

Sol. Let X, ¥, Z € P (A). Then obviously X] ¥, Z are subsets of the set 4.

- Now, we know that every set is subset of itself i.e. Y& X v X e P (4)
= ¢ isreflexive
~ The relation ¢ is not synunetric since if X < ¥.
Then it does not imply that ¥ ¢ X
However, ¢ is antisymmetric since
_ XcYand Yc X @X=V.
The relation ¢ is transttive since
XcY, Yo7 = XcZ )

Ex.S. Show that the relation | of division on the set integers is reﬂexive and transitive but
it Is not symmeiric and anti symmetric.

Sol. Z={0,+ 1, +2 ...} is the set of integers given that divisibility is the relation on Z Let we
denote this relation by R, Then '

R={(a,b)|adividesbie a|b}

Ris reﬂexive sincea|avy acZ

Ris transitive since g [ pand b [c => a| ¢ |

R is not symmetric since a| b does not imply that b | ¢ e.g. 2 divides 4 but 4 does not divide 2

R is not antisymmetric since 4 divides — 4 and — 4 divides 4 but 4 #—4,
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Self-learning exercise-1

1. The relation R “(a, b) € R if ¢ b” defined on the setA={1,2}is

@ (1,1, 1,2 ) 1,22, (LD}
D, 2, ) (iv) None of these
2. The relation R “(a, b) & R ifa<b> ontheset N is
(i) Reflexive iy Not reflexive
| iii) Synn‘nél:lic (iv) None of these

3. Which of the following is true ?
(i) A symmetric relation can never be antisymmetric.
(i) An antisymmetric relation can never be symmetric.
(iii) If a relation is not symmetric then it is esseﬁtialljf an antisymmetric relation.
(iv) A relation can simultaneously be symumetric and antisymmetric.
4. Which of the following is true for the relation R “(a, pekRifa+rb= 8 ontheset N
(i) Risreflexive ) (i) Ris antisyrmetric
| (iii) R is not symmetric (v} Risnot transitive

5.4 Equivalence relations and partitions

5.4.1 Equivalence relation :

A relation R on the set 418 called equivalence relation iffora, b,c € 4,

() R is reflexive i.e. (a, g)eR yacd

(i} R 1s symmetric 7.e. (a,by e R (b,a) € R

(iif) R is transitive i.e. (4, p)e R, (b.c) e R=1(a, OeRr

Equivalence relation is an important concept in the theory of relation since it constitutes a
partition of the set A in a unique manner that you would study in the coming pages.

Ex.1. The relation = of equality on the set Z of integers is an equivalence relation since
fora,b,ceZwehave : -

(ifa=a (Reflexivity)

({Hla=bo b = a (Symmeiric)

(iya=bb=c=>a=¢ (Transitivity) _

Ex.2. The relation L of perpendicularity on the set L of lines in the X — Y plane is not an
equivalence since 1 is not reflexive simply because no line in the X — Y plane is perpendicular {0
itself. Further, it is not transitive because if Ly, Ly, L, are three lines in the X — Y plane such that

LydiL, and LyeL Ly = Ly 18 not perpendicular to Ly - '

n Thus we cqr_mfude that L is not an equivalence relation although it is symmetric relation
(L, 4Ly & ket Ly] |
75



CEx3. Let R = {(x, x), (x,'z), (2, X), (z, 2)} be a relation on the set 4 = {x, y, z}; Determine
ether R is an equivalence relation ?

Sol. R is not reflexive because every element of 4 is hot related to itself. Note that v,v) ¢ R.
Hence R is not an equivalence relation although it is symmetric and transitive,

- Ex.4. Let Z* be the set of positive integers and R be a relation on Z* such thar
\/R= {(a, )| a+b is even)
~  Then determine whether R is an equivalence relation.
Sol. R is reflexive :
ataiseven v ae Z=>(a,a) e R

= Risreflexive

R is symmetric : Let a + b is even, where a,beZt

=  btaisalsoeven.

Thus we see that (a, ) € R & (b,a)e R

Hence R is symmetric _

R is transitive : Let a, b, ¢ & Z* such that (@b eR b,c)eR

= a+bisevenand b+ ¢ is even.

Now, a + b is even if and only both @ and 5 are even or odd. That is @ and & have same parity.
Following the reasoning, b+cisevenifand only if both b and ¢ are even or odd thus a + ¢ will be even
ifand only if both & and ¢ are even or odd i e a and ¢ have the same parity. Thus we concllide that

o @,5)e R, (b,c) e R(a,c)e R '

Hence R is transitive, | _

- Let R be a relation on the set 7 of integers defined as
© R={(@,8)|a,b < Z, (ab) is divisidle by 4)

Then show that R is an equivalence relation.

Sol. 1. R is reflexive : Let ¢ € Z Then g — a=0and 0 is divisible by 4, Then by definition of
R'we find that (a,a) € R v a € Z Thus R is reflexive, o

2. Ris symmetific :Leta, b e Z such that (g, b)e R

= (a~b)is divisible by 4.

= (b~ a) is also divisible by 4.
= b, a)ye R

= Thus (g, b) € R =b,a)e R

Therefore, R is symmetric.
3. Ris tramsitive : Let (g, byeR b,c)eR
Thus, (@~ b) is divisible by 4 and (b ) is divisible by 4
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= . [{a—b)+(—0o)]is divisible by 4
= [a - c] is divisible by 4
= (a,c)e R
Thus, we ﬁnd that (g, b) € R, (b,¢) e R= {4, c)e R,Ris transmve
- Accordingly, R is an equwalence relation.
Ex.6. Let R be a relation on the set A= {1, 2,3, 4, 5} defined as
R={@a.b)|la-b|=2}

Determine whether R is an equivalence relation.

/Sal By the definition of R, we find
R=1{(1,3),(2,4,3.9,6. D), & 2.5 3)}

1. Reflexivity : R i8 not reflexive since every element of A is not related to itselfe.g. (2,2) & R.
Hence R is not an equivalence relation. You can see that R is symmetric but not transmve
relation.

Exl. Let = be a relation on A x A defined as follows
(a, b) = (c, d) whenever ad = bc .

where A is set of non zero integers. Determine whether = is an equivalence relation.
Sol. 1. = is veflexive: Leta, b € 4. Then ab = ba |
[« Mtﬂtlphcanon of integers is commutative]
. (a, b) = (a, b) [by definition of =]
= every element (@, b) € A x4 s related to itself,
Therefore = is reflexive
2. = is symmetrie : Let (a, D), (¢, d) € A % 4 such that

(a, b) =(c, d) = ad = bc
= da = cb [ multiplication of integers is commutative}

= ch=da
= (¢, d) = (a,b)
= I8 symmemc
3. = is transitive : Let (4, b) (c, dyand (e, /) € 4 * A such that (g, ) = (¢, d) and (c, d)
=(e, /)
= ad = bec and ¢f = de
= (ad) (¢f ) = (be) (de)
= af =be
= (a,b) = (e.f)

Thus,wescethat(a,b) = (¢, d}; (c.d) = (e,.f)= (@ b) = (e,f)
Hence, = is transitive.
Therefore =~ is an equivalence relation
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5.4.2 Partition of a set : |
Let A be a non-empty set. A partition P of the set 4 is a collection of pon-empty sub‘ééts

' /AI, 4, ... 4, of 4 such that every a & 4 belongs to one of the A;and subsets 4, i= 1,2 ..
mutually digjoint. If P = {4/} isa partition of the set A then the subsets 4, are called cells. To ﬂlustmte,

we consider the set 4 = {1,2,3,4,5}
Let  P={{1},(1,2,3}, (4,5}}
0={{1,2), {3,4})

" Here Pisnot4 paftition of the set 4 since 1 € 4 belongs to two cells. Again Qisalsonota
partition of 4 since 5 & 4 does not belong to any cell.
Ex.1 Find all the partitions of the set A = {a b}.
" Sel. The possible partitions of 4 are :
0 ({a.5}}
Gy {{a}, (b}3
Ex.Z_.Examine whether the following is partition of the set N of natural numbers.
. P=[{n|n>3},{1,2,3,4)]

Sol. Given that
P=1{4,5,6,7...}{1,2,3,4}]
=[4,, 4,) :
where 4, =1{4,5,6,7..},4,={1,2,3,4}. _
Plsnot partition of N since 4, and 4, are not disjoint. [ 4belongstobothA &AZ]

Ex.3 LetA ={a,b}.Is P={¢, {{a}, {b}}, {a, b}} apartition of 4 ?
Sol. No since the empty set ¢ can.not belong to a partmon

The conoept of partition of a set is important in many practical applications. You will see that an
equivalence relation partitions the set (on whlch it is defined). T.he cells of such partltlon are ca]led equiva-

letice classes

543, Equivalénce classes :

Let R be an equivalence relation on a set A If (a b) & R, then a and b are called equivalent
with respect to equivalence relation R.

An equivalence relation has a unique pmperfy in the sense that the set of all those elements of 4
that are equivalentto g € A constitute the equivalence class of a, denoted by [a].

Ths, [a]= {x € 4] (@.%) & R} |

| Thus for evéry element a A, we have an equivalence class. However it is to be noted that two

equivalence classes are either identical or disjoint.
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“The set of all equivalence classes 0;[' elements of A undcr ah equlvalence relanon R is called

-‘quouent set of 4 by Randis wntten as
_ y |
7 = alla e 4;.

The following theorem entails the importarit properties of equivalence classes.
/ Theorem. Let R be an equivalence relation defined on the non-empty set A. Ler abed

Then '

Maeld

(i) b € [a] = [b] =[a]

(i) la] = bl = (2, 0) € R

(iv) Either [a] =[] or [a] ~ [] = ¢

Ex.1, Let Ry be an equivalence relation on the set 7 of integers such that “(a b) e Ry ¥f
3 | {(¢—b)". Then find the partitions induced by R3 inZ

Sol. We know that

[¥]= {a|(ax) € Ry}
Here (a, x) € R; if (a—x) is divisible by 3 i.e. (¢ —x) is multiple of 3.
An equivalence class 4, =[], is obtained by adding r with multiples of 3. -

\ Consequently,
Ay =[01={..-9,-6,-3,0,3,6,9...}
A =[1]={.-8-5-2,1,4,710.}
Ay =12)={..~7,-4,-1,2,5,8,11 .}
Ay =[31={..—6,-3,0,3,6,9..}
A, =[41={..-5-2,1,4,7,10 ..}
As =[5]={..—4,-1,2,5,8,11 ...} etc.
We find that - '
dy=Ay=Ag=
Ay =44=4;=
Ay =As=A4g=

VA
Therefore 2 has there disjoint equivalence classes [0], [1] and [2]. That is
3

z :
&~ 0L 0L0),
Ex.2. LetR {1, 1), (2 2), (2, 3) (3,2),(3,3), (4‘ 4)} be an equivalence relation on the set

A={1,2,3,4). Fmd%
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Sol. We know that I
A
Eﬁ[[aHaeA}.
- We have to find partitions induced by R in 4 ie. We have to find equivalence classes
{a), o e A. Recall that [a] = {x e 4| (a,x) € R}.

Ylere 1 is R related to 1 only, This mean that [1]= {1}.

Now we choose which is not related to 1. We take 2, Now 2:is R related to 2 and 3.

Thus 2] = {2,3}.

Now, further we take that element which is not related to 1 and 2. This element is 4 and 4 is R-
related {o itself only. |

Thus _ 4] ={43.

Hence partition of A induced by R is the set {{1}, {2, 3}, {4¥} and conseguently g = {[1].

{2). [4B- |
Ex3. LetA=1{1,2,3,4,56,7,8,9, 10} and an equivalence relation ~ “(a, b) ~ (¢, d) if

a+d=b+ " is defined on the set A * A. Find an equivalence class of (2, 5).
Sol. We have to find ordered pairs (x,y) € A x4

Such that (x, ) ~(2.95)
ie. _ x+5=2+y
or yﬂ3+x

Now, on putting x = 1,2, 3 ... inthe relationy =3 +x, we obtain corresponding values as
x=1,y=3+1=4
x=2,y=3+2=35
x =3, y=3+3=06etc

Thus [(2, $)] = {(1,4), 3. 6), 4, 7), (5, 8), (6, 9), (7,. 10)}.

Self-learning exercise-2

1. Let the retation R = {(1, 1), (1, 2), (2, 1), (2, 2)} be defined on the set 4 = {1,2}. Find %

2. Let 4 = {1, 2,3 ... 15} and an equivalence relation = is defined on 4 x A such that

(a, b) = (c, d) if ad = be, then find the equivalence class of (3,2).
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5.5

Summary

that how an equivalence relation partitions the seton which it is defined. These pariitions are called

equivalence classes. Similarly, partial ordering relation is worth mentioning because it gives an idea of

This unii aimed to make you understand relations, their types and representation. You have seen

poset which in turn serves as a basis of theory of laitices. This will be dealt in the next unit. To make the ]

learning process a happy journey you are advised to unblbe the concepts.
5.6 Answers to self-learning exercises
| Self-learning exercise—1
1. (i) 2. (i) 3. () 4. {iv) |

Self-learning exereise-2 {

R (9, 6), (12, 8), {15, 10)}

5.7

Fxercises

1. LetA {0,1,2,3,4}, B~ {0, 1,2, 3} Arelation R 4 x Bis defined such that (g, &) € Rif

a+b=3. : _
Then find the relation R.  [Ams. R={(0,3), (1,2, 2, 1), (3, 0011

2. Arelation R is defined on the set of integers Z such that (a, b) € Rif

Hash+1
(ii} a#b
(i) a is multiple of b.

Then identify the type of relation Ris
jAns. (i) Reflexive, (i) Symmetric, (i) Reflexive, transitive]

3. Wite the relations R and S defined on the set 4= {1,2, 3} in matrix form.
R ={(1,1), (2%
S = {(1,2), (2, 1, (1,3)}

1 23 1 2

if1 1 0 ifo 1 1
[Ans. M =2{0 0 0|, My=2{1 0 0jl

30 0 0O 310 0 0

4. Find the directed graph of the relation R “(a, b) e R ifa< b defined on the set A=1{1,2,3}.
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Ans,

- Let a relation R = {(a, b)|a+3b =13} is defined on the set of natural numbers. Then find R
and R,
[Ans. R = {(10, 1), (7, 2), 4,3), (1, 4)} R“~{(1 10), (2, 7) (3, 4), (4, 1)}]

. Examine whether the followmgareparutlons of set of natural number N
@) {n|n>5}, {0}, {1,2.3, 4,5}
@) {n|n>6}, {n|n<7}
(i) {n|{n?> 13}, {n|n? < 13}

_ " [Ans. (i) No, since 6 g N, (1) No, (iii} Yes]
- An equivalence relation R = (L 1), (1, 2), @, D, (2, 2), (3, 3)} is defined on the ‘set

4={1,2,3}, Find-ﬁ.  [Ans {1, 5

. Let N be set of natural members. Prove that the relatlon defined on ¥ such that (a, b} = (¢, d)
if ad=bc is an equivalence relation,
. Let a relation ~ ig defined on Z x Z such that “(a, b) ~ (c, d)' ifa+b=5h+¢”. Prove that ~ is

an equivalence relation. -

- ann
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UNIT 6 : Poset, Lattices and Functions

Structure of the Unit
6.0  Objectives
6.1  Introduction
62" Poset
621 Hassediagram
6.2.2 Dual of a poset
623 Special elements in poset
62.4 Bounds in poset
6.2.5 Chainand antichain
6.‘_’? Lattices
o.3.1 Properties of lattice
6.3..2 Principle of duality
6.?Wan laws
6.4  Functions
6.4.1 Types of functions
6.4.2 *Composition of functions
6.4.3 Inverse function
6.5 Summary -
6.6  Answersto self-learning exercises

6.7 Exemises

6.0 Objectives

After reading this unit you will be able o
dlscuss poset and related concepts

-1den1113!chams annchamand lattices

« know types of lattices and their pmpemes

« understand functions and their classification
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6.1 Introduction

The study of posets is important because it'is basis of a lattice. Note that every lattice is a poset
and theory of lattices is founding stone of Boolean algebra whose importance is seriously felt in the
digital age of computers. Similarly, theory of functions constitute a basis of many branches of

Mathematics.

6.2 Poset

In the last unit you have studied about partial ordering relation on a set 4. A non empty set A
equipped with a partial ordering relation R is called a poset and is denoted as (4, R). To distinguish a
partial ordering relation we use a symbol <. It is to be noted that the symbol < would stand for a partial

| ordering relation and is not usual “less than or equal to” relation unﬁl and unless specified otherwise.
Consequently in the forthcoming text (4, <) stands for a poset. | |

Poset : Anon empty set 4 equipped with a relation < is a posetif for a, b, ¢ € 4, the following -
hold good.

Ay reflexivity :a<a vaed

A, Anti-syminetry : a<b,h<a<>a=b

Ay Transitivity ta<b, b<c=asc _

Note 1 : If < is a partial ordering relation on set 4 then < is said to define partial ordering on A.

Note 2 : If two elements ¢ and b of a poset (4, <) are as a < b, then we say that a preceeds b,

Note 3 : The elements a and & of poset (4, <) are said to be comparable if a < borb < a.

Ex.1. The set N of natural numbers is a poset for the relation “|” of divisibility i.e.

asbif alb, abelN
Sol.a<a vae Nsincea|a va e N thus the given relation is reflexive
Let alband bjaw>a=b
ie. asband bLasa=b

Thus the relation is antisymmetric

Again, let albandb|c=a|c

Thus asbhh<e=ag<e

Hence the relation is transitive also

Thus (¥, | ) is a poset.

6.2.1 Hasse diagram : |

A finite poset is represented by a Hasse diagram. In Hasse diagram, elements of a poset are
dencted by points and if  is related to & then b is placed a little higher than a and these are joined by a

line segment. In Hasse diagram reflexivity and transitivity are not shown.
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As an illustration let @ = b, then its representation in Hasse diagram will be as shown in the fol-

1owing figure

ot
k\{-

Fig. 1
Note that a Hasse diagram does not have any horizontal line.
Ex.}. Draw Hasse diagram of the posel A1)
where A=1{1,2, 3,4%; aRD if alb.
Sol. The partiat ordering relation R is given by _
CR={0L D26 G 4, (1,2, (1,3, (LA @, O)
Then ordinary representation (arrow diagram) of the relation R will be as follows

Fig. 2 Fig. 3
The Hasse diagram would look like Fig.3 ofter cxcluding arrow heads showing reflexivity and
transitively. |
Ex.2. Find the velation R defined on the set
where A={1,2,3, 4Y; which is exhibited in the following Hasse diagrams
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1 1
) (i)

Fig. 4

Sol. We know that a Hasse diagram depicts partial ordering relation, therefore the givenrelation
R is reflexive, antisymmetric and transitive. Thus we obtain _

@ R={(1,1).(2,2),3,3),44),, 2),(2.3),(1,3),(2, 9, (1, 4} —

@) R={(11),(2,2),3,3),4,4), (1,2), 2, 4), (1, 4), (L, 3G, 4)
Ex.3. P (A) denote the power ser of the set A

= {a, b, c}. Draw the Hasse diagram of .
(P (4), ©), where = is relation of set inclusion,

g

Sol. Given that 4 = {a, b, ¢} then

PUY= {84}, (b}, (e}, 10,8, (5,6}, fa o}, {a, by )
The Hasse diagram of (P (4), <) is as follows '

{a b, )
b, & {a, o) ta, &}
(@ @
¢
Fig. 5

622 Dual of a poset :

Let (4, <) be a poset. 4 relation > is called converse of relation < if

asb=b2a; abed
(4, 2) is called dual of (4, <)

- The forthcoming theorem says that the dual of a post is also a
poset. .. S
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‘Theorem. The dual of a poset is again a posel.

. Proof ; Let (4. <) be a poset. Then to show that the dual (4, 2) of (4, <) is also a poset, where E

> is converse relation of <.

() = is reflexive :

Since - aga wyaed : [ (4, 5)is poset]
Therefore aza vaed '
(i) = is antisymmetric :

ash, bsa < a=b [ (4, <)is poset]-
= bza, azh & a=b

= >igantisymmetric
(ii)) > is transitive : Since (4,<)is a'poset theréfore for a, b, c € A, we have
a<h b<c = asc
czh bza :5c2a-
Then > is transitive |
- Thus (4, 2) isa poset.
6.2.3 Special elements in poset:

aximal and minimal elements :
An element @ in a poset (4, <) is called maximal element if no element succeeds it. That is, @ 15

maximal element of the poset if there is h_o other element b such that a < b. Alternatively, we can say

that a is maximal element of the pos.et if it does not preceed any other element of the poset. Note thata

poset may have many maximal elements.

Similatly, an element x in a poset (4, <) is called minimal element if it does not succeed any -

other element of the poset (4, ).
- For iltustration, consider the following figure

i th

g
j f
Kk e
d
c
a b
Fig. 6

In thus figure, i and / are the maximal elements since they don’t _preceed to any other element of

the poset. Further, o and b are the minimal elements since no element of the poset preceeds them.
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Greatest and least elements in poset : Let (4, <) be a poset. An e]emeﬂt x is called the
greatest element of 4 if
asx Yaed
The ébove definition implies that the greatest element (if it exists) is comparable with all the
elements of the poset. It is to be noted that the greatest element (if it exists) is unique.
Similarly we define the least element of poset. An element y of the poset 4 is called the least
element if |
y£z vzed.
Like greatest element, the least element is unique if it exists.
After going through the above mentioned special elements in a poset, a pertinent question arises.
Is there anything to connect these elements. The following points are worth to reckon with.
- (8} Maximal element of a poset need not necessarily be greatest element. -
(i) Minimal lelement of a poset need not necessarily be Jeast element.
(iii) A poset may not have a maximal element at all.
}\fl Find the special elements in the following posets :

64
© ae o
4 %
1 d a . f

0 ) (i)

Fig.7 |
Sol. (i) The greatest element is 64 and is the only maximal element, The least element is 1 and is
the only minimal element,

(i) The least element is d and is the only minimal element. There is no greatest element. ¢ and b

are maximal elements.

(iéi) The greatest element is ¢. ¢ and d are maximal elements. There is no least element and a
and f are the only minimal elements. |

6.2.4 Bounds:
Let (4, <) be a poset. Then an element ¢ is called an upper bound of ¢, b ¢ 4if

a<c and b<e,

88




Here it is to be noted that any pair of elements in poset may have more than one upper bound.

Therefore we prescribe the notion of least upper bound or supremu. An element c is called least upper

bound (J.24.b.) OF Supemum (sup) of ¢ and b if
(i) ¢ is upper bound of gand b.
(ii) if d is another upper bound of ¢and b then ¢ < d.
similarly an element ¢ is called lower bound of elements a, b € 4 if
c<amdcsh

¢ will be greatest tower bound (Infimum) of 2 and b if there does not exist another lower bound dof @

and b such thatd S ¢.
Note 1 : A pair of elements in a poset may or may not have lower bound ot uppet bound.

Note 2 : The supremuinl and infimum of any pait of elemenis of a poset are unique, if they exist.
Note 3 : Supremum of @ and b is denoted as a Vv b and is read as a join b. Infimum of g and b
isdenotedasanb and is read as o meet b.
Thus sup. {4, b}. =avb
| Inf, {a, b} =anb
Ex.\1. Find upper and Jower bounds of pair of elements in the given poset

d c

a
Fig. 8

Sol. Pair {a, b}
Since _ a<a and aéb::»ais'lciwerbound of {a, b}

a<h, b<b=>Db is an upper bound of {a, b}

Aggin
Again we see that _

asc [-,-aébandbéc-:aagc]
and bsc

Thus ¢ is also upper bound of {a, b}. Similarly d is also upper bound of {a, b}. Thus we have

b, ¢ and d as upper bounds of {a, b}. b is leastupper bound of {a, b} since b is comparable to other

upper bounds cand d. ie. b=¢ and b<d.
6.2.5 Chains and Antichains

Let (4, <) be a poset. A subset B of 4 is said to form a chain iff every pair of elements of Bis
comparable. In case Aitselfis a chain then for any a, b € 4 wehave a<b. If the chain A has 7

elements then the length of the chain is equal to n— 1.
An antichain is the subset of & poset if any two elements of this subset are not comparable.

A chain is called the maximal chain if it is not part (subset) of a larger chain.
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Ex.1. Find the chains in the Jollowing lattice -
1

0
Fi_g. 9

Sol. We have B, = {0, 1}, B, = {0, a, 1), By={0,5.1},B,={0.¢, 1}, B, = (0,0, b, 1}, as
the five chainsinthegiven lattice, since -
0<1; O0<ag<1; 0<b<l; 0<ce<]; 0<b<g<]

Note that the chains B, and B are maximal chains since these are not part of another larger
chains.

2. Find the chains in the Jollowing lattice
/E‘ | (1.2,3)

(1, 3) ‘b‘ (2, 3)

Fig. 10

his lattice for example, . {1}, {6 233, {9, {3}},
0, {11, {1,333, {9, {1}, {1, 2}} and many more. You are advised to look info these. o

We see that {9 , {2}, £2,3}, {1,2, 3}} is one of the maxim

Sol.- There are numerous chains in t

al chain in this lattice, You can find

other five maximal chains,
Ex.3. Verify whether the Jollowing poset has an antichain :
/ | | s
4
4
43
a
Fig. 11

Sol. We see that @y, a3; a3, a;, and Ay,

ds are not comparable in this poset. Hence {a,
" {ay, a5} and {ay, a5} constitute antichain,

@}

90




"~ 6.3 Lattices

A lattice is a special kind of a poset. The notion of a lattice is associated with the bounds in a

poset. Hence, we define. :

Lattice : 4 poset (4, <) is called a lattice if for any pair of elements g and b ind,avbeAd,
andanb e d. ie sup{a, b} €A, and Inf {a, b} € 4.

Note that every lattice is a poset but converse need not necessatily be true.

l

Ex.1 The following poset is a lattice

e
f d
c b
a
Fig. 12

Sol. To ensure whether a poset is a lattice examine that supremum and infimum of every pair of
elements belong to the poset. We have examined for some of the supremums and infimums.
Supremums : Sup {a,c}=c '
Sup {a,f/}=f
Sup {b,f}=e etc.
Infimums Inf {a,c}=a
Inf {b,c}=a
Inf {5, d} = b etc.

You will see that supremum and infinmurm of every pair of elements of the given poset are in the

poset. Hence, it is a lattice
Ex.2. Identify the lattices among the posels given below :

h .
>o:
>

(e
4<
M

0 [ /A (U
s o
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Sol. (i) The poset (i) is not a lattice because Inf {a, b} does not exist.

(ii} The poset (ii) is a lattice. _ .

(1ii) The poset (4if) is not a lattice because 4, 5, 6 are upper bounds of {2, 3} but 4 and 5 ate
‘incomparable. Consequently Sup {2, 3} does not exist.

Self-learning exercise-1

1. Poset (4, ) is a lattice if :
) avbed arnbgd
(i) anbed, braed
iavbed anbed
fivavbed, anbegd
2. Which if the following is not true :
(i) Everyposetisa lattice
(ii) Poset has symmetric relation
(iiii) Hasse diagram depicts transitivity
(iv) All of the above are not true.
3. Which of the following is true :
() Every poset has a greatest element necessarily
(1i} Every poset has a least element necessarily
(%) A poset may have more than one maximal element
(iv} A poset may have no element -
4. Which of the following is not a lattice 2

d c
* _ 9
- -
a . b
{7
d
¢ b
c b
a a
(iii) | (v)

Fig. 14
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5. Find the universal upper bound and universal lower bound of the lattices given below

6. Verify whether the posets given belowarela_rtices:_ :

o .0

Fig. 16 - . - [T

7. Find maximal and minimal elements of the posets given in question 10: Sand 6.
8. Find upper and lower bounds of {a, b} inthe following poset : -

e

6.3.1 Properties of lattices o _
Theorem 1. f;éf a; b ..é dﬁd d bearbzrrary élé}nef;té offdt.r'x;éé (A,ﬁ) Théﬁ .
(i} a<h o avb=b | - -

(i) ash & anb=a.

- 93



(iavbvey=(avbyve and antbrcy=@nbyac
v)avanby=a and an{avb)=a.
(v) asbandc<d = avesbvdand anc<bad

Proof : (i} Given that asb )
Then by reflexivity in lattice (4, <), we have
b<h Cen(2)

(1) and (2) imply that 5 is an upper bound of @ and 5. But we know that @ v & is least upper
bound of @ and b. Therefore, we must have,
avb<a and avb<bd L (3)

' Again, since a v b is least upper bound of ¢ and

Therefore, - b<avbh, a<avh ' con(B)
Thus from (3) and (4) we have
| avbsb and b<avb

which yield avb=p | [on using antisymmetry]
conversely, let us suppose ' '

' avb=ph
To show that ash
Now a v b is least upper bound of @ and 5
= as<avb and bSavb.
= as<b [ avb=b}
Thusweconcludeﬂaat ash o avb=4
(5 Given that as<h . (1)
Then by reflexivity in lattice (4, <), we have | |

asa L ' T nai(2)

) arid (2) imply that 4 is lower upper bound of @ and 5. But we know that a A b is greatest
lower bound of @ and 5. Therefore, '

a<anh _ L (3)
Again, since a A b is greatest lower bound of g and b
Therefore, anbsa _ veer(4)

From (3) and (4), on using antisymmetry, we obtain
' anb=a '
conversely, by supposinga A b = g, you can can prove a < b to yield
o a<beoa Ab=aqa
(é) In order to show that
av(bvc)=(avb)vc
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We shall show that
av(bves{avbyve and (avbyvesavbve)
where result follows on using antisymmetry.
Let us consider a v (b v ¢)
av (bv ¢)is least upper bound ofaand (bvc)
= asav(pve) and bvegavpve o (1)

Again b v ¢ is least upper bound of b and ¢

= ‘ b<bhve and ¢<bve e (2)
From (1) and (2), we have. .

b<hbve<avibvey= bgavlvey T 3)
and ec<bvecsavibvo= cgav'(bvc) . 4)

From (1) and (3) we see thata v (b v ¢) is upper bound of @ and b. Buta v b is least upper
hound of a andb. Therefore, '
avb<av(bve (5)

From (4) and (5) we see that a v (b v ¢) is upper bound of (a v b)and c. But (@ v ) v cis

reast upper bound of a v band c. Therefore,

(avbvesav(bve) ' ()]
we will now show that '
avibvosfavbyve ' ...;.(7)
Again, let us consider (av b)v c. Thenas above
we have, avbs(avbyve and cs(avb):vc ..... (8)
Again a<avh, bsavd e 9
Thus asavbs@vb)ve = asf{avbhve e (10)
bSavbS(avb)vcﬁbS(avb)vc ..... (1)
From (8), (11) we find that
bves(@vbhyve e (12)
From (10) and (12) we find that | |
avbve)s(avbyve : ..... (13)

From (7), (13) we find on using antisymmetry
avvey=(avbyve

Sixhilarly, we can show that
anrc)=lanbync

(iv) In order to prove thatav (@ A b)=a

‘We shall show that av(anbysa and agavi{anb)

whence result follows on using antisymmetry.
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Now, we consider a v (a A b)
av {anb)isleastupper bound of gand a A b -
= agavi(anb) (D)
and ' anb<avianb) L (2)

Agam, a A b is greatest lower bound of g and b < -

= - - asanb T . we(3).

and bSanb e L T )
From (2)and (3), | o :

| a<a/\b<av(a/\b)

= agavianby [using transitivity]  .....(5)
Nowwewﬂlshowthat ' o B
' ' av(a/\b)<a
Now, | a<a ST Geflexivity)
and a/\b<a S [ aAblsglb of a and 6]

= ais upper bound of a anda/\b Butav(a/\b) is least upper bouud of a andax\b
There fore, ' ; o
| av(@nby<sa | nl6)
From (5), (6) on using antisymmetry, we get SR
av(@nb)y=a
Similarly, we can showthat B

| r.;f/\(a/\b) a.

{v) Given that B _ _ _ B _
. asb and c<d I )
Now,  bshvd and d<bvd )
I bvd 18 least upper bound of b and d]

From (1) and (2), we have e

a<bsbvd=a<bvd . .. 3)
csdsbvd=cgbvd L e e 4)
' | [on using transmwty]

(3) and (4) imply that & v d is upper bound of a and ¢, but we know that ave is least upper |

bound of a and ¢. Therefore _ L
av c< b vd, hence the result
Similarly, we can show that

anc<bnad
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eorem.2 The dual of a lattice is again a lattice.

Proof: Let (4. <)bea lattice. Then obviously (4, ) isalso a posel since $18 partial ordering
celation on the set 4. We know that dual of a poset is also a poset. Let (4, z) be dual of the poset
(A, <) where 2 is converse relation on the set 4 anditis defined as

“4 relation = is called converse of relation < if g < b <> bz a” [That means bis compatable 1o
a under relation 2 when @ is comparable to b under the relatlon <.

In order to prove the theorem Wwe have to sho w that any pair of elements of A admil supremum

and inﬁmum with respect to zin 4. . _ _
Leta, b e A ThenaVv b and a A b are.supremum an‘d_ infimum of ¢ and b with respect 0 the

relation <. o
Thus a<avh and b<avh
e avhza and avb>b

= av bislower bound of ¢ and b W1th respe ct to the relat1on 2. Now we will show that
av b is greatest lower bound of a and b for the relatlon 2z Let 1f posable let ¢ be anothel lower bound
ofa and b for the relation > >, Then

c>a = a<c}

and o b :5 h<e o [by'deﬁjntxonotz ]

= cis bound ofa and b for the rehtlon < But avbis least upper bound ofa and b for the

relation <. Hence
avb<c::>c> avb

Thus we have shown that ¢ v b is greatest lower bound of {a, b} for the relation 2.

Similarly we can show that a A b is least upper ¢ bound of a and b for the relation 2.

Sinceav b,anbed. Thus (4, >)1slatuce B

Universal bounds in a lattice - :

Universal upper bound : Anelement u is called umversal upper bound of 2 Jattice (4, <)

asu . Yded '. '
That is, # is universal upper bound of lattice (4, <) if every element of A is comparable to .
Universal lowér bound : An element s is called umversal Jower bound of 2 lattice (4, ) if
 SSX V red
A lattice is called bounded lattice if
: ” <x<u VX cds T

where s and # are universal lower and upper bounds respectively: -

Note 1 : Universal lower and universal upper bounds s and u are denoted by 0 and 1. Here it
should be noted that these are merely symbols and are not ordinary numerals 7er0 and one.

Note 2 : If a lattice possesses universal lower and upper bounds then these are unique.
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Ex.1, Find universal bounds in lattice (P A, ©) where A

={a, b,¢c} and P (4) is power
set of A.

Sol. The lattice (P (4), <) is shown in the following figure :

{a b, c}
{a, ¢} {a )
{a} {b}
o
Fig. 18

Hew {a, b, ¢} =1, {¢} 0 are the universal bounds,

X, 2 Let L be set of all positive divisors of 30. Then ﬁnd the universal lower bound and
universal upper bound of the lattice (L)

Sel. The positive divisors of 30are 1,2, 3,5,6, 10, 15, 30.

Hence L= {1,2,3, 5, 6, 10, 15, 30}. Recall that d1v151b111

ty of positive integers is a partial
ordering relation,

The lattice (Z, | } is shown below,

Fig. 19

Since I1£x230 Yyel

= 1and 30 are universal lower bound and universal upper bound of (Z, | ).
%h

eorem. 3 Let (4, <) be a lattice, then vacd
(avi=landanrl=g4

(JavO=agandan0=0
where 0 and 1 are universal lower and universal upper bounds respectively.
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Proof. (i) Leta € 4. Now, 1 is universal upper bound of 4. Therefore

aslyaci e (1)
Again, 1 <1 (reflexivity in (4, ) . @)
From (1) and (2)

avlsl 3)
Again, since av1isleast upper bound of @ and 1. Therefore

| g<aviandl<avl Cee(d)

Form (3) and (4),

avlisl,igavl
= avi=1

Similarly, we can show thata A 1 = «.

(ii) Leta < 4. Then 0za [+ 0is universal lower bound ofd] .. (1)
Again,' asa . T nn(2)
(1and @) implythat ~ avO<ava [usingtheorem 1 ()]

or av0sa [ava=a] _ R )

Again, av 0is least upper bound of @ and 0

= a<av0and0<avo [ @
Form (3)and (4), - avisaasavl

= avil=aq fon using antisymmetry |
Similarly, we can show an0=0. '
Distributive lattice : |

A lattice (4, <) is said to be distributive lattice if v &, b, ¢ € 4, we have
@aV@A@:@VMA@V@ |
(ir)a/\(bvc)“(a/\b)v(a/\c)

The above two laws are called distributive laws of lattices.

Here, it is to be noted that lattices need not always be dlstrlbutlve as is evident form the

following theorem.

Theorem 4 Let a, b, ¢ be arbitrary elements of lattice (4, <). Then
(i)av(b/\c)é(avb)/\(avc)
(i) an(dveyzlanbyvianc)
' Proof (i) Giventhata, b, ¢ & 4. Then
a<avbmﬂbnc<b<avb
or : a<avbandbrcsavd

= av b is upper bound of a and (b A ¢)

99 . 1




&

= 7 buta v (b A'¢) is least upper bound of aand (b A c). Theréfore,
av(b/\c)<avb S 't}
Againa<avcandbAac<c<ave ST o
ora<avcandbac<ave _
= av ¢ is upper bound of a and b Ac
Buta v (b A b) is least upper bound of a and (b'A'c): Therefore,
| avbae)ysave ~ - 0w werer(2)

Form (1) and (2), we find | |

av@A@<mAMAmv@

sum]arly we can show the result (7).

Complement of an element of a lattice : .. - :

- Let(4, 2)be abounded lattice. Let a 'A. Then an element 4 € 4 is called complement of a

€ Aif. ' '
coavhbslandgab=0, - T T

~ where 1 and 0 are universal upper bound and umversal lower bound reSpecnvely of the latnce A.

The complement of @ is denoted by @ orbya’ - .

- Note -1 : Only bounded lattice adm1ts the notion. of complement _

Note -2 : In a bounded lattice, any element may have no complement or more ﬂlen one comple—
ment, but if the latuce I dlstnbunve also then an element (possessmg complement) would have umque
complement. Hence we state the followmg theorem.

Theorem 3 If an element of bounded distributive Zamce has a complemenr rhen u‘ is umgue

- Proof. Let (4, <) be chstnbutlve and bounded lattlee w1th 0 and 1 as 1ts umversal lower and
universal upper bounds.

Let if possible 4 and ¢ are two different complements of ae A Then by deﬁmtlon of comple~

" ment of an element, we have

. avb-ladanb- Offfffiff jfff"b17f;a)
ad avc——landaf\c o (2) _
Now, e cv(}_ o S [Seetheorem] TR

o —cv(a/\b) .[usmg(l)]
=(cva)a(cvh). o 4 <)1sdlsmhu11ve]
=@veyn(bve o '[ xvy yvx]
hlz\(bvc) '- o _

—bvc' ' o | [+ 1Ax=xAl=x]
_bv(a/\c) o [using (2)] --
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=(hvayr B Ao L A i distribuiive]

=1 a(bAc)
=phve
Thus p=c=bve
Hen’cé 0
umque complement in 4.
fEx.1. Give

" Sol. Let

Here note

- [using (1)

Jur supposition {hata @ A bas fwo dlfferem complements is wrong Iniact a'e Ahas

an example of a lattice where an element of it does not have complement.

us consider the following bounded lattice.

Fig.

in the gwen tattice such that

Where

Ex 2 Takmg examples §

rvb=1 and rab=0.

for ex

fvx=1 and fAax=0

20

that the element r does not have comple mem smce there does not exist any element b

ample we see thatx and y are complement's of 1. Note that

tvy~1 and tAY= 0 i

or unique complement.

Sol. Consider the following latiice

how that an elemem o}‘ a iamce may have diﬁ’erem_ complements



In the above, we find that
avb=landanb=0 _
= b is complement of @ and vice-versa,
Thus complement of @ and b are unique,
In the previous example we hévé seen that the element 7 has two different complements.

Ek.S. Find the .complemenrs of x in the following lattice.

1
Y
X z
0
_ Fig. 22
Sol. From the given lattice we find that
¥vy=landxay=0
and xvz=landxArz=0
= x has two different complements y and z.

Ex.A. Examine whether the lattice given above in the previous example is distributive,
Sol. The lattice is not distributive since,

yA(xvz)=yA1=y

and yA&v@x@A@v@A@
=0vz
=z

= _ yA@v@¢@va@A@

- 6.3.3 De’Morgan laws . Let (4, <} be a complemented distributive lattice then for all
- a, be 4 we have

BHlavdy=o A b
) {anby =g v . .
Proof. (i) In order to prove that (a v by ~ a’A b’that is complement of (@vb)isa Ab we
havetoshowl‘hszut(avl:-)v(a'x\lza')m 1 and(avb)v(a'sz’j=0
‘Wweconsider, (avd)v(a A y=[avb)vala [lavbyve]
| | (since 4 is distribitive lattice)
=@v@vlalavevey
| (on using commutativity and associativity)
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=[(a’va)vb]/\[av(bvb’)]

=[1vblnjavl] [-.'xvx'=1VxeA]
N [-xvi=1y xed]
=1 '
Again, (a’Ab’)/\(avb)=[(a’Ab')Aa]v[(a'Ab')Ab]

=[an (@ AV A A~ b))
I=[(af\a')/\b’]v [a' A O]
=[0Ab]v[d A0] '
= {01 v [0}
= 0 .
= (avby=da nb
(i) Simiarly to proVe (anby=a’vb'we chall show that (g A &) v (@' V py=1and (@arb)yA
@ vb)=0 '
we consider, (@Ab)V (@vb)y=@v Byv (ci A b)
| ~[d V) val Al V) VD]
=((ava)vbirldy (v v b))
=[lv b Ald V1]
=1al
=1
Again, - (ax\b)'/\(a'_\/b’)=[(aAb)Aa’]v[(a;\b)/\b']
=[ad Alanb)]V [an(Ab))
=[(a’Aa)Ab]V[aA(bAb’)] |
~OABIVIaA0 (- xAx =0vyxed)
=0v0 [',‘JC/\O?OAX’-‘O,‘V.’.JCGA]
. = 0 ‘
= (anby=a vt
Complemented lattice : A bounded laitice (4, <) is said to be a complemented lattice if every
element of it contains a complement in the lattice. A
Ex.1. The lattice (P (4), ), where P (A) is power set of nonempty set 4, is complemented
and each subset B of A has the unique complement A — Bsince |
- Bv(A-By=Bu(Ad-B)=4
BA(A-—B)=B('\(A-B)=¢

Note that in the lattice (P (4), ) the set theoreﬁ{bpemﬁons «ynion of sets denoted by U” and
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intersection of sets denoted by. h” serve as join (v) and meét (A) operatlons Further 4 and ¢ are uni-
versal upper bound and wnversal lower bound of the lattice (P (4), ).
- Theorem . The dual of a complemented lattice is again a complemented lattice, (Zej? as
an exercise for you)
Ex.1. Show that the Jollowing fqi‘sﬁicgis not. disrributf_ve.

Flg 23
Sol. In the given Iatuce the element d has two oompfements aand b. Hence it is not distributive

lattice. (Recall that in a dlSt[‘lbllthe Iattloe complement (1f it eXJsts) of an element is unique).

Self—learnmﬂf exerclse-z

1. Which of the following is De-Morgan law
(Hana =1 @Wana=0 . (i)avb=cnl () ava=0
2. Ko is complement of . Then | -
ava=0andana=0 .
() avd=1andanra =0
(ava=0andgnrg =]
(iv)dlva'.:.l andaﬁa'=1 .
3. Which of the fo]lowing is not true for a bounded lattice . - .
@avl=ag. - .._(ii)-av- =1 idanl=a ... () an=0
4. Which of the follomnglstrue for arbltraly elements g, b, ¢ of alattice (A <
V3 av(bAc)>(avb)/\(avc) h o o |
(i) av(bAc)S(aAb)v(aAc)_
ﬁiﬂav(b/\c)s(avb)v(avc)_
CWaverds@vha@ve).
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6.4 Functions

Ny

A functionis a specific case of relation, That is every t‘unetion is a relation but converse need not
‘be true. Now, we have-a formal-definition of funetion. - '
Let 4 and B be two pon-void sets, then a function f from the set A to B iS'a' collectibn of or-
dered palrs o A X B in such a way that fo1 every elcment ae A these exmts umque element beB
~such that @he f .
“ therally it means that every element of the set A is assocmted to umquc clement of B.If further
" inferences that there may be some element in B which s not a_s__soclated to any element of A.
A function f form set A to set Bis denoted as f:A->B 3"
- The sets 4 and B aré called domain and co-domain of the functionf. - )
Range and Image Let (a b) & fthen this implies 1 that i (a) b Here bis called f-image of ¢
and a is called pre—lmage ofb. The set of all the 1mages of the elements of A4 un&r the functlon fis
| ealled the range of £ Symbohcally, range of fis denoted by f (4). Obvnously f (A) o B
A function f A —» B can be depicted as shown below

 Fig2u
6.4.1 Types of function :
(i) One-one or Injective functlon . _ |
A functlon from set A mto sct B 1s callcd one«oﬁe. funetlon lf\;f _:_d,' b c—. A suchthat '. |
fl@=fp=>a=b-

literally, it means that two different elements of A are not as somated w1th the same element of B.

Note one-one’

- Fig. 25 -
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Ex. Let f(x) = 4x + 7, where x is real number then f'is one-one since for
SE) = )= dx, +7= dxy +7
= X =X, _
() Many-one : A function f: 4 — Bis many-one iff two or more elements of 4 are associated

to the same element of B, '

(#ii) Onto or surjecti;fe function : A function £: 4 — B s called onto if f'(4) = B,

(i) One-one onto or bijective function : A function f: 4 > B is called bijective if fis one-
one and onto function. Bijection is also referred to as one-one correspondence. Literally it means that
Both 4 and B have same number of elements. | '

Following figures depict the types of finctions discussed above
f

Many one
4

One-one onto
(i)

Fig, 26

Working method to test that 3 function is onto :

To verify that a function £: 4 — Biis onto, the following procedure is followed.

Step1:Lety € Bbeany arbitrary element.

Step 2: Let £ (x) = . _

Step 3 : Solve the equation f'(x) = y for x i.e. find the value of x in terms of y. Let it be
x=g®). . - : : _

Step 4 : Verify that for every y € B, the values of x obtained from x = & () belong to 4. If such
values of x exist then fis onto otherwise not, | | |

6.4.2 Composition of functions : o

With the help of composition of functions we get a new function, _ .

Letf: 4 — Band g : B — C be two functions then the compols'ition of fand g, read as goff
and denoted by gof'is another fimction gof: A — C. Which is written as | |

g @=g{f(@)} v aea
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Pictorially it is represented as in the following figure

gof

—e f(g) — .
U g{r@)
Fig. 27
Obviously for the function gof, A is the domain and C is co-domain. Whereas for g, range of fis

its domain.
Note that in general gof # fog
X.Letf: R >Randg:R >R be two functions such that
f@=r1g@ =3
Then find fog and gof
Sol. fog (x) = f[g(x)] - f(_;_] g(x) =§
g 8@ =gl eI S G)=

Properties of composition of functions :
(i) Composition of functions, in general, is not commutative i.e. fog # gof
(ii) Composition of functions is associative i.e. for functions £, g,h wehave
fo(goh)=(fog) oh
(ifi) If functions f and g are onto then their compositions gof; fog are also onfo. ¢
6.4.3 Inverse function :
% A —> B be a one-one onto function then there exists a function /- form B to 4, known as
snverse function of f and is defined as for every y € B,x=J" (y), where f (x}=y.

This can be shown pictorially as given below
f

Fig. 28
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Working method to get inverse 1unct10n Letf:4 -> Bbe. one-one functlon Then /! i
obtained by following the given procedure, _
Step -1 Lety € Bis 1mage ofx € A. Thenf(x) =y .
Step -2 Solve y = f1 (x) for x is terms of y. . '
Step -3 Express x (obtamed in step-2) as f -1 ). Thlsizlves St o
AF m‘d the inverse ﬁmcnon of the ﬁmcnon f:R —,-t R def ned as
/ S S =3x+8=y
Sol. Let x and ¥ be elements of domain R ancl co-domam R such that f (x) y.
Then 3548 = T \ I

or x=y;8=f“(y)

- X— 8
e =
X.2. Let A= {09 .1, 2, 3.} andaﬁlncho”.f‘, A3 A4is de‘ﬁned aS o
.f:(r');{x_l’?fxfs_ddd'_. RN
x+1Lif xis even
ol The given funcnonfls one-one onto. Therefmef - ex1sts Let X Y& A ex1st such that
S (x) . __

x—1=y1f x i__S_._oc!d__} L

X+1=y,if xiseven| '_
y+11fylseven
o e
y- llfylsodd
Thus  x=slg) = y. 1_ yl-scven
R S _'J*'-'_1='1.f}’13_=0dd_- L
-1 [x+1,if xiseven
or o=l
S () | x—1,if xis odd

obviously, =7 -1, : : :
3. Late A= {~2, 1,3, 4}, A fumction Fidsdis defnedsuch that
_ S =x2- 2x + 2
Jfind (i) range of f |
(ii) pre-image of 5 o
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Sol. (i) _ Range of f=f(4)= fx¥)ix € A}

Now, FED=EP2(D+2=
Similady f(r2)=1,f(3)=5,f(4)=10
Therefore f=1{1,5, 10}
(i) Let pre-image of 5 is x; then
fx)y=3
Therefore, x> —2x+2=35
ot | x2—-2%-3=0
or (x+1)(x—3)==0
ot x=—1lorx=3

Since — 1 & A, therefore 3 is pre-image of 5 under 1.

ﬁ Show that a function [« R — R such that

fx)= x% is not one-one.

Sol. f is not one-one function because 2 € R,—2 € Rbut f@Q=/==4

However if we consider a functionf: R - R
such that fE)=x+2,
Then it is one-one sinceif ~ x =y
Then 3=y or BH2=p 2
or f@x)=f0)
consequently f is one-one.
Ex.5.f: N — N, such that
F(x)=3x+2is not onto.
Sol. Lety € N such that f(x} =y

= 3x+2=y
X :y_2
3
Now foreveryy € N, ~—— €N
e.g for : y=1, -1;:;2 ¢ N.

Thus, pre-image of every element of co-domain N does not belong to domain N. Consequently

f is not onto.

/ns LetA=R-{3},B=R-{1}. Show that function f+ A >
: x—4 _

fx)= 3 is one-one onto.
X - .
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Sol. (i) f is one-one

Let x and y are arbitrary elements of 4

such that FE=1)

;i x—4 _y-4

Then -3 y-3

= G=He-)=@-3)p-4)
or Xy—3x—4y+12=xy -3y —4x+ 12
or x=y

consequently /* is one-one.

(i) fis onto
Lety € B. Then
—~4
f@=y==
x-3
y{x—-3)=x-4
or _ ch4+3y
y~1

we see that for y = 1, y—ly €R

4+3y¢3

Again we find that : _ :
Y- ‘

4+3 '
5 fz3:»4=~3. Which is not true. .
Thus every element of B has pre-image in 4. Thus £ is onto. ?
Hence f is one-one onto.

Since

6.5 Summary

In this unit you have gone through posets, lattices and functions. You must have observed that
how a partial ordering relation-defined on a set give rise to notion of a poset and lattice. In continuation
oi'this you must appreciate the importance of Hasse diagram in representing a poset,

In this unit you also studied “function” which is a special case of a relation.

6.6  Answers to the self-learning exercises

Self-learning exercise-1

1. (iii) 2. (iv) GO
4. Except (iv), (i), (if), (iif) are not lattices. (), (if) are not even posets. (jii) is poset but not lattice
because sup {a, ¢} does not exist
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. Universal upper bound (i) (i}

Universal lower bound | e a
a . e
. (1) is not a lattice ' (i) is a lattice

.5 (i) Maximal : e, Minimal : @
(ii) Maximal a, Minimal : e

6 () Maximal : g Minimal : @b
(i) Meximal : A, Minimal @ «

. Upper bound of {a, b} : ¢, doefe

least .uppcr bound of {a, b} : ¢

lower bound of {a, b} : does not exist

Self-learning cxercise-2

. (i) 2. (i) 3. () 4, ()

Exercises

LetA=1{1,2,3 46,89, 12,24} and R be a relation defined on 4 such that *a Rbifa
devices b7, Find the Hasse diagram of the poset (4, R)

f

8g ay

0 | (i)
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Ans. ﬁ)'Minimal elements : a;, a,

Maximal elements : ay, as

(ii} Minimal elements : g, &
Maximal elements : d, f
3. Show that the following lattice is not distributive

_ _ [Ans. sup : g, Inf :al]:
5. Letf:R—)R,g':R-—aR,h:R—)Rbeﬁmctions | o
such that . f(x)ﬁx+2;g_(x]=x2,'h(x);x-2
Tfﬁéllshowthat folgoh)=(fog)oh .
. Also find : goﬁfogaﬁdfojﬁ.
Ans. (gof)(x)=x2+4x+4 .
Gop@=x+2
(Fol) G)=x+4.
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6. Find inverse functionof f: R —> K such that
| foy=x+12
Ans. /1) —x-2
7. Write the dual of av (b A cyanda (b Ac)
Ans. [aA (vl andav (bve) respectively.
8. Show that functionf: 4 —> B,
f (x) =x|x |, v x € 4 is one-one onto

where A=B=1ixeRl |x|<1}
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UNIT 7 : Groups

Structure of the Unit

7.0  Objectives
7.1 Introduction
7.2 Binary operations and tables
7.2.1 Properties of binaly operations
7.2.2  Algebraic structures |
7.2.3  Groupoid, quasigroup, semigroup and monoid
- 7.2.4  Sub-semigroup and submonoid
7.2.5  Cyclic monoid, free semigroup and free monoid
7.2.6  Homomorphism of semigroups
7.2.7  Some important examples
73 ‘Gi-o.ups' ,
7.3.1 Elementary properties of groups
732  Order of an element
7.3.3+ Cyclic groups
?.4 Homomorphism of groups
7.5 Summary
7.6 Answers to self-learning exercises

1.7 Exercises

7.0 Objectives

- After reading this unit you will be able to understand about binary operations and their proper-
ties, groupoids, quasigroups, semigroups, monoids, free monoids, homomorphism of semigroups and

groups.

7 ..1 Introduction

In this unit we begin by defining binary operatibns and their properties. After this we proceed
with the definitions of groupoids, quasigroups, semi groups, monoid, free semigroups, free monoids,
homomorphism of semigroups and sonié important examples and results related to these topics. In the
end of the unit we discuss about groups, examples of groups and elementary properties of groups.
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79  Binary operations and tables

Let S be a nonempty set. A binary operation on S, denoted here by #,1s 8 function from S * S
into S. For any a, b € Swe shall write @ * b ot sometimes b instead of * (, ), that 1s, the image of
the ordered pair (a, b) undet this function is denoted by a * b. Since a binary operation is a function
only one element of S is assigned to each ordered pair (@, by € S X S.

In other words we can say that a binary operation on a set S is a rule which assigns {0 each
ordered pair of elements of S a unique element of S, that is, if @, b are clements in S, then @ x bisa
unique element of S.

~ Examples :

1. Addition (+), subtraction (-)and multiplication ( - ) aré binary operations on the set Z of inte-
gers becaﬁse foreacha, beZ = a+t b,a-b,ab are unique element of 7. However, divi-
sion is not a binary operation on 7 hecause the quotient of two integers is not always an integer.
Division is not a binary operation on fhe set of rational numbers , on the set of real numbers R

~ andon the set of complex numbers C, because division by 0 (zero) is not defined.

2. Let P (S) be the collection of all subsets of S; for some set S. Then union (L) and intersection
() are binary operations on P (S) because for allA,BeP(S) = 4V Band AN BelP
®. |

3, LetS={1;~1}. Then multiplication and division are binary operations on S but addition and

subtraction are not binary operatioﬂs on S.

b ' .
4, Let My = { [a d}‘ a,b,e,de R} be a collection of all 2 x 2 mairices over R. Then matrix
¢

addition and matrix multiplication are binary cornpositions on M,. Again, let

{[“ b]l a,b,ceR} and

¢ 0 _

B:{{“ b}| a,b,deR}
0 d

be two subsets of M,. Then matrix addition is a binary operation on 4 but matrix multiplication

A

fl

is not a binary operation on A, because E :]}E ﬂ are clements of 4, where as

1 1§ 2] 14 2 ' .
L 0} [3 0] = [l 2-\\ ¢ A. On the other hand matrix addition and multiplication are binary

operations on B.

5. On the set N of naturat aumbers, define g * bisa number less than both a and b. Then # isnot
a binary operation on N, since it does not assign a unique element of N to each ordered pair of
clements of N, for example 4%3couldbe2, 1.
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6. LetS= {a, b.c, d}. Let the bihary operation * be deﬁned_on S by means of the following
table : '

*

R EMEE
L0 |ogn R

Sl BT B X oY
SIS0 R

O (R oo

The table is read in the following manner, for example, from the table
_ - axa=aaxb=bdxd=a bsd=c. _
7. LetS={1,-1,i,~/}, where ; _ V1, Letus consider the following tables

+ 1 -1 i —i - O i —~i
13 ) 0 | 1+; 1~ 1 0 2 1—i 1+
-1 0 =2 [ =1+i{=-1-i] ~1 | =2 0 —~1—il=1+;
P 1+ |=-1+i) 20 0 | i+1 0 2i
~i | V=i |=1=i| O =20 =i | -1-i| —i+1 -2 0
1 -1 Pl ~i + 1 -1 I
i 1 ~-1 ! —1 1 1 -1 —1 I
-1 -1 1 — i i -1 -1 1 i —i
i i - i -1 | i i —i 1) —1
-i | =i i 1] -1 ~i | —i il -1 1

From above tables it is clear that multiplication (-) and division (+) are binary Operatidns onS
but addition (+) and subtraction (~) are not binary operations on S.
7.2.1 Properties of binary operations

A binary operatioh * on a set S is said to be commutative if
axb=hbxq v abel
A binary operation » on a set §is said to be associative if
_ (@xbyrc=as(b+c) v a,b,celb.
Examples : |
1. Addition and multiplication are commutative and associative binary operations on the set Z of
integers because for all a, b, ¢ € Z: we have '
atb=b+a, ab=ba,a+ (b +c}=(a+b)+canda(bc)=(ab)c.
On the other hand subtraction is neither commutative nor associative binary operation on Z, be-
cause

2-3#3-2 and 2-(3~5)=(2—-3)-5.
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2. U and M are commutative and associative binary operations on collection of all subset of S, ie.

P (S), because for A, B, C e P (5), we have
| AUB=BuUA, AnB=BN4
(AuB)u_C:Au(BuC)and
(AmB)nC=An(BmC).
3. Consider the exponential operation g * b= o on the set N of naiural numbers. The operation
is peither commutative nor associative because for 2, 3,eN,
2 x3=23=8 but 3%2=3%=9
= 2#3#3%2 |
(2%2)*3 =22« 3 =43 =64 but
2 (2r3)=2423=2%8=28=256 |
= (2*2):1:3:&2*(2*3).
4. LetM, bea collection of all 2 x » matrices Ovexr R. Then matrix multiplication is associative on
M,, but matxix multiplication is not commutative.
Identity element |
Let S be a nonempty set and let » be a binary operation on S. An element ¢ € S18 said to be
left identity with respect to * if e, x a=afor alla ¢ S.Aneclemente, €S is said to be right identity
with respectto x if @ % e, = & forall a € S. Anelemente € S is said to be an identity clement with

respect to * if
gre=a=exa VYaeb

Thus an element e € S is called an identity in S if it left as well as right identity in S with respect
to binary operation  in S. | ‘

Inverse of an element : ,

Let S bea nonempty set and let # be a binary operation onS. An element b € S'is called a left
inverse af a with respect to # ifbsa ~¢, where e is the identity element in S with respect to binai‘y
operation * 15 $. An element b € Sis called a right inverse of a with respect to * ifaxb=¢e. An
element be S is said to be the inverse of an clementa e Sifbra=e=a* b. Thus an element b € S
< called the inverse of ain Sif bis teft as well as right inverse of a in S and in this case we write a - = b.

Examples : |

1. Tn the set Z of integers 0 (zerd) s the identity element with respect to binary operation addition

(+) because '

' a+0=a=0ta vaezZ
and 1 (one) is the identity element in Z with respect to binary operation multiplication because
a-1=a=1-avaceZzeo is not an identity element with respect to binary operation subtraction
(~) because a0 = a+0-aunlessa=0.
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2. Inthe set P (S), empty se ¢ is the identity element with respect to binary operation  because
puAd=A=40U v 4e P(S)and set S is the identity element with respect to binary
operation N because A NS=4=8S"4y 4 c P (S). If¢ =4 e P(S), then inverse bfA
with respect to binary operation W does not exist. Similarly S 4 € P (S), then inverse of 4
with respect to binéry operation M does not éxist. Since ¢ ¢ =¢ and SN S =S, soin the
power set P (S), ¢ and S are the only invertible elements for the union and intersection binary
operations respectively.

3. Inthe set Q of rational numbers 1 and - 1 are two left identifies with respect to binary operation
v definedbyaxb=a%b v a,bc Q,since 1 ¥ x = xand(~1)*x xyxe(

7.2.2 Algebraic structures :
An algebraic structure is a system consisting of a nonempty set S and one or more operations
“defined on . Thus, if * is a binary operation on S, then (S, #) is called an algebraic structure.
Examples : (N, +), (N, ), (Z, ), (Z, ), (Z,-), (Z +, ), (@ (2, ), (@, (@, + ), (R, +,
) (G ), (P (S), L, ). |
The set of natural number under subtraction is not an algebraic structure because subtraction is
not a binary operation on V.
7.2.3 Groupoid, Quasigroup, Semigroup and Moneid :
Groupond If  is a binary operation on a non-empty set S, then (S, #) is known as groupoid,
i.e. a nonempty set $ cqulpped with one binary operation = is called groupoid.
Examples : (N, +), (N, ), (Z, ), (Z,), (Z, ), (0, ), (Q, ), (C, ), (C, ), (R, ), (R, -), (P
(5), V) (P (). ).

Quasigroup : A nonempty set S equipped with a binary operation * is called a quasigroup if

forx,y € S, the questions a x x = p and y * = b have unique solutions in S,
For example, the algebraic structure (Z, +) is a quasigroup, since the equation @ + x = b and

x + a = b have unique solutions in Z for a, b € Z However, the algebraic structure (Z, -) is not a
quasigroup, since for 4, 7 € X, 4 - x = 7 has no sohution in Z,

| Semigroup : An algebraic structure (S, *) is called a semfgroup if binary operation # is asso-
ciative, L.e., _
ax(bxc)=(asb)*c vy abcelb.
Examples W, +), (N, 9,2, 1), (Z, 0, (G, 9, (0, ) R, 4, R, ), (C, ), (C, ), (P Y

(P (S), ).

The set Z of integers,  of rationals, R of reals and C of complex numbers with binary operation

of subtraction are not semigroups, since subtraction is not associative.
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Monoid : A semigroup (S, #) is called a monoid if there exists an identity Jelement e in S with

respect to binary operation # in.S, that is there exists e € S such that |
' crxa=a=a*e v aeld

Exampies The semigroup (P (5), V) and (P (S), M) are monoid because ¢ and .S are the
1dent1t1es respectlvely foruand Nin P (S). The semigroup (N, ) is a monoid because 1 € Nisthe
identity element for multiplication. But the semigroup (N, +) is not a monoid because 0, the 1dent1ty for
addition is not in N.

7.2.4 Subsemlgroup and submonoid : _

fxisa bmaly operation on a nonempty set S and T'is any nonempty subset of S, then T is said
to be closed under the operation * if a * peTforaliag beT

A nonempty subset T of a semigroup (S, * ) is called a subsemigroup of Sif Titseifisa sei-
group with respect to the binary operation # defined on <. Since T'is a subset of S and  is ass_bciative
in S, so » must be associative in T. In order to prove that a nonempty subset Tof Sto 2 subsemigroup
of S, it is sufficient to show that T'is closed under the binary operation * inS.

Similarly, let (S, *) be a monoid with 1dent1ty ¢ and let T be a nonempty subset of 5. If Tis
closed under the operauon # and ¢ e T, then (T, *) is called a submonoid of (S, *).

Letd=1{1,3,5 ...2n—1,. .} wheren e Nbea collection of odd natural numbers. Then 4
is a nopempty subset of the semlgroup (Z, +) of integers. But.4isnota bubsemlgroup of (Z,+), since A

is not closed under binary operation ‘addition. Similarly the set N of natural numbers is a nonempty sub-
set of the monoid (Z, +) of integers. But N is not a submonoid of (Z,+), since additive identity 0 ¢ N. -

7.2.5 Cyclic monoid )

A monoid (S, *) is said to be a eyclic monold if thére exists an element @ € § such that each
element of S can be written as some integral power ofa, e , for any b € S there exists some n € Z.
such that b = a”. In this case the element a is called generator of S. If addition is binary operation in S, -
then S is said to be a cyclic monoid generated by a e Sifevery element of S can be written as some
integral multiple of a. For example the set S={1,-1,i,~i}, where j = J—1 mder multiplication asa
binary operation is a cyclic monoid. The elements i and — i are the generators. The set Z of integers:

under addition as a binary operation is a cychc monoid. The elements — tand 1 are the genefators.

’? 2.6 Homomorphlsm of semigroup |

Let (S, ) and (85 0) be any two semigroups. The a mapping f S — 87 is called a semigroup
homomorpl_l_lsm, if _
Fash)= f(aj_ 0f(t), forall a,besS.
o, simply f@b)=F(@f®), forall abes.
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If fis one-one then it is called a semigroup monomorphism. If fis bnto then it is called a
semigroup epimorphism. If /is one-one, onto, i.e., bijective, then it is called an isomorphism of semi-
groups. A homomorphism of a semlgroup into itselfis called a semigroup endomorphism., An isomor-

phism of a semigroup onto itself is called a semigroup automorphism.

Two semigroup S and S are said to be isomorphic, if there exists an isomorphism between

them, and then we write S'= S
For example, let 4 be the set of all even integers, then the semigroups (Z, +) and (4, +)are
lsomorphic We define a function f: Z ~> 4 by f(a) = 2a. fis one-one, since flay) f (a5)=>2a, =

2ay = ay = a,. Let b be any even integer. Then a= g— e Z such that Ja)y=r (5] = b, so fis onio.

Forany a, b € Z, we have
fla+by=2(a+b)
=2a+2b=f(a)+f(b).
Hence (Z, +) and (4, +) are isomorphic semigroups; i.e. Z = A.
Similarly, let 4 = {0, 1} and consider the semigroup (4*, -) and (4, +,), where - is the concat-
enatioﬁ operation and +, is defined by the table | |

+y 10 1
0 0 1
1 1 0

Define the function /: 4* ~> 4 by

f (oc) _ {1 if o has odd number of 1's
|0 if o has even number of 1's,

If is easy to verify that ot and B are any elements of 4*, then Sfle- B =7 () +, f (ﬁ)

" Thusfisa homomorphism. The function S is onto, since /(0)= 0 and f(1}= 1 but f Ispotan -

isomorphism, since it is not one to one.
7.2.7 Some important examples

1. Show that the set Q" of positive rational numbers is a monoid with binary opera-
tion * defined by

| a*b-—-»%é Va,be Q.
Sol. Let a, b; ¢ be three elements of O, Then

(a*b)*(::a—zb-*c

_-(ab)c
=
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_4a [2&']
2 2
a
=2
< (puc)
=ax(b*c)
= _ (a*b)*c=a*(b*c)va,b,céQ*.

Hence # is associative.

Let e be the identity element in o

Then _ axe=a=e*d vae@F
= gre=a vaecQ
ae
= o —i—-—a
= e'=.-2—eQ+
. a

So, 2 isthe identity element, and hence (O, #) is a monoid.
a-

Ex.2, Show that the set Z of integers with binary operation * defined by
ﬂ/ axb=a+b-ab, foralla, be Z
isa commurdtive semigroup. Show also that it is a monoid.
Sol. Leta, b, c be three elements of Z. Then
ax{bxc)= as(b+c bc)
~a+(b+c bc) - a(b+c bc)
=g+b+c-bc—ab— a_c+abc ..... (1)
and . (a*b)*c=(a+b~ab)*c. '
' =(a'+b—ab)+c—(d+b-—ab)c
=g+b+c—ab—ac—bc+abc
='a-i-b+c—-bc~ab&aci+abc ' e (2)
From (1) and (2), we get |
a*(b*c) (a*b)*c v a,bceZ

Hence # associative.

Also '/ gq+b=at+tb-ab
=h+a—ab
=b=*da
= ' asrb=b*a VYV abcelZ
So itisaiso commutative. | |
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Thus (Z, *) is a commutative semigroup. Now, we observe that
a*0=a=0xq forallae Z
So 0 (zero) is the identity element 1 Z with respect to binary operation * and hence (Z, *) is
aiso a monoid, _
Ex.3. Show that the set Nx N={(a, b) |a b < N} is a monoid with the binary operation
xdefined by -
(a1, b)) *(ay, by) = (a]az, b bz)for (al, 1 (@9, b5) € N x N
Sol. Let(ay, b)), (a,, b,) and (a3, b;) be any three elements of N N, Then
(‘91: 1) * [(ay, by) * (a3, by)] .
={a, by) # (aya;, bybs)
=[a; (a,a3), by (byby)]
: =[(@yay) as, (b, by) bs],
since multiplication is associative in N _
=(@,ay, by, by) * (a3, bs)
=[{ay, b)) * (ay, by)] * (a3, b3).
= * is associative in N x N,
Now -1 € N=>(1,1) € N x N such that
' (a, b)* (1, 1)=(a, b)=(1, 1) # (a, b)
for every (a, b) € N x “N.So (1, 1) is the identity element in ¥ x N, and hence (N x N, ) is a monoid.
ExA. Let (S, %) be a semigroup with identity element e and let b and ¢ be inverses of a.
Then show that b = c, that is, the inverses are unique if they exist,

Sel. Since & and ¢ are inverses ofae S so

arb=e=pxg . (1)
and - ' axc=e=cxg {2}
From (1) we have '
| axh=e¢
= cx{a+xb)=cxe
EN (c+a)x b=, sinc_é * is associative
= - exb=c,using(2)
:; b=c, |
Ex.5, Let S N X N. Let * be a binary operation on S defined by

Ay, by) » (a3, by) = (a + ay, b+ by) for (al, s (@5, 62) € S
(i} Show that (S, *) is a semigroup.
(i) (S, «) is not a monoid,
() Define a mapping f : (8, ) — (Z, +) by
' fla,b)=(a~b), v (a, b) € S. Show that fisa homoriorphism.,
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Sol. Let (a;, by), (a5 b)) and (a4, b3) be any three elements of S, Then
(a), by) * [(a,, by) * (a3, by)]
' =(a,, by v [(ay T as, by F bq)
=[m t{ay+tay, b+ (by + B3)]
=[(ay tay)+ a5, (bthy)+ b, since +is associative i N
=[(a; T ap) (bt by)] * (a3, b3)
. =[(ay, by) * (a,, by)] (a3, b3)
— & is associative in S and hence (S, *) is a semigroup.
(i) Since any (a, b) € S, we have
(@, b) * (0, ={a+0, b+0)=(a, b)
and (0, 0) * (a, b) = (0 +a, 0+ b) = (a, b).
But 0 ¢N => (0, 0) ¢ S, which shows that identity-element with respect to binary operation » is

S does not exist and hence (S, #) is nota monoid.

(iii) For any (ay, by), (ay, by) € S, we bave
Sy, by} * (a5, b,)] =flay tay, b1 + bz)
=@ +a)~ (b +b)
=(a; - b)) + (@, —by)
=f(ay, b)) +f(ay, by)
= fis ahomomorphism.
| Self-learning exercise-1

1. Which one of the followiné isnota semigroup :

(@)(N, +) ) (Z.+) © Z-) @ R,

2. Which one of the following is not a monoid :

(@M, +) (®) IV, ") © (Z,) @ Q. ")

3. Consider the set Q of rational numbers, and let * be a binary operation on Q defined by a + b=
- gt+tb=ab ¥ a,beQ.

() Find3»4,2+(5)and 7*.12—.
(i) s is commutative ?
(éii) Find the identity element for +

7.3

Grdups

A monoid (G, *) with identity e, is said to be a group if for every a € G there exists an element

beGsuchthata$b=e=b*a.-bisknownasinverseofaandwewritea’l=b.Notethatifbis _

an inverse of a, then a is an inverse of b.
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Thus a group is a nonempty set G together with a binary operation * on G, if the following three
properties are satisfied.

I. Associativity

(a*b)xc=ax(b+c)forany elements @, b and ¢ in G.

2. Identity

There is an element ¢ € G, such that are=a=exqa vy ac G.eisknown as identity element

is G with respect to binary operatlon *.
- 3. Inverses .
Forevery a € G, there is an element b € G, called an inverse of @, such that

a*b*e"b*a

Observe that if (G, *) is a group, then # is a binary operation on G, so G must be closed under
*, that is@ % b € G for any elements aand b in G.

A group (G, *) is said to be Abelian or commutative if @ x b = 5 # & for all elements a and b
in . A group (G, *) is nonabelian or noncommautative, if there is some pair of elements ¢ énd binG
forwhicha xb# b+ a.

The number of elements in a group (G, *) is called the order of the group. It is denoted by 0
(G)or| G [ If G is a group that has a finite number of elements, we say that G is a finite group,
otherwise the group is infinite. For example, the set {1, 1} under multiplication is a finite group of
orde two. On the other hand Z, Q, R and C under addition are all infinite groups. |

For an abstract group G, it is convention to write ab for a * b. Hence forth, excepf when neceé—
sary, a * b will always be written as ab. | '

Examples of groups :

L. The set of all integers Z with the operation of ordinary addition is.an_abe]jai:n group. The identity
element is 0 (zero) and — ¢ is the additive inverse of g in 2.~

2. The set of all nonzerd real numbers under the operation of ordinary multiplication is an abelian

: _ |
group. The number 1 is the identity element and an inverse of 0 % a is .

3. The set G= {0} is a group with the operation of ordinary addition and the set G’= {1}isa
group with the operation of ordinary multiplication. 0 (G) = 1 and 0 (G") = 1. In other words
we can say that an identity element with respect to given binary operation is a group respect to
that binary operation, |

4. The set A, of all 2 x 2 matrices with real entries is a group under binary opefation' addition of

. .. {00 _ a b, [-a -b
matrices. The identity is and the inverse of is .
0 0 c d —c —d
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5. The set M, of all 2 x 2 matrices with real entries is not « group under binary operation of matrix
multiplication because inverse do not always exist. However, let G be a subset of 2 x 2 matrices
with a nonzero determinant, that is, nonsingular matrices. Then ( is a group under matrix multi-

_ [t 0] b
plication. The identity element is ]=[0 J and the inverse of Az{a d] is
: c

{ [ d ~b _ -
At = m LC’ ; ] . This is an example of an infinite nonabelian group, since matrix multipli-

cation is nonconmutative, _

6. The set {1,—1,7,— i} where j = /—1 is a group under usual multiplication.

7. ThesetZ,= {0, 1,2, 3\ 4, 5} is a group under addition modulo 6 but not a group under multi-
plication modulo 6. Here 1 and 5 have inverses, but the elements 0, 2, 3 and 4 do not have

| inverses. |

8. ThesetZ, ={0,1,2, ..., n—1} for n2 1 is a group under addition modulo ». For i>07n Z,
the inverse of i is (n —i). Z,, is a group under multiplication modulo » if and only it » is prime.
7.3.1 Elementary properties of groups
Theorem 1. if' G is a group, then
(i) the identity of G is unique,
(i1} for eacha e G a ! is unique. .
Proof : (i) Let ¢, and e, be two identities of G. If él be the identity element of G and

¢, € G, then
| e * ey=ey _ . (1)
Again, if e, be the identity element of G and ¢; € G, then
e xe,=e . o )
Since e, * e, is unique element of G, so from (1) and (2) we get e; = ¢,. Thus the identity
element in G is unique.
(i) Suppose b and ¢ are two inverses of @ € G. Then
' avh=e=bwa )
and axrc=e=c*a . (4
From (3), we have
_  axb=¢
= - ckx(cra)=cxke
= - (¢c¥ay+b=c,
since * is associative in G and ¢ is the identity in G
. e¢wb=c,  [using(4)]
= ' b=c |

Hence inverse of ¢ € G is unique.
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‘Theorem 2. Ina group G

) @Y '=ajforallaecG,and

(i) @by '=bttalforabeG

Proof ; (i) Let ¢ be the identity of G. Then @™ ' =g~ la=e¢, and thus, « is the inverse of a~ 1,

thatis -
| - a=(a 'y
(i) Here we have to show that (aby~ ' =571~ 1. For this it is sufficient to show that
| (aby (b 'aYy=e=(b"'a Vab.
Now (@) \a H=a@® @ la )
| —a(erhah
=a (ea‘ 1y |
=gq”!
= e e (1)
* and, similarly | . |
o b la 1y (ab) = e )

From (1) and (2), we get .-
@@ a Y= 'a @)
=  Aabyl=pla! _
Theorem 3. Let G be a group and let a, b and ¢ be elements of G Then
(c) ab = ac_:_implie;s‘ b = ¢ (left cancellation low)

(i) ba=caimplies b= c(right cancellation low)

Proof:(® Let  ab=ac= a '(ab)=da (ac)
= - 'I(a“ ta) _b‘*—‘(a*'"ajc

= ' o eh=ec

= . b=c

(i) Let ba = ca=>(ab)a ' =(caya!
= | o b(aa“l)xc(aa“l)-

= S bhe=ce

::> ‘ - -- . b=e

Theorem 4. In a group G for a, b € G the equations ax = b and ya = b have unique
solutions in G | '
Proof : The element x = &~ b € G is a solution of the equation ax = b, since
| a(\b)=(aa~ Y b=eb=b.
For uniqueness, suppose that x| and x, are two solutions of the equation ax = b. Thenax, =b

and ax, = b. Hence
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ax, = ax,

= X| =X, using left cancellation law.

Similarly we can show that y = ba™ !'is a unique solution of the equation ya =5 1in G.

7.3.2 Order of an element |

An element a € G is said to be of finite order 1f there exists a positive integer n such that
a" = e. 1f no such » exist then a is said to be of infinite order. The least positive integer » such that
a" = ¢ is called the order of &, denoted by 0 (a) or | ¢ |. Clearly the identity element of a group is the

only element of order one. Note that if 0 (4) = » and if for some positive integer m, @ = e then m 1s

muitipleofn.
Otherwise . m=ng+r,0<r<n,g,reZand
then - | e=a?=agMtr=g" g =@ o =el-a=d
= a"=e with 0<r<n,

which contradicts the fact that 0 (a) = n.

I£0 (@) = », then 0 (@~ 1) = #. In additive group of integers (Z, +), every non-identity element is
of infinite order. In multip]jcative group (R — {0}, -), the number — 1 of order 2 and all other non-identity
clements are of infinite order.

7.3.3 Cyelic groups

A group G is said to be cyelic if there exists an element @ G such that every element of G
can be written in the form a” for same r;/e//Z @ is known as generator of G and we wiite G =<a>.

The additive group Z of integers is a cyclic group generated by 1, since ! € Z and for every
integer », we have n=n - 1. We see that — 1 is also a generator of Z, since n = (- n) (- 1) for every
neZ ThusZ=<1>=<-1>, ' '

The multiplicative group G = {1, w, w2}, where w is non-real cube root of unity, is a cyclic .
group with w and w? as generators.

Theorem 5. Every cyclic group is abelian, but converse is not r::ecessarily frue.

Proof : Let G = < a > be a cyclic group with a as its generator. Also let x, y be any two cle-
ments of G. Then x = @ and y = ¢ for some, m, n € Z. Now .

xy=ata'=a"ti=a"""=a"a"=yx

= xy=y Vx,yegG.

Hence G is abelian. However, converse is not necessarily tree. For example, the additive group

R of real numbers is abelian but not cyclic.

7.4 Homomorphism of groups

Let (G, *) and (G, 0) be any two groups. Then a mapping f: G — G’is called a group homo-
morphism, if '
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F(@*b)=7(@)0f®), foralla, b < G.

Or simply Slab)=f(a)f(b),foralla, b ¢ G.

Iff1is one-one, then it is called a monomorphism. If is onto, then it is called an epimorphism.
Iff1s one-one and onto, i.¢., bijective, then it is called an isomorphism. A homomorphisrh ofa group
into itself'is called an endomorphism. An isomorphism of a group onto itself is called an automorphism.

Two groups G and G “are said to be isomorphic, if thes © emsls an isomorphism between them

.and then we write &= G,

The Kernel of a2 homomorphism f froﬁl a group Gtoagroup G'isthe set {x & G|f(x)=¢"
and will be denoted by Ker /. Here, e is the identity of G/ The image of £, denoted by /(G) and it is
the range of the map 1. Thus. _

' im(f)xf(G)Z{)‘;(x)eGﬂx.e' G},
/(G) = G, then G is called a homomorphic image of G.
;orem 6. Letfbea homomorphwm Jrom a group G mro a group G’ Then the Jollow- |
ing br

@ f (e) = ¢, where e and e’ are zdem‘mes of G and G, respectively,
@) fla )= @) ! for allainG

Proof : (i) Since ¢ is the identity element in G and Jin a homomorphism from G to G, so we

have
| f@)=fee)=F(e)f ()
= _ e’f(e)=f(e) f(e), since e”is the identity in G*
= e’= f(e), by right cancellation low
Hence | Sfle)= e’ . |
(i) a e G=aleGsuchthat

aad ' =e=g gy

Now S@=flaa y=1(@) f @)
= e’=fa)fla )by () fle)y=e’
Multiplying both sides on the left by [ # @I and sunphfymg, we get
faDY=[f@)! forevery ac G
heorem 7. Let fbe a homomorphism from a group G into a group G’ Then fis a mono-
morphism if and only if Ker f = {e}.
" Proof : By definition of Kernel of £, Ker f= {x ¢ G [ fxy=e"}, whére e’is the identity
element in G’ _ _ _
First suppose that /1s a monomorphism., Let x_Be any, element of Ker 7. Then
Jx)=e’
= SO)=f(@), since f(e)=e¢’
128




= | x = e, since fis one-one
= Ker /= {e}.
Conversely, suppose that Ker /= {e}. Let x, y € G such that / (x) f ().
f@ o =roror
F@foHY=¢
Sl D=e
xl e Ker f
xy~ T=e, since Ker /= {e}
x=y
Thus fis one-one and so fis a monomorphlsm

A

4

Theorem 8. Any infinite cyclic group G is zsomorph;c to the additive group {(Z, +) of infe-
gers.
Proof : Let G =< g > be any infinite cyclic group with ¢ as its generator, L.e.,
G={a"\ne 2}
Here G is infinite cyclic group, so the elements of G are all distinct, ie., ™, a’ € Zthen
a”=a” ifm=n. ' '
Let us consider a mapping
f: G > Z defined by
fl@)=n, forala"eG
Let &", a” be any two elements of G, then we have
flamany=f@ ") .
.ﬂm+n
: =f@™)+f(@").
Hence f is a homomorphism. Clearly fis onto, since for any r € Z, there isa" e Gsuch that -
(&) =r. fis also one-one, since for any o, a® € G such that
_ flah=f@)=r=s=>,d=2a"
- Hence fis an isomorphism of .G onto Z and consequently G = Z.
._Ex.l. Let (Ry, -) be the multiplicative group of non-zero real numbers, then show that the
mapping f: Ry — Ry defined by f(2) =x* forallx e Ry is @ homomorphism. Also

find its Kernel.
SoL. . Let x, ¥ be any two elements of Ry, then
f )=
P
=f@)f .
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Hence f is a homomorphism from R, to Ry,
Ker /= {x € Ry | f(x)=1}

={x € Ry|x*=1}
={l,-1}
Hence i Ker f={1,-1}.

Ex.2. If f is a homomorphism of a group G to a group G’ with Kernel K, then prove that
forany a, b e G;
flay=f(®)ifanonlyifab -l e K
Sol. Foranya,b € G,
f@=fG) @U@ =f& eI’

& F(@)f (b 1) = ¢, where e’is the identity of G
= flab H=¢’
= abte K.

Ex.3. If m is fixed positive integer, then show that the mapping [ (Z, +) —» (mZ, +) de-
fined by f (x) = mx, for all x € Z is an isomorphism.
Sol. Letx,y beany two elements of Z. Then
Sx+)=mx+y)
= mx -+ my
=f@x)f).
Hence /' is a homomorphism. fis onto, because for any my € mZ there exists y € Z such that
f{¥) = my. fis also one-one, since
| F&=f )= mx=my
= x=y.
Hence f is an isomorphism from Z onto mZ and consequently Z = mZ.
Ex.4. The mapping f: R — R* defined by f (x) = €*, for all x & R is an isomorphism from
the group (R, +) to the group (R*, ). '
Sol. Letx, y be any two elements of R. Then
o ' fx+y=&P =, forall x,yeR
= f is a homomorphism.
| £ is onto, since for every x € R, there exists log x € R such that
. Flog x)=elo8¥ =y,
We know that for any x, v € R
xry=>e'#e
=[x =f)

= f is one-one.

Heénce f is an isomorphism and consequently (B +) = (R", ).

130 .




Self-learning exercise-2

1. Which one of'the following is not a semigroup ?

1. (Z,+) 2. (- {0}.9) 3. ({1, -1} ) 4 W)
2. Which one of the following is a group ? -
1. (Z,-) | 2. (R,)
3. (Z;={0.1}, 1) - 4. (G={-1,1}L%)
3. In the group (Z; = {0, 1, 2,3, 4}, +5) inverse of 2 is ¢ |
1. 0 2.3 3.4 4.1
7.5  Summary

In this unit we have discussed binary operations and their properties. We have also discussed
about groupoids, quasigroups, semigroups, monoids, free semlgmup, free monoids, and results related

to these topics. In the end of the unit we hdve explained groups and their elemcntary propertles

7.6  Answers to self—learning exercise

Sclf-learning exercise-1
Lo 2.
3.() 344==52%(~5) =7 and 7%::4
(ii) yes | (i‘ii) 0 {zero) -
Self-learning exercise-ﬁ

RO 2.(3) 3.0

7.7 Exercises

1. Which of the following subset of the set N of natural numbers are closed under thel operation of
multiplication ? | ' S
() A4={1}

(i) B=1{1,2}
(iii) C = {x]x is even natural number}

@iy} D= {x|xisprime numbef} _ :

v E = {x |xis odd natural number} [Ans. Sets 4, Cand £ are closed for multiplication)

2. Whick of the above subsets of N are closed under the operation of addition ? .

[Ans. Set C is closed under addition]
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3. Let § be a nonempty set with binary operation * defined byasb=aforallabe S Show

that S'is a semigroup but it is not 2 monoid.
Show that set $= {1, 2, 3, 6} is a monoid under the binary operation * defined by g * b =

greatest common divisor of @ and b = ged (a, b).

Consider the binary operation  defined on the set 4 = {a, 5, c, d} by the following table :
o a b ¢ d |
a | a c | b d
b d a b c
c c d | at a
d i d | b a c
Compute :
(i} cxdandd=*c
(i) brdandd«b
(i) ax(bxc)and(@+ b) ¢ c
(iv) Is =+ oommutatlve associative ? ' [Ans. (D) a,a (ii)c, d (m) ¢, a (iv) neither]

6. Prove that the 1n’rers<,ct10n of two submonoid of a monoid (S, *) is a submonoid of (S, ).

7. Letd = {qa, b, ¢} and consider the semigroup (4*, ), where - is the operation of catenation. If

10.

a = abac, B = cha and y = babe, commute
@) (- B}y () y- (o a) (i) (v - B) - o

[Ans. (i) abucchba babe (ii) babe abac abac (iii) babc cba abac] -
Prove that the set Z of all integers under the binary operation s c{eﬁned.by a*b=g+bh+1"
v a,b € Zis an abelian group.
Let G be the set of rational (real) 11umbers other than 1. Prove that G is an abelian group for the
operation * defined as

axb=a+b-abvyyabedG.

Show that the set 0" of the positive rational numbers forms an abelian group for the composi-
tion * defined as

a’i=b=f—;E Vabe(Q*.

g
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UNIT 8 : Subgroups

Structure of the Unit
8.0 | Objectives

S.l Introduction
82  Subgroups

8.3

8.2.1 Complex of a group

8.22 Cyelic subgroups

8.2.3 Cosets and Lagrange’s theorem
8.2.4 Properties of cosets

8.2.5 Some important examples

Permutation group
8.3.1 Cyclic permutation (cycles)
832 Evenand odd _pennutations
8.3.3 Alternating group 4,
8.4  Normal subgroups
8:4.1 Elementary properties and examples
8.5  Summary
8.6  Answers to self-learning exercises
8.7  Exercises
8.0 Obje‘ctives

' After reading this unit you will be able to understand about subgroups, cyclic subgroups, cosets,

permutation groups, alternating group 4, normal subgroups and quotient groups.

8.1

‘Introduction

In this unit we begin by defining subgroups and their properties. After this we proceed with the

definitions of complex of a group, cyclic subgroups, cosets, permuiation group and some examples and
results related to these topics. In the end of the unit we define normal subgroups, examples of normal

subgroups, quotient group and elementary properties of normal subgroups. -

133




8.2 -~ Subgroups

A nonempty subset /7 of a group G is called a subgroup of G if H itself is a group under the
binary operation defined in G.

We know that if ¢ is the identity element in a group G, then H= {e} is a group under the binary
operation defined in G. H= {e} is known as trivial subgroup of G. The group G itself is a subgroup of
G, and any subgroup H# (s called a proper subgroup of G. Thus every group G whose order > |
has at least two subgroups H={e}and H=G.

The set £ of even mtegers is a subgroup of the additive group (Z, +) of integers but the set & of
natural numbers is not a subgroup of (Z, +), since additive identity 0 (zero) & N. The set H= {1,-1}is
a subgroup of the multiplicative group <G = {1,~1,i,—i},> but the set K = {1} is not a subgroup of
G, since multiplication is not a binary operation in K. _ '

From above we see that if / is a subgroup of G, -rhenl H 1s closed under the operation of G.
However, this condition alone s not 'sl'.ufﬁcient to guarantee that / is a subgroup of G

Not that the identity of a subgroup is the same as that of the group. The_ inverse of any element
of a subgroup is the same as the inverse of the element regraded as a member of the group. The order
of any elemént of a subgroup is the same as the order of that element regarded as a member of the
group. Every subgroup of an abelian group is abelian, |

The following theorem gives a convenient condition to test when a subset of a given group isa
subgroup of that group. _ |

Theovem 1. 4 nonempty subset H of a group G is a subgroup of G if and only ifab~is in
H whenever a and b are in H. |

Proof : First suppose that £ is a subgroup of G. If g e Hand b € H, then b~ H. Since Hisa
subgroup ofG,soae Hb)' e H = ab e H.

 Conversely suppose that / is a non-empty subset of G such that ab' e H whenever ae H
and b € H. Since H is nonempty, so leta € H. By grven condition a € H b=g e H=arl=¢ce
H. Agam by given condition ecHae H = ea”) =471 e H, which shows that every element of / is
invertible. Finally leta, b € . Now b ¢ H = b~ ¢ H. By given conditiona € H, ™' ¢ H =
a(b1y! = ab e H, which shows that H is closed for the binary composition deﬁned inG. Since binary
operation is associative in G, so it is associative in /. Hence H is a subgroup of G.

Note that if addition is binary operation in G, then H is a subgroup of G if and only if (u - b) is
in H whenever ¢ and & are in H.

Theorem 2. 4 nonempty subset H of a finite group Gisa s'ubgroup of G if and only if
ab € Hwhenever a, b € H. ' _ _

Proof : First suppose that H'is a subgroup of G. If ¢ & _ Hand b € H, then obviously ab ¢ H.
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C01wc15el y, syppose that ab € 'H whenever a. h € f1. Now we have to show that H is a sub-
group of G. For this it is sufficient to show that e € Hand for each a € H,its inverse o belongs to H.
Let a be an arbltraly element of H. Then, by the repeated use of the given condition, it follows that
a, &, a,..., a',.... are all belong to H. Since H is a finite set, at beast two of them coincide. Let
a" = a’, fo1 some m # 1 and suppose m > A. Now
=g > aa=ad"a"
:> am™ M =¢,

where ¢ is the 1dent1ty in G. Thus @ =e € H.Also

a gm-m-1 = glm=m-1 g = g™ = ¢ and hence a~ =1 = glm)-1 ¢ H, which shows that every

element of H is mvertlble Hence H is a subgroup of G.
Theorem 3. If H and K are subgroups of a group G then HN K is also a subgroup of G..
Proof : Since 2 and K are subgro'ups of G,soe e HMK and hence HN K # ¢. Leta, b
be any two elements of Hn~ K. Thena, heHanda, be K. Since H and K are subgroups of G,
abl e H and ab~! € K and hence ab™! c HA K. Thus a, b € H K implies ab™' & HmKand
hence H M Kisa subgroup of G.
- Corollary : The intersection of an arbmaxy colleetlon of subgroups of a group is again a sub-
group of the group. '
~ Note that the union of two subgroups of a group is not necessanly a subgroup of the same group.
For example, consider the additive group (7, +) of i integers. Let
| H={2n|neZ} and K {3m|m e Z}, then clearly H and K are subgroups of (Z, +) but

- HuK={..-4, —3, -2,0,2,3,4,6,8, 10, . ...} is not a subgroup of (Z, +) because 2,.

3eHUKbut2+3=5¢ Hu K, that is, U K is not closed. under binary operation defined in Z.

| 8.2.1 Complex ofagroup: o - -

_ A nonempty subset H of a group G is called a complex of G. If H and K are two complex of a
group G, then thelr product, denoted by HK is deﬁned as

HK = {hklhereK}

Obviousty HK c G,soitis also a complex of G. The i inverse of a complex H is denoted by

Hland H = {h“ | h e H}. Tt can be easily verified that (HK)*‘ =Kk1HL
Theorem 4. zj‘” Hisa subgroup of a group G then H 1=H However, the converse Is n_bt

necessartly true.

Proof : Let Hbe a subgroup of G. Now we have to show that H-1 = H. Let h be any element |

of H. SmoeHnsasubgroupofG sohe H

= ) KleH
=  y'=heH .
= HcH! - | _ | LD
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Again, let x be any element of A1, then x= 4! for some # ¢ H. Since His a subgroup of G,
_seheH: x=p1 € H Thus
| HlemsmeH=sglcy (2)

from (1) and (2) we get ! = 4.

However the converse of above is not necessarily true because if we consider the multlpheatlve
group G = {1, —1} and its complex H= {1}, then H~' = {~1} = I But Hisnot a subgroup of G,
since H'is not closed for muiltiplication, - -

322 Cyelic subgroups : _

A subgroup H of a gro up G is said to be a eyclic subgroup if there exists an element a & H

.Such that every element of H can be written in the form &” for some € Z. The element a is called
generator of H and we write I =< g >, _

For example, the subgroup H = {1,~1 24, —i} is a cyclic subgroup of the multiplicative group
(Cys -) of nonzero complex members, / and — are two generators of H.” _

Again, let G be a cyclic group of order 6, generated by a, thatis G=<a> = {a, a2, 43 ,at,

S,a%=¢}. Then H=< a2 > = {a®, a*, b= e} and K = {3, ab = ¢} are cychc subgroups of
generated by ¢ and a° 1espeet1vely. | ' |

8.2.3 Cosets and Lagrange's theorem :

Let H be a subgroup of a group G. Then for a < G, the set Ha = {ha|h e H} is called a right
coset of H i in G. The element @ & G'is called a representative of the coset. It is 4 subset of G. Similarly
the set aff = {ah | h € H} is called a left coset of Hin G 7. It in also a subset of G. If the group G is

abelian, than aH = Ha foralla € G. -

Note that the subgroup H itself is a right as well as a left coset, detexmmed by the identity ele-
ment ¢ € G, since '

He =eH. .

Further smcee ell=>a=eaxe Hrand a=qge € gH. Thusforallae G, a € aH and

a € Ha. If the group operation is addition (+), then a right coset of Hi in Gis denoted as
' H+a={h+a|he H)}

anclaleﬁcosetomeGlsdenotedasa+H lathihe H).

Ex.1. Consider the multiplicative’ group <G ={1, 1 i, ~i}, e > Let H= {1, —1} be a
subgroup of G Since G is abelian, so each left cost of Hin G is a!so a rzghe‘ coset of Hin G Now

CHA={x -k =Ll =1 H = i
=D D=l
Hei={i,—i}=i'H
()3l (i)
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From above we see that H - 1 = H-(-1)and H - i = H . (-i). Thus H - 1 and H - (i) are only
two distinct cosets of H/in G such that G=HU Hiand -~ H-i=¢.

Ex.2. Consider the additive group (Z, +) of integers. Let H = {3x | x € Z}, then Hisa
subgroup of G Since (Z, +) is an abelian group, 50 each left coset of H in G is also a right coset
of H in G Now .

H={.,-12,-9,-6,-3,0,3,6,9,12, ...}
H+'0=0+H=;{ ..... ,—12,-9,-6,-3,0,3,6,9,12, ...} = H
H+l=1+H={.,-8,-5-2,1,4,7,10, ... }
H+2=2+H {y=T,-4,-1,2,5,8, 11, .}
H+3=3+H{..,6,-3,0,3,6,9, 12, Y =H+0
H+4=4+H{n=5,-2,1,4,7,10, ... y=H+1
H+5=5+H{.... ,—4,-1,2,5,8°11, ...} =H+2

Fl;om above we see that .'

H=H+0=H+3=H+6=H+9= ... PRI
Hel=H+4=H+T=H+10= e |
 H2=H4S5=H+8=H+11= oo |

Thus H+0=H,H+1 and .H +2 are only there distinct cosets of H in {Z, +) such that

ZZHU(HJr1)u(H+2)and'Hm(H+1)'m(hl"_+_2)='¢. ' |
Ex.3. Let H=1{0,3} be a sul}group of the group < Zg = {0,1,2,3, 4,5}, +¢ > under
addition moduls 6. Then the cosets of Hin Z4 are
H+,0=0+H=1{0,3} =H+s3=H
H+g1=1+H={1,4} =H+s4
H+g2=2+,H={2,5} =H+45. _
Thus H+, 0=H, H+, 1 and.H+62areonlythree distinet cosets of H is Z, such that
Ze=HOH+1) U(H+g2) and H(H g 1)(\(H+62) ¢
8.2.4 Properties of cosets :
Theor_e4 5. If H is a subgroup of a group G thén Ha = Hifand bnly 1f acH
Proof ¢ First suppose that Ha = H, then | ' v
_ | a= eaeHa HieacH .

Conversely, suppose that a & H. Now we have to show that Ha = H. Letx be any element of s
Ha. Then x = hg for some k2 & H, Since H is a subgroup of G, so h eHae H 1mphes hae H and
hence x € H. Thus _ '

W HacH | - N )
A\ | 137 | | |
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Again, let v be any element of /. Then
y=ye=yala =(a')ya e Ha, since ya' € H | |
= HcHa | enl2)
From (1) and (2) we get Ha = H. o |
Theorem 6. Let H be a subgroup of a group G and let a, b € G Then Ha = Hb if and only
ifab™ € Hand aH = bH if and only ifaV b € H

Proof : Let Ha = Hb, then g = ea € Ha = Hb.
aec Hb= a=hbforsome h e H.
= ab1=he H.

Conversely, let ab™1 € H. Then for any ha € Ha, we have ‘
ha = hab~\b = h (ab™) b < Hb, since h (ab™) € H
= Ha < Hb. Similarly we can show that b < Ha and hence Ha= Hb.
Theorem 7. Let H be a subgroup of a group G Then |
()G is the union of the right (respectively left) cosets of H in G
(i) Two right (respectively lefi) cosets.of Hin G aré_ eirhe?' identical or disjoint.
Proof : We prove the theorem for right coséts of H in G.IAnalogous arguments apply to left

coset. _ _
(i) Since Ha c G forall a e G, therefore
| ' HacG ' .. . '
aLEJG _ (1)
For.any aecG,a=eaec Ha
As a varies in G, from above we get
- Gc Ha
= aLEJG wnee(2)
From (1) and (2}, we get
G= | Ha
aEG'

(ii) Let Ha and Hb be two right cosets of H in G such that Ha Hb = ¢. ']f[hen there exists
x such that x € Ha ~ Hb, so that x € Ha and x € Hb: Now x € Ha and x « Hb imlolies that x =k a
= hy b for hy, b, € H Thus | o A
ha=hb =a=hhb
= Ha=Hi b
= Ha=H(i by )b

"

| | :H5=Hb,sincehf'@eﬂ
Hence Ho nHb#$=Ha=Hb. ~ . |
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heorem 8. [Lagrange s theorem) Let G be a finite group and H be a subgroup of G Then
the order of H divides the order of G ' | ' '
Proof : At first we shall show that o(H) = o(Ha) for all a € G. Let us consider a mappmg e
H — Ha defined by (k) = ha v h e H. fisonto, since for any ha & Ha, h ¢ H such that (k) =

fis also one-one

Since for Ay, hy € I Jy) f(hz) =>ha=ha

. = h; = h,, by right cancellation 1aw
Hence o(H) = o(Ha) v a € G.
Since G is a finite group, the number of right (respectively left) cosets of Hin G is finite. Let
{Ha,, Ha,, ....., Ha,} be the set of all distinct right cosets of H in G. Then by theorem 7 we have

| G = Ha, v Hay U ........\J Ha,. |

Since all these cosets are pairwise disjoint, hence

| o(G) = o(Hay) + 0(Haty) + ........ + o(Ha,)

= o(H) + o(H) P o(H), r times
 =ro@®

Hence o(H) divides o(G).

Index of a subgroup :

Let H bea subgroup of a group G. The number of distinet right (left) cosets of H i in Gis ca]led
the index of Hin G and is denoted by [G : H]. When G is finite by Lagrange’s theorem we have
[6:H]= (?)

For exarfiple, index of subgroup H=A{1,-1} of mulhphcatlve group G = {1,-1,i,~i} istwo.?

8.2.5 ‘Someimportant examples :

Ex.1. Det G be an abelx’an group with ident:‘iy e. Then H={x € G|x%= e} is a subgroup
of . , o '
Sol. Since ? = e,s0ee Hand hence H # ¢ Let a, b be any two elements of H Thena®=e
and b2 =e. Now | T -

(ab™1y? = (b~ (ab™)
=a @ a) b _
" —a@™)b, since Gis abelian
=22 -
= & (b3
_ =eel=¢
‘= abl e Hand have His a subgroup of G.
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Ex.2. Prove that those elements of a group G which commute with a fixed element a of
G forms a subgroup of G. | '
Sol. Let N (a) be a collection of all those elements of G which commute with g, that is
N(@ = {x e G|ax=xa}.
Now we have to show that N () is a subgroup of
GeeG=> ea=ae
= e e N(a)
= N{a)#0.
-Letx_,y € N(a), then ax =xa and ay = ya
ax = xa = 1“1(ax) x 1= x"xa) x
=x g y=6 Ix) ax~!

= x lge = e

= xlg= gy
=»xleN (xa).
Now,
a(xy 1) = (ax) y!
= (xa) y~!
=x(ay™)
=x(a)
=@ Ha
= xleN(@ _ _
Thusx, y e N (@)= xy" & N (a) and hence N (a) is a subgroup of G.
Note that N (a) is known as normalizer of a in G. ' _ _
Ex.3. " Show that the elements in a group G w}Izich commute with every clement of G forms
a subgroup of G . _ ) o
Sol. Let Z (G) be a collection of all those elements of G that commute with every element of G,
i | | | ' _
Z(G)={x e G|xg=gxforall gin G}.
Now we have to show that Z (G) is a subgroup of G.eeG=> eg=ge vy g« G and hence
Z(G)=dase € Z(G). LetxyeZ(G) then :
xg=grandyg=gy v g G.
xg=gx = xxg)xl=x1 (gx) x!
= %) e l=xTg(x
= egx | =x"! ge
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= ogel=xlgvgel

= x e Z(G).

Now,
wHg=x0" 8

=x (@)

= (xg) ¥

= (gn) Y

=gy
(xy“)g ¢ (o) v g & G and hence xy l e Z(G) Thus X, cZ (G =€ 7{G)

and (:Onsequently Z(G) is a subgroup of G..

Note that Z (G) is known as centre of G.I{Gisa eormnutatwe group, tha_‘n YA (G) is G.
Ex.4. Let Z be the group of integers under the operation of addition, and let
H={mx|xeZ} where m is a fixed positive integer. Show that H isa subgroup of G.

Sol. OeZ:~m0 0eH
| | = H#¢.
 Let a, b be any two elements of H. Then a = mx and b =%, for some XXy € Ze
Now . a-b = mx, —mx, ' | |
=m (x; — X))

= Xy, where X4 =X;— %2 € Z
= - -beH | _
Thus a, b eH=>a-be HandhenceHlsasubgroupon
Ex.5. Let H be a subgroup of a group G If index of H in G is two, then prove that
Ha=aHfordllae G. _ :

. Sok Since index of Hin G istwo, so H has only two right (left) cosets in G. Again, since H itself
is anghtasweilasleﬁcosetomeG s0 let G=HW Ho, where H ~ Ha = ¢. Again, if G="Hu bH,
. where H ~ bH = ¢, then Ha = bH. Now a € HaandHaﬂbH soacbH aeall ac bH =
- bH = aH, since cosets are either identical or disjoint. Hence Ha=aH for alla € G. :

Ex.6. Let G be a finite group, H and K are subgroups of G such that K = H. Show-that
(G:K=[G:HIH:K)
- Sol. Smce H and K are subgroups of 2 finite group G, so
[G: H|= % and [G: k)= EK))
Again, since K < H, s0 K is'a subgroup of a finite group H and bence
[k H)- o(K)
o(H)
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'Now. [G . [—[][H . K] :‘0_(0)9_(“{;()

Self-learning exercise-1

1. The set of even integers is a subgroup of the additive group of integers (Z, +). [True/Faise]
2. Theset {1.7}isa subgroup of the multiplicative group < G = {1,~1,1,~}, - >. [True/False]
3. Theset H={0,2}isa subgroup of the group < Z;={0,1,2,3), 4-4 >, [ True/False)
4.

The set of natural numbers is a subgroup of the muliiplicative group (Op. -} of non-zero rational

nuimbers, ' : [True/False]

S G =<g>= _{cz; @ @t =1 Yand H={1.4%} isa subgroup of G. Find all the cosets of H

ngG,

8.3 Permatation group

Let 4 be a nonempty set. Then a permutation of 4 is a finction from 4 to A which is both one-

one and onto. It 4 is a finite set of elements, je.

A= {a,, Ay vvnes )}

and fis a permuiation on 4, then f(a,), / (43), «..ee, f{a,) are unique elements of A, then we write

/ z[f?;) fan) f&)]- |

1 2 3 4 o
341 2

SW=3,f@)=4,1(3) =1 and f@)=2.

Since composite of two one-one and onto functions defined On a set is again a one

For example, f :[

onfo function, S0.We can compose two permutations defined on a set. For example, if

f_12'34 do-fl 234
T 4 2) MNER 5y,

are two permutations on a set A = {1,2,3,4}, then
(fog) (1) =f(g (1) =£(1)=3
(#09) @) =fg @)=/ (3)=1
(f0£) 3) =/(g 3 =f(4)=2
- (o) (@) =f(g (4)? =f(2)=4.
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-one and



Thus,

fog) :(1 2 3 4]

31 2 4
1. 2 3 4

andsimllarl O =
| y _g.f[42_13}

We observe that, fog # gof, in general. Let A be a nonempty set, and S ' be the collection of all
permutations of 4, then S, is a group under permutation multiplication as binary operation. The identity.

function 7, is the identity element because for every 6 € 84,601 =0=1,00. Since foreach o € Sy, :

o is a bijection from 4 to itself, so o1 is a bijection from Ato itself and o is a permutation of 4 such
thats oo 1=, =067 0. '

If A is a finite set {1,2, ...... n}, then the group of all pérmutations of 4 is the symmetric group

on 1 symbols, and is denoted by S, The group 5, is called symmetric group because for n =3, 4 efc. -

elements of S, can be intefpreted as symmetrics of a triangle, a square, etc. 5, 18 non-abelian if n> 2.
oS = ln.
Ex.1. Symmetric group S;. _ . _
Let S, denote the set of all one-one and onto functions from {1, 2, 3} to itself. Then Sé isa
group under permutation multiplication as binary operation. All the six elements of Sy are ' '

1 23 1 2 3
| [1 2 -3} | [1 3 2)

{1 2 3 1 2 3
Gl= ',T2: )
2 3 3 21
c—=1'23 T_1,2_3
2”'312’I3"_213'

We can construct an operation table as:

o |miojo|n|® |0

Go |Co | Oy | G2 T | T2 T3

g [o1 | G2 | To Ty ’Cg' T1

G |c2|lo {01l T | T T2

T T ) T3 | T2 Gy | 62| O

2 T2l T | T3 o1 | Og | O2

T3 | T3 | T2 T G2 | 01| G0

Above table shows that S;isa gr._oﬁp under permutation multiplication. Since the table fis not
symmetric about leading diagonal, Sy isa non-abelian group. - ' -
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8.3.1 Cyclic permutation (cycles) : _ _

LetAbea non-empty set. A permutation ¢ on 4 is said to bea eyelic permutation if there
exists a finite subset {4y, &y,..., @,} of A such that 6 (0} = a, 5 (a,)) = a,..., © @._)=a,6@)=a,
ando (@) =aifaec Adbuta ¢ {a, az,;.., a,}. We denote o by the symbol ¢ = (g, a,,..., a,).

The number of elements that appear in sucha representation of a cyclic permutation is called its
length. Thus length of & defined .above is ». If 7 is length of a cycle o, then order of o is 7. Any cycle of
tength one is called the identity permutation. A cyclic of length two is called a transposition and

every transposition is inverse of itself.

1234 5°7% o
Fore le, if A = {1, 2,3,4,5, 6}, then S =(M2YB)(4)(5) is
or example { . .} o (I 23 4 s 6] M)A @G 1
identity permutation on 4.
1234 56
1= =(4,5) -
1 2 3 5 4 6

is a transposition and
R SR
is a cyclic permutation of lengﬂi four, |
8.3.2 Even and odd permutations :
The sign of a permutation & € S, denoted by e (o),is defined as the product

o(1)-a(s)
1si< fsn (’ —j)
The value of € (o) is either 1 or —1. A permutation ¢ ¢ S, is called an even permutation if

‘& (6)= 1, aind an odd permutation if & () =—1. For example, if
P2 3y 0 {12 3
Gl = N 0-2 = .
31 2 13 2

e(-cs )= 0(1);-6(2)x o(1)-o(3) y 6(2)~5(3)
! " .

) 1-3 2-3

(3~ 1) (3- ) (1-2)  2xIx-1

T(1-2) (1-3) (2-3)  “ix2x-1

Then

.= O isaneven pennutatlon. _
(o) ~2)=0@) s()-50) o(2)- 5()
1-2 1-3 2-3
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(1-3) (1-»~2)X(3ﬂzl

“(72) (=3 (2-3)

e 22N

= o,isan odd permutation.
Note that the product of two even permutations is even, the product of two odd pernutations 38
even and product of one even and other odd permutation is an odd permutation.

8.3.3 Alternating group Ayt
The set of all even permutations of n distinet objects is denoted by A, and it is a group with

respect t0 permutation multiplication as binary operation. It is called the alternating group of degree #

7 _
and 0{4,)= %— For example on the set {1, 2.3%,

12 3y 1 2 3 P 2 3
Ay =109 = , O = , Oy =
1 2 3 2 3 1 31 2

s an alternating group of order 3. It is a subgroup of S;. We can constrict an operation table for 4, as

Here o, is the identity elements, o] =0, and 0'5‘ =oy. ltisan abelian subgroup of a non

abcliaﬁ group 53.

8.4 Normal subgroup

A subgroup N of a group G is said to be a normal subgroup (or invariant subgroup or self cop-
jugate subgroup) of G if foralln e Nandx € G, wnxl e NN Nisan normal subgroup of G, then
symbolically we writeitis N < G. '
Equivalently if xNx 1 = {xnx" | n € N}, then N is a normal subgroup of G if and only if
_xNx”' — N for every x € G. Every group G whose order greater than one has at least tWO normal
subgroups N = {e} and N=G. These (wo are known as improper pormal subgroups of G and every
normal subgroup other than these two is known as proper pormal subgroup.
Agroup G is said to be Simple group if its only normal subgroups are {e} and G. For example
a group of prime order is simple, because such a group has 1o pr0pér subgroups. If G is an abelian
group, every subgroup N of G is normal in G, because for every

neN,xeG,xnx"‘=xx_1n=en=neN.
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8.4.1 Elementary propertics and examples : _
'l‘h;% 9. 4 subgroup N of a group G is normal if and only if xNx™! = N for every
xe @G . _

Proof : First suppose that N is a normal subgroup of G, then for every x € G,

xNx—-l'gN ' | ' s (1) |

and forx! e G,
| N Ne=xt Nyl o N,

Now, for every n € N, we have -
| n = e¢ne

= x| )
=y (x_]nx) e xNx T,
=  nexNy !y ne Nand hence _ |
. ' N < xNx! yxe¢ (2)
from (1) and (2), we get '

' xNxl=pN.

Conversely suppose that xMe! = N for every x € G, then obviously

xNx~! < NV and hence N is a normal subgroup of G,

'ny;ém'lﬂ. 4 subg.;‘oup N of a group G is normal in G i and only if xN = Nx, for each
xe (. . '
Proof : First suppose that xN = N for eachx € G. Then for each n e N, there is m € Nsuch
-that |

nm=mx= mxl=mepN

= ) - xmxl e Nfor evety n < Nand x & G and hence N is a normal subgroup of

G. Conversely suppose that Nis a normal subgroup of G, then

xNxl =N foreveryx e G
(eNx~ly x = Ny '
Ny (T x) = Ny
xNe = Nx_
xN = Nx for evéry xed,

fheorem . If Ny and 'Nz are normal subgroups of a group G then N 1 NN, is a normal
subgroup of G. | _ '
' Proof : Since intersection of two subgroups of a group is again a subgroup of that grdup, $0
Ny Ny is a subgroup G. Letx e G and 5 be any element of Ny N,,son e Nyandn e N,. Since
N} and N, are normal subgroups of G,
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S0 xe(.rneN, = xnx”! e N,

and x¢ G neNz = xnxt e N,

Hence xnx~! € Ny N N, for eachx e Gand n € Ny M N,. Thus N, N Nyisa novmnal
subgroup of G.

Theorem 12. Every subgr;oup Nofa group G with index two is @ pormal subgroup.

Proof : From example 5 of article 3.2.5, we have

Nx=xNforallx & G and hence N is a normal subgroup of G.

“Theerem 13. [f Nisa normal subgroup of a group G then the product of 1wo right (Left)

cosels of Nin G is again a right (left) coset of NinG.

Proaf : Let Nx and Ny be two right cosets of Nin G, thenx,y € G. Since N is a nonmal

subgroup of G, 50
Nx = xN forevery x € G.
Now, |
Nx Ny = NGN)y

=N (Nx}y

=NNxy |

= Nxy, since N is. a subgroup, S0 NN = N
= Nx Ny = Nxy, xy € G

Hence product of two right cosets of N in G is again a right coset of N in G. Similarty we can
prove that product of two left cosets of Nin G'is again a left coset of NinG.
Ex.} Show that the centre of a group G that is, Z(G) = {a € Glax=xa ¥y ¥ & G}
a normal subgroup of G.
Sol. We know that Z (G)is a subgroup of G.1etx e Gandn e Z (G), then
xnx~t = (xn) x
= () x™!
=n (x™)
=ne=ne Z((G)
Hence xrx™! € Z(G) for alx e G,ne Z(G),s0Z (G) is a normal subgroup of G.

Ex.2. The alternating group A, of all even permutations of degree n is @ normal sub-

group of the symmeric group S,
Sol. We know that 4 is a subgroup of S,. Let ¢ € S,and T € A, T isaneven permutation

but© € S, is either even or odd permutation. Ifriseven,t -1 iq also even and hence 6 TG -1 ig even, so

c1o) € 4, Again, if & is odd, then o} is also odd and hence 67 G }1sevenandsosrc—‘axln.
Thus,foreverycuSnandreAn = grol ed,andd, < Sy
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Theorem 14. If N is a normal subgroup of G and G/ N is the set of all right cosets of Nin
G then G/N is a group under the binary operation defined as Nx Ny = N xy for all Nx,
Ny e G/N.

Proof : Let G/N = {Nx|x € G}. At first we show that binary operation defined in G/N is
well defined. For this we show that, if Na = Nc and Nb = Nd, then Nab = Ncd. Now, Na = Nc shows
that ac! & N and Nb = Nd shows that &) < N.

Since (ab) (cdy! = abd ¢

=abdYHal @
and N is a normal subgroup of G, so a (bd™1y a1 (ac™!) € N and hence (ab) (cd)! & N,
This shows that Nab = Ned. For Na, Nb, Ne € G/ N, wehave .
(Na Nb) Ne = (Nab) Ne
=N {ab) ¢ |
= Na (bc), since
@byc =a(be),y a,bce G
= Na N (bc)
= Na (Nb Nc),
which shows that binary operation is associative in G/N .

Identity ¢ € G implies Ne =N e G/N such that Na Ne = Nae = Na = Nea = Ne Na for all

Na € G/N. This shows that N is the identity element in G/N . For each Na in G/ N,ae Gand
leG,soNa & G/N such that
Na Na! = Naa™! = Ne = N
and Nal=Ngla=Ne=N.
This shows that Na~! is the inverse of Na. Hence G/N is a group. It is called the quotient or
factor group of G by M.

‘ Note that (3} for the existt:nce of the quotient group G/N, N must be normal subgroup of G.
(i} Every quotient group of an abelian group is abelian.
(#ii) Every quotient group of a cyclic group is cyclic.

However, the converse of (i) and (3} results is not necessarily true because o (j } 18 2 (Prime)
3

and so it is abelian and .clic both but 53 1s neither abelian nor cyclic. _

Ex.1. Consider the multiplicative group < G = {L, -1, i, — i}, - > and its subgroup
H={1,-1}. |

From example 1 of article 8.2.5 we see that & and Hi are two distinct right cosets of H in G
and hence G/H = {H, Hi}. We can construct an operation table as ;
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.| H | Hi
CH | H | H
Hi [ Hi | H

Ex.2. Consider the additive group (Z, +) of integers and its subgroup H={3x|x € AN

Since Z is an abelian group, S0 His a normal subgroup of Z and hence Z/ H exists. From example 2 of

article 8.2.5 we see that H, H+1 and H + 2 are three distinct right cosets of Hin Z and hence
.' Z/H=-{H,H+1,H+2}. '
We can copstruct an operation table as
+ H |H+1|H+2
H | H |H+t1|H*2
H+1 | H+1|H+2| H
H+2 | H+2| H | Ht]

Self-learning exercise-2

1 2 3 4 :
1. Gx[z 3 2] isapermutationonasetA={1,2,_3,4} [True/false]

2. 'Which one of the following is an identity permutation onasetd=1{1,2,3}7

i 2 3 ' 123
@2 3 1 ®\1 2 3)
(12 3 123
I oy 13

3. Inthe quotient group G/N, the identity element s :

(@ N . N+
© e (@0 - |
~ Every subgroup of an abelian group is a normal subgroup. .  [True/false]
5. The union of two normal subgroup is again a normal subgroup. [True/false]
8.5  Summary |

In this unit we have discussed subgroups and their properties. We have also discussed about
cosets and Lagrange’s theorem, pérmutation group and some important results related to these topics.
In the end of the unit we have explained normal subgroups and their elementary propér‘i_ies.

3.6 Answers to self-learning exercises

_Self—learn_ing exercise-1.
1. Tre 2. False 3. Tre 4. False

5. Ha={a,a®), H(1)= {1,
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Self-learning exercise-2

1. False 2. b 3.a 4. True
5. False '
8.7 Exercises

. Prove that set H = {d +ib|a, b € O} is a subgroup the additive group (C, +) of complex

numbers, .

2. If G is an abelian group, then prove that the set 4 = {xe Glxt=¢}isa subgroup of GG.
- Find all the cosets of H={4x|x € Z} in the additive group (Z, +) ofi integers.

[Ans. H, H+ 1, H+2, H+3]

. Find all the right cosets of H= {(1), (1, 2)} in the symmetric group S;.

[Ans. H, H(1,2,3), H(i,3,2)]

3 2 41
then find fog and gof.

‘1 2 3 4 1 23 4) ‘
. Let f =’( ' ]_, gz( : )be two permutations on a set 4 = {1,2, 3, 4},

41 2 3

I 23 4 : 1 2 3 4y
_ [AnsT fog:(l 3 2 4J~-~(23) and gqf-.:.(z L3 4} _(l?)]

. If H and X are two normal subgroup of a group G, then prove that HK is also a normal sub-

group of G.

7. IfHisa subgroup of G and N is a normal qubgroup of G then prove that H ~ N is a normal
subgroup of H. '
. Let G be a group and H be an normal subgroup of G such that G/H is abelian. Show that

vabeGaba‘lb“ e H.

mjalal
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UNIT 9 : Ring, Integral Domain and Field

Structure of the Unit
9.0  Objectives
9.1  Introduction
9.2 | . Rings
9.2.1 Properties of rings
922 Zero diviéors
9.3 Integral domains and fields
9.3.1 Characteristic ofa ring, ﬁitegral domain and field
94  Subrings and subfields |
9.5  Ring homomorphisms
9.6  Some important examples
9.7 Summary
98  Answers to self-learning exercises

99 Exercises

9.0  Objectives

After reading this unit you will be able to understand about rings, integral domams fields and
their properties. You will be also able to understand about ting with zero dmsors ring without zero divi-

sors; subrings, subfields and ring homomorphisms.

9.1 .In_troduction

In this unit we begin by defining rings and properties of rings. Alter this we proceed with the.
definitions of zero divisors, integral domains, fields, subrings, subfields and their properti_és. Tn the end of

the unit we discuss about ring homomorphism and some important examples of this unit.

9.2 ngs

Aringisa nonempty set R equipped Wlth two bmary operatlons addition (+) and mu]nphcatlon
(-} such that
(i) (R, +) is a commutative group, :
(i) (R, - ) is a semigroup, '
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(iif) Multiplication distributes over addition, ie. foraila, b, ¢ & R
a-(b+c)=a-b+a- c(left distributive law)
(b+0):a=b:a+c-a(rght distributive law).

Ris called a ring with unit element if there exists an element e € R. Such that ea =@ = ae for all

a € R. e is known as unit element in R. R is said to be commutative ring if ab=baforalla,b € R.
Tn a ring, the additive identity is called the zero element of the ring and the additive inverse of o € R
is called the negative of a, to be denoted by —a. Also, we'definea—-b=a+ (-byforalla, b € R. Let
R = {0}, then R is a ring with usual addition and multiplication defined as 0 +0=0and 0 - 0 = 0. This
ring R = {0} is called the zero or nufl ring,

Ex.\. The set Z of all integers is a ring with respect to usual addition and multiplication,
because (Z, +) is a commutative group, (Z, -) is a semigroup and for all a, b, ¢ € Z, the following
are true :
' é(b+c)=ab+acand(b+c)a_—"=bd+ca.

Ex.2. The set O of all rational numbers is a ring with respect to usual addition and mul-
tiplicaﬁoﬁ, because (Q, +) is a commutative group, (O, -} is a semigroup and for all a, b, ¢ € O,
the following are frue .

-a-(b+c)=a-b+a—cand(b+c)-a':b-a+c—a.

Note that the set R of real numbers and the set €' of complex numbers are rings with respect to
usual addition ard multiplication. All the above rings are commutﬁtive ring with unity element 1.

Ex.3. Let M2 denotes the set of all 2 x 2 real matrices. Then M, is a ring with respect to R
usual addiﬁon and multiplication of matrices, because (M,, +) is an abelian group, (Mz; Jisa
senngroup and for all 4, B, C € M,, the following are true :

A-(B+C)=A4-B+4-Cand(B+(C)-4=8- A+C A

1 0
It is an example of non-commutative ring with unity [ 0 1 :| -

Exd. ThesetZ, = {0, 1,2, ey 1 — i} is aring with respect to addition and multiplica-

tion modulo n. |
' //SL;.I Properties of Rings :

Theorem 1. For any element a, b, cof aring R, -
@ a- 0=0.-g=0,
(@) a-(-by=—(a b= (—a) b
(i) (~a)- (-by=a-b’
() a-b-c)=a-b-a-c
v (b-c)y-a=b.-a-c-a
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Proof: (i) a-0=a-(0+0) _
=qg-0+a-0,  bydistributive law
= a'-O-i—0'=d'0+a-0
= 0=a-0, by left cancellation law in (R, +)
Similarly 0-a=0. o
(i) From (i), we have / ’
'_ 2-0=0
= a-(~b+tb)=0
= a-(-b)y+a-b=0
= a-(—~b)y=-(@a-b), by definition of additive inverse.
Again from (i}, we have - '
0-6=0
= (—a+a)-b=90
= —ay-bta-b=0
= (—a)-b=—{(a-b)
Thos o (=b) =—(a-by=(~a)-b.
. (i) Using (i),
(a) () =—[a (- b))
=—{(~ab)
=ab
(iv) a-(b-cy=a-[b+ (-0
=g-b+a-(-c)
=a-b-a-c [using ()]
) (b-C) a=[p+(-o)] a
=h.g+(-c)-a _
=b.a-c-a, [using (i7)]
9.2.2 Zero divisors : |

If'aand b are two non-zero elements in aring R such thata - =0, then a and b are called zero

dmsors or divisors of zero. a is known as left divisor of zero and b is known as right divisor of zero.

In & commutative ring R, every left divisor of zero is also a nght divisor of zero and conversely.

A ting R is said to be ring with zero divisors if there exist non-zero elements a, b in R such that
a-b=9, thatisif a # 0 b # 0 but ab = 0. For example the set M, of all 2 x 2 matrices having their

elements as integers forms a ring with zero divisors under addition and multiplication of matrices because

-1. -1
A= [1 I:l , B= [ : ] are two non-zero elements in M, such that -

i1 1
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4B [1 1] ['—1 -1] _ [0 0]_
11 I 1 0 ¢
A ring R 1s-said to be without zero divisors if prodmt of two non-zero ¢lements in R is not zero, -
ie ifa, b € R such that o - b= 0, than either ¢ = 0 or b = 0. The ring of 1ntegers (Z,+, )isa rmg
without zero divisors.
Cancellation Iaws in a ring :
In every ring the cancellation laws for addition composition always hold because it is always an
abelian group. But the cancellation laws for multiplicaiion composition may or may not hold in every
Let a be a non-zero element of a ring R which is not a zero divisor. If & and ¢ are in R and
ab=ac = b= ¢, then it is known as left cancellation law and if ba =ca = b '_= ¢, then it is known
as right cancellation law. '
| Theorem 2. A ring R is without zero divisors if and only if cancefiation taws hold in R.
Proof : First suppose that R is without zero divisors. Let g, b, ¢ € R such that g = 0 and
ab = ac. Now _ )
ab=ac = ab—-ac=0
=a(b-c)=0
= b-¢=0,since a #0 and R is without zero-divisors
=h=¢ | -
Thusab=ac = b=c
Similarly ba=ca = b=c.
Hence cancellation laws hold in R.
Conversely, suppose fhat cancellation laws hold in R. Now we have to show that R is without
ZET0 divisors, Let ab = 0 with a = 0, then | |
ab=0 :ﬁab:a-O,smcea-O:O v aekR
= & =0, by cancellation law.

" Thus R is without zero divisors.

9.3 Integral domains and ficlds

A commutative ring R with unity and which is without zero divisors is called an integral
domain. _ . | - |

The ting (Z, +, ) of ihtegers is an integral domain, because it is a commutative ring with unity
and without zero divisors. Similarly (Q+ H R+ -)'and (C,+, ) are int'egral domains. The ring
<Ze=10,1,2,3,4,5},+, X > is not an integral domain because it is a rmg with zero divisors, since
02,03 ezﬁbutZ %¢ 3 =6 = 0. Note that
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< 7 = {0, 1,2,. I} tp X is an integral domain if and only if pi is prime.

A ring R with 1dent1ty is ca]led a dmslon ring or skew field if all 1ts non-zero elements are invert-
ible. The rings (Q, +, -) of rational numbers. (R, +, -) of real numbers and (C, +, ) of complex
numbers are division rings. The ring M, of all 2 % 2 non singular maﬁioes over R is a division ring. The
ring (Z, +, ) of integers is not a dmsmn ring, sincefor0za e Z, a= :!: 1 multlphcatlve inverse ofa

does not exist in Z.
A commutative ring R with unity in which every non-zero element has multiplicative inverse is

called a field. In other words we can say that a commutative division ring is'a field.

Thus a field is a nonempty set R equipped with two bmary operations (+) and multlphcatlon ( )

such that
(i} (R, +) is a comrnutative group,
{ii) (R— {0}, ) is also a communtative group,
{7if) multiplication distfibutes over addition i e., for all a,b,ce R
a. {(b+cy=a-b+ta-c
(b+c)-a=b-a+tc-a
 The set of rational numbers 0, the set of real numbers R and fhe set of complex numbers C
are fields under usual addition and multiplication as binary operations. The ring of Gaussian integers

Z[)={a+ib|a+b e Z} is an integral domain, because it is a commutative ring with unity and
without zero divisors. But it is not a field, since for 0 a+ib e Z {] its multiplicative inverse is — T

L .1 (a-)_a-ib __a i
’and a+ib (al:b)( hzb) ey az+.!;»2 a*+p?

s E L forall o, beZ

bt gt bt
Theorem 3. Every field is an integral domain Bur the converse is not necessarily true.
Proof : Let Fbeafield. ThenFisa commutative ring with unity in which every non-zero ele-
ment has its multiplicative inverse. In order to prove that Fis an integral domain, it is sufficient to show
that F is without zero dmsors Let a, b, € F such that a=0and gb= 0. Then a~ l ¢ F such that
=1=¢a. Now _ . |
ab=0= al(ab)y=ag10
= (@' a)b=0, since x0=0vy xF
= 1-b=0 -
= b=0
Thus 0= a, ab=0 ‘= b=0and hence F is an integral domain. -
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The converse is not necessatily true because the ring (Z, +, ) of integers is an integral domai'n
but it is not a field as its non-zero elements except 1 and —1 do not have their multiplicative inverse inZ,
heorem 4. Every finite commuiative ring without zero divisors is a field.
' Proof : Let R be a finite commutative ring without zero divisors. In order to prove that R is a
field, it is sufficient to show that R has unity and every non-zero element of R has a Multiplicative inverse
in R. Since R is a finite set, so let us assume
_ R={ay, a, ....., a,} has n distinct elements. Let a # 0 be any non-zero atbitrary element of R.
Then elements aa,, ad, ..., aa, all belong to R and all are distinct, because |

aq; =aa; fori=j

= aa; —aa; =0

= a (a,- -a ,;) =0

= a4—a;= 0, since R is without zero divisor and a # 0
= a;=a; for i#j, which contradicts

. ' the fact R has n distinct elements. Hence the set {aa,, aay,..., aa,} coincide with R. Now a € R nnphesl
that, there exists a; € R such that aa; = a. We shall show that a; is the unity of R. Let ¢, be any
element of R. Then a; = aa; for some a; € R. Now
aqay=apa;=aq, (aaj).

= (a,a) q;

= (aak) a,, since R is commutative

=ad; = a

Thus a; is the unity of R.

leta,=1.8ince | € R,s0 1 =aa,,= a, aforsome a,, € R, which s}lows that a,,, is the
multiplicative inverse of a in R and hence R is a field.

/}heorem 5. Ever:v finite integral domain is a field _

Proof : Let R be a finite integral domain, Then R is a commutative ring with unity without zero
divisors. Tn order to prove that R is a field, it is sufficient to show that every non-zero element of R has a
multiplicative inverse in R. '

Let a be any non-zero element of R. Then a, &,..., a,....all are elements of R. They are infinite

| in number, so all can not be distinet as R is finite, Let

a?=a*form>n

ata =g ag™"
g =g0=1

=
:>
= a-a" =g
- a—ld= am—ra?]
=

Every non-zero element of R has multiplicatiﬁe inverse in R and hence R is a field.
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heorem 6. [n a ring, an invertible element can rot be a divisor of zero.
Proof : Let a be an invertible element ofaring R. Then a # 0. Since a is mvertlble, these exists
-1 ¢ Rsuchthata-al=al-a=1.
Now, let ab = 0 for some b € R. Then
' ab=0=al(ab)=al0

=(ala)b=0
=1:6=0
=b=0.

This shows that a is not a left divisor of zero. Snmlarly we can show that aisnot a right divisor

of zero.
9,3.1 Characteristic of a ring, mtegral domam and field :
Let R be a ring with zero element ‘0" and suppose there exists a posmve integer »-such that

n-a=0,forall a € R, then the least such positive integer 7 is called the characteristic of the ring. If no |

such positive mteger exists, then we say that characteristic of R is zero or infinite.
- K Risaring with unity e, then the least positive integer r such that n e = 0 is called the
characteristic of R. If no such positive integer exist, then characteristic of R is zero or infinite. Since

svery iniegral domain (respectively a field) is a ring with unity, so the characteristic of an integral domain

. aspectively a ficld) is the least positive integer n such that n - e =0. If no such positive integer exist,
then characteristic of an integral domain (respectively a field) is zero or infinite.
Note that in order to find the characteristic of an integral domain D (respectively a field F) we

should find the order of the unity element e of D (respectively F) when regarded as a member of the -

addltlve group D (respect:lvely F).

The ring Z of all integers has charactenstlc 7e10, Since there is no posmve integer i such that
m -1 = 0. The characteristic of the ring < Zg ,{0, 1,2,3,4,5}, +g Xg > 18 6 because order of 1
ﬁgarded as member of additive group (Zg, +¢) is 6. Similarly the fields O, R and C all have charactetis-
tic zero.

corem 7. The characteristic of an integral domain is zero or a prime number.

Proof : Let D be an mtegral domain. If characteristic of D is zero, then the theorem is proved.
Let characteristic of D be nand > 0. Then # is the least positive integer such that n 1 =0, We have
" to show that 7 is a prime number. If possible, let # be a composite number, i.e. 7= pg such that
1 <p<n1 <q<nandp,q e N. Now

nl1=0=(g- 1=
=@ D 1)."0

= p-1=0o0rq-1 =0, since D is an integral

= The characteristic of D is either p or ¢ where 1 <p <nand 1 <g <n, which contradicts
the fact that characteristic of D is 7. Hence # must be a prime number. | '

Note that every field is an integer domain, so the characteristic of a field is zero or a prime

number.
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9.4  Subrings and subfields

A nonempty subset Sof aring R is called a subring of R if Sitself is a ring with respect to binary
operations defined in R. Every non-zero ring R has atleast two subrings S = {0} and § = R.{0} is known
as trivial subring of R and R is known as improper subring of R. Every subring of R other than these

two is known as a proper subring of R.

The ring of integers is a proper subring of the ring (O, +, *) (R, +, -y aad (C, +, ). The ring of

- evern integers is a proper subring of the ring of integers (Z, +, *). _

A subset K, containing at beast two elements of a field F'is called a subfield of F, if K itself is a
field under binary operations defined in F. Every field Fis a subfield of 1iself known as improper sub-
field of F. All other subfields of  are known as a proper subfield.

A field F which has no proper subfield is called a prime field. For example, the field O of ratio-
nal numbels 15 a prime field. Similarly, the field (Z x,) where Z ={0,1,2, ...p-1} where p is
prime, is a prime field.

The field of rational numbers ((, +, -) and the field of real numbers (R, +, ) are subfields of the
field of complex numbers (C, +, -) where as (R, +, -) is a subfield of (C, +, -).

Theorem 8. 4 nonempty subset S qf aring R is a subring of R if and only if

(a-beSforallabes, |

(i) ab & Sforalla,beS.

‘Proof : First suppose that §'is a subring of Randletea, b € S. Then (S, +, -) is a ring and hence

a+b < 8. Again as §'is a subring b eSz*beSandhenceaeS,——bG_S:>a+(-b)~a—b s,

Conversely suppose that a — b € Sand ab € Sforallga, b € S. Nowa — b e S for all
a, b € S implies that ' is a subgroup of (R, +). ab & Sforall @, b € S shows that S is closed with
respect td multiplication. Since multiplication in R is associative and it distributes over addition, the same
is trug for multiplication in.S, since S is a subset of R. Hence S is a subring of R.

Form above theorem we can say that a subset S of aring R is a subring of R if and only if Sis an

additive subgroup of (R, +) and is closed under multiplication. -

Note that the intersection of two subrings of a ring is again a subring of that ring. But the union

of two subrings of a ting is not necessarily a subring of that ring. The union of two subrings of a rings is
again a subring of that ring if and only if one is contained in the other. |

A nonempty subset K of a field F'is a subfield of Fif and only if

(i) aeK,becK = a-bek |

(i) acK O02bekK = abl ek,

From above we can say that a nonempty subset K of a field Fis a subﬁeld.o.f Fifand only itk
is a subgroup of the additive abelian group (¥, +) and X — {0} is a subgroup of the muitiplicative abelian

group (¥ - {0}, -). .
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9.5 Ring homomorphisms

A mapping ¢ from aring R to another rmg R’ 1s called a homomorphism if for ali abeR
¢lath)y=6@+¢(b) and ¢(aby=¢(a)-¢(b).
A ring homomorphism ¢ : R — R” is an isomorphism if ¢ is one-one and onto, and we write
R=R'

A ring homomorphistm is a monomorphism it is injective, an epimorphism if it is surjective.

A ring homomorphism ¢ : R — R is known as endomorphism and is cal]ed an automorphism if ¢
is bijective. : _
If ¢ is a homomorphism from a ring R into aring R, then ¢(0)=0"and ¢ (—a)=—¢ (a), for

every a € K. 0 and 0" and are zero element of R and R “respectively. The kernel of ¢ is denoted by
| Ker ¢ and
Kerp={re R [®(r)=0"}. Since 0 € R implies § (0) =10', so 0 & Ker ¢ and hence Ker ¢
is 2 non-empty subset of R and it is a subring of R. The Image set ¢ B ={p(x)|xe R} is a subring
of R’.

9.6  Some important examples

' 0 a
/M Show that the set of all mairices of the form { 0 b] . a, b e Ris aring for matrix

addition and multiplication. It it without zero divisors.

To 4] 0 a 0 ¢ ' :
Sol. Let M = abeR). Let x= 0 , V= be any two elements of

[0 b b 0 d
M, Then
[0 - ey
X+y= 0 a + 0 ¢ = 0 a+c eM, sinceate, b+de R,
10 b 10 d 0 b+d
p 0 a{|]0 ¢ OIad Mo dbdi R
- _ e _ _
an Xy o s1lo a0 »d , since ad, bd e

Thus Mis closed for the matrix addition and multiplication.
Since the matrix addition is commutative and associative, so matrix addition is also commutative

- . P 0
and associative in M, 0 = 00 is the zero element in M because for each x = [0 ﬂ € M , we have

0

0 a} [0 0] [o a1 To o] [0 &1
x+0= + + .
[0 b} 0 0] [0 b] [0 o] [0 b

0 -
For every x = [(()) :J e M , there exists ~x = [0 e M such that




x+(-x)=(~x)+x=[g ::]*[g §H3 gJ

and hence every element of M has its additive inverse in M. Thus (M, +) is an abelian group.
‘Since matrix multiplication is associative. So it is also associative in M and hence M, )isa
scimigroup. Again, since matrix multiplication is distributive over addition, therefore it is also true for M,

Hence (M. +, Yis aring.

0 010 0O

zero diviso | ‘ ' |
/’_22. If R is a ring such that a* = a, for all a € R. Prove that

(a+ta=0 v aeR,
fia+bh=0=> a=b,foralla, b e R,

01 0o 1770 17 [0 o ‘
We have non-zero element 0 0 e M suchthat = 0 0 , therefore M ha

(iii} R is commutative ring. _
Sol. {i) Since R is aring, so @ € R = a+a e R. By given condition, we have
“ a%a=(a+a)2
=(a+a)(ata)
=g(a+ta)yta(ata)
@+t +a?
- =(a+a)+(a+a)
=> 0+@+d)=(a+a)+(@a+a)
= 0=a + a, by cancellation law for addition
(&) Now a+b¥'0 = a+b=a-+ta,sinceata=0
'_ ' => b= a, by cancellation law for addition
(i) Since Ris aring, soa € R, b € R= a+ b & R. By given condition, we have '
| @+8)=(a+b)
=(atb)(a+b)
- =a(a+b)+b(a+b)
=a%+ab+ba+ h?
| =g+ab+ba+b
= atb=a+(ab+ba)+b
= | 0 = ab + ba, by cancellation laws for addition
Hence by (i), we get S .
ab=baforalla,beR.
So, R is a commutative ring, |
Note that such a ring is called a‘Bodlean. ring,.




Ex.3. Show that the set  *

/ F={a+b\/§ :a,beQ}

zsafela'.
Sol. (i) Let x = a]+b1J— 2 and y= a2+bZJ_ 2 be any two elements of F, then 4y, a5, by, by
eQ. Now _
x+y= (a,+b‘\ﬁ)+(a2+b2~/§)
={a, +ay +(b;+b) J2 e F,since a; +ay € Qand by +h, e ()

and : xy = (al+b1\[2_)(a2 +62\/§)

=a a +a1b2\/§+b1 azﬁ-l»%l by
= (ay @y +2by by) + (ay by + by ay) J2 el
smlceal a,+2b; by € Qand g, by+biaye @
Hence F is closed for addition and multiplication binary opetations. _
Since g-+h~/2 is a real number and addition and multiplication are commutative and associa-
' five in e set R of real numbers, so these are conumutative and a&socxahve in# also 0=0+02 isthe

additive identity and 1=1+0+2 is the multiplicative identity in F. Clearly the additive inverse of

x=a+b2 is -x-(~—a)+(—b}\/_

Since in the set R of real numbers multlphcatlon is distributive over addmon, 50 distributive pmperty

hold in F. Let x = g+b+/2 be anon-zero elementofF Thenenthera¢00rb¢00rbothaandbare

non-zero. Now we have ) ,
L a-bf2 a b
) )

Smce a, b & O, then 42 = 252 only if a = 0 and 5= 0, but this is not possible because either

a% Oorb;é 0. Thus 2 a2b2 and 2‘252 are both rational numbers and hence, we have

1
eF
a+b\/§

ﬁﬁhm& (“+bdr)(a+bdr)

C=14+042.

1
Hence o2 is a multiplicative inverse of each non-zero element g +b+f2 in F. Conse-

f(:111&31:1ﬂy (F,+, yisafield.
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Ex.4. Let m be a fixed positive integer. Then the set
S=mZ = {mx|xe V4 } ‘
is a subring of the ring of integers (Z, +, *). |
Sol. 0 e Z= m - 0=0 & S and hence S # §. Let x = ma and y = mb be any two elements of
S.Thena, b € Z. Now
X—y =ma-—mb
=ma-b)eS, sincea-b e Z.
and ' xy = (ma) {mb) |
| =m (amb) & S, since amh € Z.
Hence S is a subring of (Z, +, -).
Ex5. Let Z (\/5) = {a +bV2 1 a,b EZ} - With the help of example 2 of article 9. 6. we can

show that Z (\E ) is a ring under usual addition and multiplication. Show that the mapping

b: Z(\E) ->Z(\E) defined as ¢(a+b\5) =a-b2 is a ring homomorphism. Determine
Ker . . ' '
SoLLet x=a+b+2 and y= ¢ +dJ2 be any two elements of Z(\&—), thena, b,c,d e Z.

Now
b@e+y) =b[(are)+(b+d)V2]
:(a+c)v—(b+d)\/5
=(a-—b\/§)+(c—d\/§)

'=¢(a+b\5)+¢(c+dﬁ)
: =$ )+ )
and
dx-y) =¢|:(ac+2bd)+(cd+bc)\/§:|

=(ac+25d)-(ad+bc)ﬁ

:(,a~b\/5)(g—d\/§)

=0(a+bv2) ¢ (c+d-2)
=0 40)

Hence ¢ is 2 homomorphism.
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Ker p ={arb2 e 2{ Jﬁ) d{a+b2)= 04042}
{a+bx/§ e Z xﬁ) : afb\/-i §0+0vf_2'}

{mbﬁ e z(2): a=0and b-::o}
{0} '

i

‘Hence Ker ¢ = {0}.

Self-learning exercise-1

1. To form a ting, we require atleast :
(a) One element
(b) Two elemenis
(¢) Three elements
(d) One elements which is addltlve identity .
2. The correct statement is :
(a) Every integral domain is a field
'(b) Every fsite integral domain s a ield
" (c) Every ring is an integral domain
| (cl) A finite commutative ring thh zezo divisors is a field. .
3. The ring < Z, = {0, 1,2, 3}, 4> isating with zero.divisors. [True/Faisel
4. (Z, +,><)1sdﬁeld1l '

(a)pisa composite number

(b) p is a prime number
(c) p is even number
(D pisodd number.
5. The characteristic of the ring <Zo=10,1,2,3,4), +5, X5 IS
@0 o () 2
@5 . (& 3

....--..__...,._-«—._...._.—am__—f.....—__,_..._..-___

9.7 Suwmnmary

ma- b a4 TS T

In this unit we have discussed rings, integral domains, fields and their properties. We have also
discussed ring w1th zero divisors, ring without zero divisors, subrings, subfields and results related to

these topics. In the end of the unit we have explained ring homomorp]mm and some important examples

related to this unit. -



9.8

Answers to self-learning exercises

Self-learning exercise-1

1. d . 2.5 3. True 4. b
5 ¢

9.9

Exercises

A

+ Prove that the set R of numbers of (he form 44 p./3 where a, b are integers is a ring with

respect to addition and multiplication.
If R is a commutative ring of characteristic 2, then prove that
(@+bPR =52+ p2
Prove that the characteristic of a field is either zero or prime number.
IfRisaringand g e R, then show that the set ¥ @={reR|ar= ra} is a subring of £.
If R is aring, then show that the set §= {x Ie; Rixy=yx v yeRlisa subring of R,
If(Z, +, ) and (£, +, ) are rings of integers and even integers respectively, then prove that the
mapping ¢ : Z — E defined as ¢{@=2avy ae Zisnota ring’ﬁomomorphism. |
Prove that the intersection of two subfields of a field is also a subfield of that field.

mfull
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UNIT 10 : Boolean Lattices ahd Boolean 'Algebras

Structure of the Unit
10.0 Objlectives
10.1 irxtmduction
10.2  Boolean lattices
10.2.1 Boolean lattices (Definition)
10.2.2 Covers and atoms |
10,3 Boolean algebras
© 10.3.1 Two-valued boolean algebra
10.3.2 Duality in boolean algebras
10.3.3 Boolean sub-algebras ‘
10.4  Basic theorems and propeﬁies of Boélean algebra
10.4.1 Idempotent lai;fs .
10.4.2 Boundedness lawé '
I10.4.3 Absorption laws
| 10.4.4 Involution law
10.4.5 Cancellation laws
10.4.6 AséOciative laws
10.4.7 De-Morgan's laws.
10.5  Summary |
10.6 'Answers. 10 self-learning exercises

10.7 Exercises

10.0 Objectives

The purpose of writing this unit is to let the studenits famitiar with a new algebraic systern now -
called Boolean algebra, that deals with a systematic treatment of logic, Boolean algebra is widely used
to analyse electrical circuits and alse applied to computer electronics.
;o -
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10.1 Introduction

In 1854 George Boole developed a new algebraic system which is now called Boolean algebra,

In 1938 CE Shannon mtroduced two-valued Boolean algebra and demonstrated that propertics of élec-
. trical sthchmg circuits can be realized by this algebra. Later he called this Switching algebra, How-
ever a formal definition of Boolean algebra were given by EV Huntington in 1904, in which he formu-
lated few postulates called the Huntington postulates.

This unit introduces the definition of Boolean lattice and Boolean algebra. The resemblance and
deference between ordinary algebra and Boolean algebra are acknowledged so that the beginner should
be careful not to apply the rules of ordinary algebra into the Boolean algebra where they arc not appli-
cable. The duality in Boolean algebra, various laws of Boolean algebra and related theorems arc also
discussed in length. '

10.2 Boolean lattices

We recall that if L is a nonempty set and < is a partial order relation defined on the set L, then
- the pair (L, <) is said to be a partially ordered set or a poset. We also recall that a special type of poset
(L, =) in which every two elements x and y have a unique supremum (least upper bound) i.e. sup {x, y}
and unique infimum (greatest lower bound) i.e. inf {x, y} in the nonempty set Z, is said to be a lattice.
Thus a partially ordered set (L, <) is a lattice if and ouly if for every pair of elements a, b L
there exist unique elements 7, ¥ e £ such that
sup {a, b} =uand inf {a, b} =1. _
The sup {a, b} is denoted by a v b (4 join b) and the inf ¢ {a, b} isdenotedbya A b (a mect A),
where “v”” and “A” are the binary operations on the nonempty set L.
* Before giving a formal definition of Boolean lattice we once again recall that :
(i) A lattice (Z, <) is said to be a distributive lattice if and only if for all element a, b, ¢ c L
avibac)= (avb)/\ (avc)andaA(bvc) {avbByvi{anc).

(i) A lattice (Z, <) is said to be a bounded lattice if and only if it has a universal uppcr bound

denoted by 1 and a universal lower bound denoted by 0.
(iii) A bounded lattice (L, <) is said to be a complemented lattice if and only if for each element
' a € L, there exists a unique element a’ & L such that ava’=1 and a A a’=0. The element

a’e L is called the complement of the element a € L, where “’ " isa unary operatlon on the

set L.
10.2.1 Boolean lattices :

A lattice (B, <) is said tp be Boolean lattice if (B, <) s :
(¥ distributive and
(i) complemented.




If we take a finite set S, then we know that the relation “c.” is a partial order relation on the
poWer set P (S) [P (.S') being the collection of all the subsets of S] It can be seen that the pair (P (), <)
is a lattice which is complemented and distributive also. Hence (7 (S) <) is a Boolean lattice.

In a Boolean lattice (B, <), every element in B has a ilnique complement. Therefore, there can
be defined a unary operation on B, denoted by * such that for each element a € B, there _exists a unique
element a’ € B, called the complement of . This unary operation then is called the complement opera-
tion. '

Thus the Boolean laitice (B, <) defines a lattice éyst_em (B, +, -, "y where + and - are the meet
(v) and join (A) operation and ' is the complement operation, such an algebraic system defined by the
Boolean lattice (B, <) is also known as Boolean algebra. '

It is not possible to construct a finite Boolean lattice of any order. A finite Boolean lattice has
exactly 27 distinct elements for some integer n > 1. Moreover, there is 2 unique finite Boolean lattice of
~order 27 for every positive integer 72 1. |

10.2.2 Covers and atoms :

If g and b are any two elements in the Boolean lattice (B, <), then we write g < b if and only
a<banda#b.

We say that the element b € B is a cover of the element ¢ € Bif and only if @ < b and there is
no element ¢ # b in B, such that a <¢ and ¢ <b.

Ah clement in the Boolean lattice (B, <) is said to be an atom if it is a cover of the universal

lower bound 0.

10.3 Boolean algebras

Algebraic system < B, v, A, > defined by the Boolean lattice (B, <), where v, A and ' are the
join, meet and the complement operations respectively, is called a Boolean algebra.

For the formal definition of Boolean algebra, we employ the postulates formulated by E.V. Hun-
tington in 1904. _ '

Let B be a nonempty set consisting of at least two distinct elements 0 and 1 (0 and 1 are not
necessarily the ordinary integers 0 and 1). Let + and - be two binary operations and ' the unary opera-
tion (called the complement operation) defined on B. Then the algebraic structure < B, +,-,',0,1>is

said to be a Boolean algebra if following laws hold in B :
(B1) Forallelementsa, b € B
(i) atb=b+a _
(ii} ab=ba ' [commutative le'iWs]
(B2) Forallelementsa € B |
(i) a+0=a=0+a _
(i) a-1=a=1-a : [Identity laws]
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0and 1 are called the identity elements of B with respect to the + and the - operations respeetlvely We
also call them to be 0 of Band 1 of B.
(B3) Forallelementsa, b,c ¢ B
@) a+(bc)=(a+b)(a+c) |
@ abBt+cy=ab+ac | [dlstrlbutlve laws]

{(B4) Forevery element g € B, there exists a unique element ¢’ € B (called the complement of o)
such that
@ ata’=1 ._
(i) aa’=0 [complementation laws]

The above postulaies are due to EV Huntmgtom If we compare the definition of Boolean alge-
bra with the anthmenc_ and ordinary algebra, we find that :
() The distributive law of + operation over - operation. i.e. the law a + (be) = (a + b) (a +¢) is
valid for Boolean algebra, though it does not hold true for ordinary algebra, '
. (%) The elements of Boolean algebra do not have the additive iJWerse and the multiplicative inverse
and so there are no subtraction or division operations in Boolean algebra.”

(it) The complement operation ' is defined on the Boolean algebra though it is not valid for mdmary
algebra.

(w) The ordinary algebra deals with the real numbers that include an infinite set of elements but Boolean
algebra deals with undefined set of clements. The two-valued Boolean algebra dealb with a set
consisting of only two elements 0 and 1.

{v) The definition of Boolean al gebra does not include the asseclanve laws (is not a Huntmgton pos-
tulate). However these laws can be derived from other Huntington postulates.

In order to have a Boolean algebra B, we must show :
(1 The elements of the set B. _
- (#) The rules of operaﬁoh for the two binary operations “ + “,

(i} that the set B, along with the two binary operations and the unary operation, sausﬁes the
Htmtmgton S posm[atm
There can be formulated many Boolean algebras depending upon the choice of elements of B

and the rules of operations for the binary operations,

1031 Two-valued Boolean algebra
" The structure < B, +, -, * > where B = {0, 1} and the operations +, - and * defined on B are |
shown below : ' | |

X x |x+y X x Xy x |- x
0 0 0 0 0 0] - 0 1
0 I 1 0 1 0 | 0
f o[ 1. I |01 0 |.
1 1 | 1 ' 1 | 1
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]
is known as two—valued Boolean algebra, for we can show that all the Hunungton postulates are valld

for the set B= {0, 1} and the operations defined above.
1. The closure property for the two operations + and - is obvious ﬁ‘om the first two tables glven
above, since the result of each operation is 0-and 1 and-both 0, 1 € B. So + and - are binary,
2, The commutative laws with respect to -+ and - are also obvious from the first two'tables again as

for all 4, b € B, we have
al b |a+h |b+ta| ab ba
0} 0 0 0 0 |0
0| 1 1 1 {0 | o
1] 0 1 1 | 0 0

| 1] 1] 1 1 1 |1
Thus - at+tb=b+a
and ab=ba forall a,b& B

3. From the 'tables, we see that
(@ 0+0=0 and O0+1=1=1+0
@ 1-1=1 and 1-0=0=0-1
This proves that two identity elements, 0 for + operation énd 1 for - operation as defined
in(B2). |
/4 From the following table we see that for all possible values of a, b and ¢
at{acy=(a+b)lato)

atb| ¢| (b)) | atr(e) |a+b|la+e|{(@+b(a+o) |
0j0]o0] © 0 0|l o | 0 '
olo1] o 0 0 1 0 -
o[1]o] o 0 L] o 0
o1 i1 1 I 1 1 !
1{olo] o 1 1 1 1
ijfo|1] o 1 1| 1 1 ‘
t[1 o] o 1 1 1 1 '
1l1i1 | 1 1 1 11 1

Therefore the distributive law of - over + is vahid.
In a similar way we can show that the distributive law of + over - is also valid.
§. From the third given table ie. the complement table we sce that :

a a’” tata’ | a-q’

0| 1 1 0
1|0 1 0
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Thus for each a € B, we have :
a+a=1 and aa’=0

Le. the complement laws are valid for each element in B.

6. Since the set B = {0, 1} has two distinct clements 0 and 1 with 0 1.

ﬁehce <B,+,.,'>isaBoolean elgebra. This Boolean algebra (i.e. the two-valued Boolean

algebra) is also called the smallest Boolean algebra, E .

Ex.1. If P (S) denote the power set of the nonempty finite set S, then < P (S), U, N, \, ¢,

- 8> is a Boolean algebra, where the complement of any set A < S is considered as
S\ 4, ie; the complement of the set A with respect to S,

Sel. For all elements XY € P (S) since X' Y and XAYeP (S) therefore L and M opera-
tion are the binary operations on 2 (S) and the set P (S) is closed under the operations U and m, Also
forall X, ¥ e P (S) we see that X Y YuXandXnY=YnX, therefore commutative laws hold
for P (S).

Sinceforall  XeP(S), XUé=X and XnS:X,
therefore ¢ and X are the 0 and 1 of P (S). _

We know that the union is distributive over the intersection operation and also the intersection
operation distributes the union .e. forX,Y,Z e P )

' XuYnZ)=Xu)nXuz
and XnYu)y=(XnhHulXnZ)
- Thus distributive laws hold for £ (S). '
Finally, for each X & P (S)

XUEV)=8 and XN (S\X)=¢
therefore the complement laws also hold good.

Hence the given structure is a Boolean algebra. _
%.z. Let B=(1,2,3,6}. If +, - and’ are defined as follows -

For alla, be B atb=lcmia b) .
ab=g.cd(a b)
' 6
and a = e then <B,+,.,',1,6> isc Boolean algebra,

Sol. Let us construct the composition tables with respect to +, - and * operations respectively :

+]1]2]3 7T J1]2]3 s ala
1/1[2]3 6 IR 1] 6
212126 6 2(tf2] 12 23
313161376l > 31|33 ] [3T2
6666 6 | 6|1/213]6 6] 1
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| From the above tables, we see that the 0 of the set B (i.e. the additive identity) is the integer 6.
and 1 of the set B (7.e. the multiplicative identity) is the integer 1. It is also clear that the oomplement of
each element of B does exist in B. ' | _

~ Wecanalso see that the closure laws, commutative laws and the distributive laws also do hold
forB. S ' | ' -
: ~ Hence <B, +n ', 1,6 > is a Boolean algebra.
ﬁxﬁ IfB={1,2,4,8} and+, - and’ operanons are defined as fol!ows
Foralla, b e B -
a+b=lcm(a b)
ab=gecd(a b)

) 8 -
and a'=;, then {B,+,-', 1,8}

is not a Boolean algebra, since all the Huntington postulates except the complement laws hold

- good. We see that if we take a € B, where a =4, then

Sol. a+a’=lem (4, %) '
=lem (4, 2)
=48
_ 8

and : aa’=g.ocd (4, Z)

=ged(4,2)=2=21
where 8 and 1 are the 0 (additive identity) and 1 (multiplicative identity) of B. Thus of eacha e B
ata’'#8 and aa’#1.

Hence <B,+,-,’,1,8>isnota Boolean algebra,

10.3.2 Duality in Boolean algebras :

Each postulate in the definition of Boolean algebra does appear in pair. We can see that one
part of the postulate can be obtained from the other if the bmary operations and the idenﬁty elements are
interchanged i.e., if + operation be replaced by the - operation, - operation be replaced by + operation,
the 0 of the Boolean algebra be replaced by 1-and 1 of the Boolean al gcbra be replaced by 0. This
property is called the “Duality principlo” in Booléan algebra and statements appearing in the paif are
said to be the dual of each other. Thus | )

“The dual of a statement in a Boolean algebra B is a statement that is obtamed by mtcrchangmg

the +and - operations and interchanging the 0 and 1 in the statement.” - |
© For example the dual of the statement @ + ab =a is the statement a - (¢ + b) =a.
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10.3.3 Boolean sub-algebras :
Let<B +,+,', 0, 1 >be a Boolean algebra and S < B. Then the structure <S, +,,%0,1>is

said to be a sub-algebra or a Beolean sub-algebra of Bif < §, +, -, ', 0, I > itself is a Boolean
algebra with respect to the binary operations -+ and - and the unary operation ’ defined on B and con-
sists of the elements 0'and 1 of B.

Note I A subset of a Boolean algebra Bcanbea Boolean algebra but it may or may not be a
Boolean sub-algebra of B.

Note2 Every Boolean sub-algebra of a Boolean algebra Bisa Boolean algebra

Note3 The Boolean algebra B and {0, 1} are always Boolean sub-algebras of B.

Ex.4. Let Dy be the Boolean algebra where D3y ={1,2,3,5,6, IO, 15, 30} [Dy is the
set of all positive integers that are the divisor of 30], and +, - and " on Dy, are de-
fined as foﬂow& : _ |

atb=lem(a b) forall a be Dy,
ab=gcd(a b) forall a, b e Dy,

30 '
and _ a=— Joreach a e Dy,

Then construct

(@)  All the Boolean sub-algebras of Dy

()  All Boolean algebras, that are not the Boolean sub-algebras of D30 and have atleast
Jour elements '

Sol. Foliowing figure show the Hasse—dlag;ram of Dy,

30 .

(@) All the Boolean sub-algebras of Dy, are :
| $,={1,2, 15,30}
S,={1,5,6,30}
8= {1,3, 10, 30}
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W b e

S,= 11,30}
S5=1{1,2, 3,5,6, 10, 15,30}

(b) All the Boolean algebras that are not the Boolean sub-algebras of Dj, are :
Se=112, 3, 6}

S,=1{1,3,5,15)
Sg={3,5,6,30}
={1,2,5,10}

S,0= {5, 10, 15,30}
Sy =1{2,6,10,30}.

Self-learning exercise-1

. The relation “ < in the Boolean lattice (B, <) isa..... on B.
. A lattice (B, <) is a Boolean lattice if and only if it is distributive and ... .
. A finite Boolean lattice (B, <) has exactly ... elements for some positive integer 7.

_In a Boolean lattice (B, <) if there are two elements a, b e Bsuchthat a<band a#b. Also

for all elements ¢ € B, eitherga=corc= b, then b is said to be ... .of a.

.Ina Boolean lattice (B, <), if an element a is a cover of the universal lower bound 0, thenais

saidtobe ...

6. In the Boolean algebra < B, +,-,' >, the set B congists of atleast .... elements.

7. Amongst the commutative laws, associatiVe jaws and the distributive laws, the .... are not the

8.
9.
10.
11.
12.

Huntington postulate for the Boolean algebra.

The distributive law .... is valid for Boolean algebra, though it is not valid for ordinary algebra.
Can we show that < B, +, -, *, 0, 1 > is a Boolean algebra if B consists of exactly six elements ?
The dual of the statement  a+ (be)=(a+b) (@+¢)is ... '
The dual of the staiement a+ab=ais ...

The dual of the expression ab+ac’is ... -

10.4

Basic theorems and properties of Boolean algebra

Many theorems and properties of Boolean algebra < B, +,-,', 0, 1 > can be derived using the

postulates in the definition of Boolean algebra.

10.4.1 Tdempotent laws :
Tn 2 Boolean algebra B, for all elements a € B
() ata=aand (i) atach
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Proof: (i) By closure property for + operation
aeB>atach

Now _ . - ata=(ata-l

=(a+a) (a+a’)

=g+aa’
Eq+0
=a.
Hence - a+a=a
(i) By bloéut*e prOpertjf for - operation -
aéB::m-_q-eB'.
Now Ca-a=a-a+0
_=_a-al-+-_-a--a_’
. =a-(a+a’)
=a:1 |
=a .
Hence | a-a=a.-
10.4.2 Boundedness laws _(D_ominahce laws) ;
Ina Boolean.a]gebra B,forallelementsa e B
) a+1=1and (i) a-0e0
Proof : (i) Forail elementsa € B |
| .weha_vé | a+l=@+1)-1
=@+ (@+a)
=ag+1-:a’
¥a+'a’ -
=1
(i) For all elements g € B, wé have
a-0=qg-0+0
=q-0+aa’

=q(0+a’}
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[by (B2)]
[by (B4)

by (B3)]
- [by (B4)]
[by (B2)]

[by (B2)]

by (B4))
[by (B3)]
oy (B4)]
-[by (82)]

[by (82)]
[by (B4)]

by
by (B2)]

fby (B4)]

[oy B2)]

Tby (B4)]
by (B3)]

[by (82)]
[by (B4)]




10.4.3 Absorption laws:

In the Boolean algebra B, for every two elements o, b & B

() a+a-b=aand (ia-(at+b)y=a
Proof: (i) Wehave
a+ab=a-1+ab
=q(l+b)
—a(b+1)
=a-1
: =a -
(i) ala+b)=(@+0)(@+h)
=g+0bd
=a+5:0
=a+(

=gq.
10.4.4 Involution law :

In the Roolean algebra B, for each element a € B

(a’)’=a;

Proof: We have aeB=uaeB
and also ata’ =1; aa’ =0
Again a’'e B= (a’)eB
and so a’+@)y=1; a’(a’y’ =0
ot (@)y+a =1; (@) a’' =
Comparing (1) and (2), we get

@y =a

10.4.5 Cancellation laws : _
In the Boolean algebra B, for all elements @, b, ¢ € B
() b+a=c+a and b+a’=cta’= b=c

(ii) ba=ca and baf’.= ca’=>b=c¢

Proof : (i) G*iventhaf b+ a=c+a and b+a'=c+a’

Then : hb=b+0
=b+aa’
=(b+a) (bta’)
=(ct+a)(c+a’)
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[by (B2)]
[by (B3)]
[by (BD)]
[from 10.4.2]
[by (82)]
[by (B2)]
[by (B3)]
[by (B1)]
[from 10.4.2]
[by (B2)]

weei{1)

[by (B3)]

[by assumption]




=c+aa’
=c+0

=,

Thus b+a=c+a and b+a'=c+qg'=bh=r¢,

(i) Given that ba=ca and ba’=ca’
Then _ b=bH-1
- =b-(ata)
= ha + ba’
=ca+ca’
=c-{ata’)
=c-1
=g

Thus ' b-a=ca and ba'=ca'=b=c.
16.4.6 Associative laws :

In the Boolean algebra B, for all elements @, b, ¢ € B

(i} at(b+ey=(a+by+cr"

@aboy=(@b)c

- Proof: (i) We have _

atb+e)y=la+(d+0)]-1
| =[a+(d+)(c+e)
f*ia+(b+c)]c+[a+(b+c)]c'*'
=[catc(b+c)+[ca+c/(b+o)]
. ;=(ca+c)+(c’l§+c’b+c’c)

=(ctca)+(c’(a+b)+0)

- oy (33

by 3)
[by aésumption]
[by (B3)]

_[by (83)]
[by (B3)]

(by absorption laws)

=ctcfath) [(by absorption laws) and (B3)]

=(c+e)[ct+(a+b)]
=1[(a+b)+¢]

; =(atbytc

{ Hence -a+(b-+ c): (a+b)+ec.

(i) We have

| ' abcy=labc)]+0
=labc)+ec’
=ladoytcllaboy+c’]
=[(a+o) (be +a)) [(a+c’) (be+c)]
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=[(a+c)-cllla+ e +e et (by absorption laws)

~ —cl(ab+e) 1] " [(by absorption laws) and (B3)]
- ~ c(ab)+ec’ - [by (B3)]
o @b)e+0 “ | | by (Bl)and (B4)]
={(ab)c .
Hence a(bcy=(ab)c.

10.4.7 De'-Morgan’s laws :
In the Boolean algebra B, for all elements 4, beB
- Aylatby=ah’ |
A aby =a+b’ .
Primt_‘ +'(i) Inorder to prove that |
(@+b)'=a’b’, - wemust show that

@+b)+a’b=1

and (@t b (@b)=0 |
Now @+8)+ab=fa+by+a’l[@+B+b] [by (B3}
0"+ (@t B)] [(a+B) +b]
—[@+ay+B [@+ G+b (from 10.4.6)
~Q+H@r) | | [by (B4)]
=11 - | -
-1 - | D
and (a+b)@@b)=a(@'b)+b(a’h’) S
=aa’ b+ b (ba’) -' [by (B1) and 10.4.6]
~0b+(bb)a’ [by (B4) and 10.4.6]
=0+0a’
=0+0 |
=0 o | ),

From (1) and (2) we conclude that
(@+b)=a’b’
{9 Inorderto prove that
(@by=a+b’, we must show that
ab+(@+by=1 and ab(a’+b)=0
Now cab+ (a-’+ bYy=[a+(a’ +b)][b+(a’+b')] | [by (B3)]
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=[a+a’)+b’] [(a’+b")+b] [by 10.4.6 and (B1)]
=[1+b']{a"+ (b +b)] [by (B4) and 10.4.6]
=1(a’+1)
=1-1 _
=1 L 3)
and ab(@+bN)=(@bya+@byb’
=a’(aby+a(bb’)
=(@’a)b+a-0
=0-5+0
=0+0
. =0 )
i*‘rom '(3) and (4) we conclude that |
(aby=a’b"
_ /heorem 1. In a Boolean algebra < B, +,-,’, 0,' i>.
(5) The additive identity (i.e. O of B) is unique
(i) The multiplicative identity (i.e. 1 of B) is unique and
- (@i} Complement of each element is unique.
Proof : (i) If possible, let 0; and 0, < B be two distinct 0 of the Boolean algebra B.
Now since 0, is the 0 of B, therefore foralla € B, '
at0;=a=0,+a
and since 0, € B,
50 : 0,+0,=0,=0,+0, S (1
Again since 0, is the 0 of B, so forall a & B, | |

at+0,=a=0,+a

and since 0, € B,
therefore 0,+0,=0,=0,+0, .. )
From (1) and (2) we have _ | |

| 0,=0,. . [using (B1)]
ie., 0 of B is unique. i |
(i 1f possible, let 1; and 1, be two distinct 1 of B.
Now since 1, is the 1, of B, therefore forall a € B,

a-ly=a=1-a

and since : 1, & B,
50 , L ly=l,=1,L, . 3)
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Again since IzisalsolofB,soforallaeB,
a- 12=a=12-a

and as  1,€B,
SO - 1-1,=11=1: 1 _ O 4)
From (3) and (4) we have

=1,

-Hence 1 of B is unique.
(i) Ifpossible, let b and ¢ € B be two distinct complements of the element a € B, then

a+b=1;ab=0

and ' atc=1;ac=0

Now . p=h+0=btac ) (o ac=0)
=(p+a)b+o - by (B3)]
=(@+by(b+o) . |
=1(b+c) . (v at+th=1)
=(a+c)(b+c) S (e ate=1)
=ab+e | oy
=0+c - . (. ab=0)
=,

Thus b =c, i.e., the complement of g € Bis umque
'/’Dhﬁirem 2. In a Boolean al gebra B, if 0 and | are the additive and multxphcarwe xdenn-
tie§ of B, then ‘ ' _
(@ 0=1 . () I'=0

Proof : (i) - O=(aa’y, for aeh

='a’(a Y | " [by De-Morgan’s laws]
=d'+a - [ a=(a")]
| | =1. . o [y

(i) - - I'=(a+a’),, for aeB - '
=a’(a ’)_.’ o | by D_e~Mdrgan’s laws]
- =a’a , o (o a=(@"))
=0. : - - by _(34)]

Ex.5. In a Boolean algebra B, show that
' a=h ifandonlyif ab’+a’b=0.
Sol. Letab’+a’b=0. . |
Then a=a+0=a+ab’ta’d
=g+a’h (by absorption law)
={(a+a’)(@ath)
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=1 (a+ b)
=a+bh (D)
Again  b=b+0=b+ab'+ta’h -
=ab’ta’b+b
=ab’+b - (by absorption law)
=(a+b) (b'+b)
=(@+h)-1
=g+b e (2)
From (1) and (2), we get '
' a=b
thus ab'ta’b=0=>a=h
‘Now let - a=b
then ab’+a’b=bb'+a’a
=0+0
=0
Thus a=b=>ab'ta’b=0
Hence a=bifandonly ifa b’+ a’h=0.

Ex.6,/In a Boolean algebra B, the following are equivalent :

@ atb=5b (ii) a-b=a
(i) a’+b=1 (iv) ab’ =0
Sol. First of all let a+b=bh
Then a-b=a(a+b) _
=q : (by absorption law)
at+b=b=ab=qg '
Now let ab=a
Then a+b=ab+p
=h+ ba .\
=5 : . | (by absotption law)
therefore, atb=b=ab=a. | |
Now if a+b=5b, |
then : a’+tb=a’+(a+b)
=(a'+a)+b
=1+b

=1
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| Therefore,
Now if

Therefore,

Now if

and if

Thus

Therefore,

atb=>a’+h=1

a’+b=1,
atb=(@+b)-1
=(a+b)(a’+b)
=aqq’ +b
=0+b
=h
at+tb=b < a'+tb=1
a’ +b=1,
a’+tb=1=>(@ +by=V
={a’) b'=0
=ab’ =10
a’tb=1=ab” =0
ab’ =0

ab’ =0=(ab’) =0
=g’ +(d’Y=1

. =g’ +b=1

ab’=0=a’+b=1

a’+bh=1ab’=0

Hence (i) < (i) < (i) < (iv).

We Boolean algebra B, for elements a, b, ¢ € B,

Sel. Given that
Then

Hence

atb=g+candab=agc=>b=c

atb=a+c and ab=ac
b=b-(b+a)
=} (a+bh)
=h(a+c)
=bha+ bc
=ab+ bc
=ac+be
=(a+b)c
={a+c)c
=g

atb=ag+c and ab=ac
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[by (B3)]

(by De-Morgan’s law)

(by De-Morgan’s law)

(by absorption law)

(ratb=a+c)

(- ab=ac)

(catb=a+c)
(by absorption law)
b=c¢,
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Ex.8. In the Boolean algebra B, prove that for elements a, b, ¢ & B

@) (a+b)(arcy(b+ey=ac+a’b+bc

() (@+b)y+@+b)=a’

(ii}) ab+a’b’=(a+b") (@ +D)

Sol. () (@a+ )@+ (b+e)=(a+b)(@b+c)

| =(@+hab+@+be
=a(a’b)+b(a’b)+ac +bc
“=(aa’yb+a’'(bb)+ ac + bt

=0.-b+a'btact+bc -
=0+ac+a’b+be |

=ac+a’b+bc

@ (rhar) [(@+8) @+ (by De-Morgan’s law)

| Cm@ewy by (33
={a+0y '

Gi) ab¥a’b’ =[ab+a [ab+b’] . :_‘ by B3]

=[(a+a’)(b+a} [(a+b’) (b+b7]
=l@+anil@+s)-1]
=(a+b) @ +h).

Self-learnmg exerclse-z

.Ifa+b bthena +b_ ..... .

Ifa’ +b=1thenab’= ..... . _ .
. In the Boolean algebra B, a+b=5 = b=
. In the Boolean algebra B,

- _'a=b = ab’ +a’b= ...

. Inthe Boolean algebra B, if

_ a+b=1 and ab 0, then b= ......
. In the Boolean algebra B, fora]]a beB ' _
@+ ) @+ b") @ +b’ Y=
. In the Boolean algebra B, for all elements a,beB,
(a+a’b)y(a’+ ab)=.....

. In the Boolean algebra B, -
' a;l-a’b# ..... \
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10.5 Summary

In this unit we first defined the Boolean lattices and then the lattice system defined by the Bool-

ean lattice, which is known as Booleén algebra. We also defined the Bdblean' algebra using the posiu-
s formulated by Hunfington. |

" Wealso étudied the smallest Boolean algebra, having great importance in the field of S\Ari'tcbjng

algebra. Some theorems and basic iaw_s of Bodlean élgebras were also derived followed by some

exémpl%.

10.6 Answers to the self-learning exercises

-.Self—lezirning exercise-1

1. partial order relation. 2. complemented. -

3.2 4. a cover

5. a_n'atom 6. two distinct

7. associative laws 8. a+(bc)=(at+b)(atc)

9. No (as 6 is not (Sf the form 2" for any positive integer #)
10. g (b+¢)=ab+ac . a(@+b)=a
12. (@+ b)Y (a+c”) '
| Self-learning exercise-2

1.1 2.0 3. a 4.0
5. a5 6. a’b’ .6 S.a+bh

18.7 Exercises

1. Demonstrate by means of truth table, the validity of the De-Morgan’s laws for three variables,
ie., | | '
{atb+tc)y =a’b’c’
and (abcy’ =q'+bh+e’
2. Demonstrate by means of truth table the validity of the distributive laws, ie.
' Ca+be=(@+b)(a+o

and _-a(b+c)=ab+ac.
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3. Prove the following Boolean identities :
(i} acb+abctabe’ =a®+o)
(ii) [(ab)’+a’+ab)’.:0 |
(M)ab+abc+abc’+ab’c=b(a+c).
{iv) abc+q’bc+ab’c+qbc’=lab+bc+ca
™ (a+a’h) (a’+ab)"—;b
-(vi) atb=a+c and ab=ac=h=¢

4. Prove that, there can not exactly three distinct elements in any Boolean algebra,

oo
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Unit 11 : Boolean Expressions and Boolean Functions

Structure of the Unit

11.0
111
11.2

11.3

1i.4

11.5

11.6

11.7
11.8
11.9

11.4.2 Maxterms (standard sums)

Objectives

Introduction

Boolean expressions

11..2.1 Boolean variables
1122 Literals

11.2.3 Boolean expressioﬁs

11.2.4. Equivalent Boolean expressions

11.2.5 Boolean functions

11.2.6' Complement of 2 Boolean ﬁmction

Representation of Booleaﬁ expressioné

11.3.1 Sum of pﬁo'ducts form

11.3.2 Products of sums form

Minterms (standard products) and maxterms (standard sums)

11.4.1 Mmterms (standard products) -

Canonical forms of Boolean functions - ,
11.5.1 Disjunctive normal form (CNF) |
11.5.2 Conjunctive normal form (CNF) a 1
Minimization of Boolean expfessions |
Summary | |
Answers to self-learning exercises

Exercises

11.0

Objectives

*This unit has been written to introducejhe_s.tudentswith_theﬂxpressions-ancl_the-ﬁmct-ionsgener-—'—-

ated by the elements of the Boolean algebra, The unit intends too introduce the different standard forms

of these expressions and the functions that help apply the Boolean algebra in a more specific way.
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11.1 Imtroduction

“This unit the definitions of Boolean expressions and Boolean functions and is progressed with
‘various standard forms of the Boolean functions “sum of the minterms i.e. Disjunctive Normal Form”
and "‘pmduct of maxterms i.e. Conjunctive Normal Fomi”. Boolean expressions are practically imple-
mented in the form of digital 'logic gatés in the electronic circuits. The cost of these circuits depends upon
the numbers of gates in the circuits. Algebraic method is given for. simplification of Boolean expressions

that reduces the number of gates in a circuit, hence the cost of the circuit.

11.2 Boolean expressions

Before giving the definition of Bo;)lean expression, we shall first define “Boolean variable” and
*Literal”.
11.2.1 Boolean variables : |
A symbol x, representing an arbitrary element of a Boolean algebra < B, +,+,7,0,1>is said to
be a Boolean variable of the Boolean algebra B. Thus a variable x is a Boolean variable of B if it takes
on only values in B. Consequently x +x = x and x x = x, for every Boolean variable x & B. Also ifx
and y are any two boolean variables in B, then
() x+y="0ifand only ifx =y =0
(i) xy=1ifand only if x =y =1.
11.2.2 Literals :
A literal x* is defined to be a Boolean variable x or its complement x'. Thus ¥* =x ot x'. The
product of two or more literals, in which no two literals have the same variable is said to be a “funda-
mental product”, Thus x; x, X5, ¥’ X, x5, X, X', are all the fundamental products.
| 11.2.3 Boolean expressions :
By a Boolean expression over the Boolean algebfa <B,+,-7,0,1> we mean an eXpressio_n
built up from the Boolean variables by applying the operations +, - and ’ finite number of times. Thus a
Boolean expression generated by elements of n-tuple ¥ = (x{, X,,..., x,)) over the Boolean algebra B
can be defined as : | |
| (i) Every Boolean variable name is a Boolean expression over 5.
(ii) If x and y are any two Boolean expressions over the Boolean algebra B, then x’, y', x + y, x
+ 3y, xy, X'y, x + x'y etc.-etc. are also the Boolean expressions over B.
The Boolean expressions generated by elements of 'h-tuple X = (Xq5 Xp,..., X,,) are denoted by
'E (X1 Xppeees x,). If £ (x, X,,..., x,)) is a Boolean eipression over the Boolean algébra B, then it is not

necessary that E (x;, x,,..., x,) must involve all the » vatiables x,, x,,..., X,
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If E = (x;, Xo,..-, X,,) is 2 Boolean expression over the Boolean algebra B, then we can evaluate
the expression E = (x|, Xp,..., %) by substituting the variables in the expressmn by their values. For
example if E = (xy, X,, x3) (x; + xz) (' xp) (¥ T xy) is any Boolean expression over the
Boolean algebra < B, +, -, * 0, 1>, where B= {0, 1}, then assigning the values x; =0, x, = 0 and
x5, = 1 the expression ylelds '

E(0,0,1)=0+0)(1+1)(+0)
=0.1-0=0.

11.2.4 Equivalent Boolean expressmns :

Two Boolean expressions generated by n variables, over the same Boolean algebra B are saic
to be equwalent if they assume the same value for every assignment of values to these n variables of B
For exaniple the Boolean expressions x; x, +x'; and (x; +x'5) (x, *+x'5) are equivalent. We can write
them as '

% %y +x) =[x +x3)(x+x3).

If the elements of the #-tuple ¥ = (x, X5,..., ¥,,) are the Boolean variables that assume only
values in the Boolean algebra B, then the Boolean ekpression E= (*1> Xg50en X,,) TEpLesents the
elements in B. In such a case the Boolean expressmn is said to be a Boolean function over B generated

by the n-tuple ¥ = (¥, X,,..., X)) In B. We shall now give the formal definition of Boolean function.
11.2.5 Boolean functions :

Let < B, +, -, ', 0, 1 > be the Boolean algebra. Then the function f: B"— B, where f (%
can be determined using the elements of n-tuple X = (xy, Xp,..., x,),x; €B fori=1,2,..., nand the
operations +, - and ', is said to be a Boolean function of n-tuple X = (), Xppes xn) over B. We write
itasf=(xy Xpees X ) Thus the Boolean flll‘lCthﬂ =0 x50 xn) of » vanables is a function form
B, to B if it can be specified by the Boolean expression E = (x;, X,,..., x,,), for example if
E = (X, X, X3) =X X+%, X3 +% is the Boolean expreesion over the Beolean algebra
<B,+,-"',0,1>where B= {0, l} then f=(xy, X5, X3) =X X3 + %, X3 + x1 is the Boolean function
from B3 to B. The functional value of this functlon for the values x, = 1, x, = 1,3 =01is

f(,,00=1.1 +1.0+1'=0+0+0
) . = 0 .
The ﬁmetienal values Iof the above Boolean function f= (x;, Xp, X3} = X X5’ + X X3+ x'; for all

possible values of 3-1\?gple % ={x}, %9 X3) ¢ B over B= {0, 1} are:
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X = (X1, X2, x3) F(%535555 ) = %, + x, 3, + X
(0, 0, ) 0-0+0-0+0 =1
(0,0, 1) 0-040-1+0'=1
0, 1,0) 0-1"+1.-0+0'=1
©, 1, 1) 0-1+1-1+¢ =
(1,0,0) 1-00+0-0+1"=1
(1,0, 1) 1-00+0.-1+1"=1
(1,1,0) I I"+1-0+1"=0
(1,1, 1) 11V +1- 141 =1

11.2.6 Complement of a Boolean function :

The dual of the Boolean function f = '(xl, Xg5e05 X,,) ON the Booiean algebra B is obtained by
replacing 0’s by 1’s, 1’s by 0’s, + by - and - by + in the functional value of /, The complement
f 7= (X Kperns X)) of the Boolean function /= (xys X3,., %) 18 Obtained by first taking the dual of the _
function /= (x;, x,,..., x,} and then complementing each literal involved in the function. As an example
the complement of the Boolean function

J= (xpxzsxg) =x{(x2+1@)+x1°x§ is

S G 39 %9) =[] (x5, +2y)+ J'Clxg:lr
=[x (ma+x)] [ %]
=[5 [l 4]

=[x+ % %[ * +x3]

Self-learning exercise-1 .

L. Aliteral is defined to be a Boolean variable ot its ...."

2. If x is a Boolean variable, then x and x are called .......

3. The product of two or more literals in which no two literals involve the same variable is
calleda...... |

4. x'y +xyx;3 and (x) +x,) (' 1 xs) are .......... Boolean expressions.

5. If x is a Boolean variable, then x is a Boolean eXpression : yes or no.

11.3  Representation of Boolean expressions

Consider the Boolean expression = (s Xgs X3) = x) X + %, x3. In this expression, x|, X, and

x3 are literals and we know that a literal is a primed or an unprimed Boolean variable. When the
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Boolean expressions are implemented we need td minimize literals and the numbers of terms. Generally
the literals and terms are arranged in one of the two standard forms.

(i) Sum of the products form (SOP) and

(i) product of the sums form (POS).

11.3.1 Sum of Products form :

‘The words sum and products are derived form the symbolic forms of the OR and AND
functions by +and - (addition and multiplication) respectively. These are not the arithmetic operators in
usual sence. A product term is a sequence of literals that are ANDed together and a sum term ORed
together. For example, X5, X1¥3, x\x) xyetc.-etc. are the product terms where as x; + X,,
X + X, 4 ¥4, X + X} efc.-ete. the sum terms. A sum of products form (SOP) is a sequence of product
terms ORed together. For example |

Xy Xg X3 X X3, %1 x2+x1 X) Xy Xy X3, 0 Xp 3y X3+ K] Xy X3
ate the sum of products form of the Boolean expressions.

Bach of these sum of products forms consist of two or more product terms (AND) that are
ORed together and each product term consists of one or more literals appearing in either primed or
unprimed form.

11.3.2 Product of sums form :

A product of sums form of a Boolean expression‘ is a sequence of sum terms that are ANDed
together. For example (x; + xy) ey +¥'3), (o + 2 ¥ x' ) (¢ H ¥yt xg) are the product of sums form
of the Boolean expressions. Each of these product of sums form consists of two or more sum terms
(OR) that are ANDed together and each sum term consists of one or more literals appearing in either
primed or unprimed form. | R

Ex.1, _Transform the Boolean expression xy X x X'y (4 ¥'5) info sum of products

form.

Sol. B %) =x ot 3 (] 5)

= x; %, + % %5 (% w.!-'x3) (by De-Morgan’s law)
= Xy Xy +Xp X)Xy + Xy X) X3

=X, Xy + X Xy +X) X X3
Ex.2. Transform the Boolean expression ((xlx2 y x3] ((x+ %) (x5 + xg))’ into the sum
of products form. |
Sol. Here E (x;, %5, %3) ={(x %)% )f (o + x5 ) (3 + %3 ))r
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= [((xl xz)f)' +-x§J[(x]’ +3xy) + (x5 + );}

=[x 3%, + ] [ x5 +x, X

EX) X X000 X X X Xy 4 x, X + X3 Xy X
= X Xy X3+ Xy Xy X3+ X5

=X Xy X Xy X Xy Xy

=X) X3+ X Xy Xy _ (by absorption law]
Ex.3. Transform the Boolean expre.?sion Xy X3 +(xyx%3 + 1] x,) into product of sums form.
Sol. g (%), % %3) = 3, +(or +x) %)

=55+ (% 5) (4 n)

=Xy X3+ (X +x3) (o +x3)

=[x, 2 + (x, +x3)][x2x3 +(x, +x3)] )

=(x, +3, +23)(x; +x, +x3)(x2 X +x5) (9 43, +)

= (% +23) (%, 33 ) (3 +x, + 63 ) +1)

=(x, +x3 }(x +x, +x3)

11.4 Minterms (standard products) and maxterms (standard sums)

The concept of the minterms and the maxterms yields to introduce a very convenient and
shorthand notations to express logical functions,
T
‘A Boolean expression (or a Boolean function) generated by n-tuple ¥ = (%15 %;,...,x, ) is said to
bv a minterm or a Sta.ndard product if it can be'expressed in the form of product of # distinct literals

X%, X3*,.s x,*. Thus a minterm in » Boolean variables ¥1s X3,-.., X, is @ Boolean expression of the

.1 Minterms (standard products) :

form x *, x,*,..., x,*, where each x * is either xjorx/ fori=1,2,. n
For example, there can be formed four minterms xj x3, x| x,,x, x; and x, x, generated by
two variables xyand x, in B = {0, 1}. Similarly the 3-tuple ¥ = (% Xy,%3) in B3 where B = {0, 1}
generate in all 23, ie., eight minterms namely
X X3 X5, %] X5 %3, x, X353 Xy X3, %) X5 X4, % X} X3, X3 %3, and x; x, xs,
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In general, 7 variables x;, X5,.... %, in the Boolean alpebra B, generate 2% minterms, where each
minterm is obtained from an “and” term (i.e. the standard product term) of n literals, with each literal
being primed if the corresponding bit of the binary number is 0 and unprimed if the corresponding bit is
1. The minterm is symbo].iied asm, (i=0,1,2,.,n-1) The minterms satisfy the following two
pmpeﬁies :

(i) m;m; =0; forall i#j

2" “‘]

(H)_Z m; =1.
i=0

11.4.2 Maxterms (Standard Sums) :

A Boolean expression (or a Boolean function), generated by n-tuple X = (xl 3 X9 50005 x,,) is said
to be a maxterm or a standard sum if it can be expressed in the form of sum of » distinct literals

LI * . . i ot .
X, s %50y Xy, Thus a maxterm in n Boolean variables ¥, X;,.... X, is a Boolean expression of the form

x, +.1:2 +.. +x , where each x; * is either x; or x'; for i = 1, 2,..., 1.
| Thus there are four maxterms x; + X;, X+ X5, X + X, and X + X, generated by two vanables
x; and x, in the Boolean algebra B = {0, 1}. Similarly three variables Xs Xo, X3 ID B = {0, 1} generate
23 i.e. eight maxterms namely | | |
XXy b Xy XXy X, X)X+ Xg, Xy b X X, XXy + X3, X + X + X5, X + x5+ x5 and.
X} + Xy + X3 | _
In general »n variables x, X5,..., X, in the Bodlean algebra B = {0, 1}, generate 2" maxterms,
where each maxterm is obtained from an “or” (i.e. the standard sum term) of # literals, With cach literal
being unprimed if the corresponding bit of the binary number is 0 and primed if the corresponding bit is
1. The maxterm is generally symbolized as M; (i=0,1,2,...n ~1). It can also be noticed that the
maxterms do satisfy the following two important properties | | '
(i)Mj+M§-= 1; forall - i=#j,
o -
@ 1 M:=0.
=0 ‘
The défmitions of minterms and the maxterms yield a close relationship between them. Wé can
note that every maxterm can be obtained by complementing its correspondmg minterm and vnce—versa.,.
as is clear form the following table of minterms and maxterms for three binary variables X, Xp, %3 100

B=1{0,1):
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Minterms Maxterms
Xt X2 X3
Term m; Term M;
0 0 0 | xxpx [ mo X+x+x; | My
0| 0 U lxisse | om | x4 X, +xy | M,
0 1 0 ' xxx | m N+x+xy | My
0 1 Dl x| m | x +xp+x; | M
1 0 O | xx X, | Mg XX,y | My
l O 11 | xxhx | ms X\ +x+xy | Ms
1 1 0 ' xixyx) | me x+xy+xy | M
l 1 1 1 X .xz X3 my .?C; +x5 +JC§ M7_J

Anty Boolean finction can be expresséd from the given truth table by forming a minterm for all
possible combinations of the valueé of the Boolean variables that produce 1 as the functional value and
than taking the sum of all the minterms corresponding these 1’s. For example if we consider the
ﬁnlc,ﬁlons S Geys 3, x3) and 5 (xq, %y, ¥3) whose functional values for all possible combinations of

variables x;, x,, x, are shown in the following table :

| x X3 v Ot Xy x3) | Sy Gety X2, X5)

Hlem=mi—io ol

olo|le
=i =i—~lolaik
S~ loiol=c—lo

0
1
0
1
0
1
0
1

_—

then the function J1 €x: X5, %4} can be determined by expressing the combinations 000, 100, 101 and
1H (corresponding to the functional values 1) as x; xj x3, Xp X3 X3,% X5 %, and X1 X, X3 respectively.
Since each of these minterms has the functional value 1, therefore we can write f| (1, X, x3) as
J1 G xp %5) =0 X3tx Xy X5+ x) Xt Xy X, X '
gk my s+ m;,
It is more convenient to express the above function as -
G0 x3) =3(0,4,5,7)
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Similarly thef Boolean function £, (x,, x5, x;) can be expressed as
5 (xi,'xz, X3) =Xy Xy X3+ X Xy Xy + X Xy X3
=my gt
=2.(1,3,6).
~ The above example justifies the property of the Boolean algebra : “Every Boolean function |
can be expressed as the'éﬁm of minterms”.

T'Ele complement of the function Sy (x5 X5, X5) in the table can be obtained by expressing the
combination 001, 010, 011 and 110 asx{ X5 X3, %] Xy X3,%] Xy X3 and x; x, x} respectively, where
cach one of the minterms assumes the value 0 of £,. Therefore, we have

S1 00 X, X3)= X1 X X3+ %) Xy X3+ X] Xy X3+ X X

The complement of the above function I Gp, X, X5} 18

S Geys Xy x3) = {4 X+ 33 ) {0y 4 x5 43 ) (o + x5 + 3 ) (o] + x5 + 37 )
= M, M, My M
| =TI(1, 2,3, 6).
In a similar way the function £, (x,, x,, x4) can also be expressed as
F gy Xy x3) = (X + 3+ 263} (3 4 35 4 23 ) (] + X+ 565 ) (3] + 2 + 55 Y (] + 2y 4 x3)
=My My MyMs My
=11(0,2,4,5,7). : _

This yields ancther important property of Boolean algebra — “Every Boolean function can be
expressed as the product of maxterms”. '

The Boolean function when expressed as the sum of minterms or the product of maxterms are

called in “Cal_lonical form”.

11.5 Canonical forms of Boolean flinctions

We just saw that the Boolean algebra have properties that every Boolean function over the
Boolean algebra B can be expressed as the sum of minterms and product of maxterms. These forms of
the Boolean fimction are called the canonical forms. The canonical form of the Boolean function when it
is represented as the sum of minterms is also called the “Disjunctive Normal Form” and when it is
represented as the product of maxterms is called the “Conjunctive Normal Form” of the Boolean

function.
11.5.1 Disjunctive normal form (DNF) :

A Boolean function f (x|, x,,..., x,) over the Boolean algebra B is said to be in its disjunctive
nermal form, if it is expressible in the form f (X)s Xppeery X)) = mg + my ..+ m, where each

m;; =0, 1,2,.., kis a minterm.
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Now since the disjunctive normal form of the Boolean function is the sum of minterms and each
minterm is the pmduct of distinct literals, therefore, the disjunctive normal form is also called the sum of

standard product form or the minterm form.

The representation of Boolean function in its disjunctive normal form i 1 very stmple as is

descrlbed below : _ _
(i) Simplify the given Boolean function, such that it has minimum number of terms in the form of

(i) Multiply each term in the sum by as many l’s.equal to the number of missing literals in the
respective term (For example if there are two literals X; * and x,* mxssmg in a term of the Boolean
function £(x;, x,,..., x ) then multiply this term twice by 1).

- (#}) Replace each 1 in the term by x;+x’;, if this 1 appears in the term due to the missing literal

¥, i this 1 appears in the term due to the missing literal x;*. (If there are two 1’s in the term that
conespond to the missing literals X; * and x,*, then replace the first 1 by X+ x and the other 1 by
XY - | '
(iv) Apply the distributive laws, commutative laws and the ide_mpotent laws ete.
The resulting form is the disjunctive normal form of the given Boolean function.

For example if (¥15 %5, X5) - ( xi + X+ )( x|+ xy + xg) is the Boolean .ﬁmction generated
by 3-tuple ¥ = (xl . x2, x3) then the disjunctive normal form of /1 (x(s Xy, x4) is obtained as follows :
S @ xy, x3) = (2 + 2 +x; )] + x, +x3)
= X)X+ X Xy + x, x3 + 3y Xy + Xy X5 + X X +X) X3+ Xy X+ 2y X5
=Xy Xy + % X5 +.x,' Xy + X5 X3 Xy X3+ X, X
=X X1+ x5 - 1+x1 x5 -1+ x5 x3 1+x) %1+, -x3 I
=x % (% +x3)+x, ¥ (xy + x5 )+ x{ 0 (0 + 3)
+x x5 (%) + x] ) + x| x3(x2+x2)+x2 X; (x, +x;)

=X x2 X3+x-{ XZ x3 +x] x2 .1-3 +x1 x2 x3 +x] X2 x3 +x] x2 x3
+x[ xz X3 +x1 xz x3 +x1 xz X +x1 x2 x3 +x1 Xy x3 +x| x2 x3

T X Xy Xy H Xy Xy Xy Xy Xy X+ X X Xy + X)X X+ X Xy X,
R I rrF ) ' T r
—-x] xz X3+x] JC2 x3+x| xz x3+x1 xz x3+x] JC2 x3+x] x2 X3 .

=2(0,1,3,4,6,7).
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/LY5 2 Conjunctive normal form (CNF): |

A Boolean functlon F(xq5 X950y X)) over the Boolean a.lgebm B is said to be in its conjunctive
normal form if it is expressible in the form f(x, x5,..., X)) = My My Ms,..., My, where each M; ; i= 0,
1,2,.. ,klsamaxtenn _ - '

As the conjunctive normal form of the Boolean function is the product of maxterms and each
maxterm is the sum of distinct literals, therefore the conjunctive normal form is also called product of
standard sum form or the maxterm form. '

The procedure of representing the Boolean function f (xI , xz, »X,) generated by » variables
X xz, »X,in Bis described below ; ' _ ,

i1 Slmphfy the Boolean function £ (x;, X5,..., X,,) 50 that it has minimum number of factofs. -

(i) AddO’s to each factor, as many times, equal to the number of missing literals x;* in that

factor (for example if a factor int the Boolean function f (x;, X,,..., X,,) has fwo missing liter-
als X; * and x, ®, then add 0 twice to this factor). '

( ii) Now replace every 0 in each iactor by x,x’; if this 0 con‘esponds to the missing literal x;*
in the factor (for example if there are two 0’s in some particular factor, that are due to the
missing literals x;* and x;*, then replace one 0 by x; x'; and the other by x,.x')).

(iv). Apply now, the laws of Boolean algebra, for example dlstribﬁti\}e laws, commutative laws

- and idempotent laws efe. ' _ -
The resulting function yields the conjunctive normal form of the given Boo]ean function. -

We now take the Boolean function f (xl, Xy X3)= (X} + xz)(x, X ) + 3y X%, Xy and w1sh to

represent it in its conjunctive normal form :
Sy, X0 x3) = (g x5} () +X3) +xl x2 X3 :
= X1+ Xy X3 Xy Xo Xy , L (by distributive Jaw)
=xp+ (xy X3+ X)Xy X3) | -
=Xy Xy Xy ‘ o - -(byabsorptibnlaw)

= () +xp) (X1 T %3)

=0yt Xy 0 (e +xg+0)

=y F Xty x') (o HxgEp X))

= (X +x2+x3) (x; +x2 +x3) (% + Xy +xq) (x] +xy +x3)
= (o 3y +39) (3 1y F ). Oy F ¥+ )

=MyM M, .
=T1(0, 1, 2).

The disjunctive normal form and the conj runctive normal form of the Boolean functlon can be

obtained simultaneous by constructing the truth table of the fimctional values of the Boolean function for

all possible combinations of values of the variables x|, Xp..., X,

195




Cbnsider the Boolean function f (X)s X5, X3) = ( X, X5+ X, )' + x{. The truth table of the

functional values of the Boolean function £, for all possible combinations of values ofx,, x, and x; is :

Xr| x| x; f(xl,xz,x3) = (xlxﬁ + X x5 )' +x{
0. 04 0 O-140-0y+1=1
ool -1+ 1y+1=1
0|1 1]0 0-0+0-0y+1=
01 |1 0-0+0-1y+1=1
110 |0 (1-1+1.0)+0=0
1[0 |1 A 1+1-1Y+0=0
1110 (1-0+1-0y+0=1
11 {1 (1-0+1.1Y+0=0

Now we collect all the minterms that correspond to the functional vaiues equal to 1 under f/, We
see that these minterms are corresponding to the combinations 000, 001, 010, 011 and 110, i e., the
WInterms are Xy +x5 +x5, X Xy X3,X X, %, X %, x, and % %, X3, (Remember that in a minterm each
variable is being primed if its corresponding bit is 0 and unprimed if the corresponding bit is 1). We now
add up all these minterms. This sum gives rise the disjunctive normal form of f(x 1> X5 x3). Thus the
disjunctive normal form is

F @ %0, X3) =] X x5, 45 X5 x5+ % x5+ %] X) X3+ Xy Xy X3
= My -+ iy -y + ey g
=2(0,1, 2,3, 6).

In order to obtain the conjunctive normal form of the same Boolean function

G130 %5) = (35 43, 1) + 5
we read all those maxterms that are corresponding the fimetional values equal to 0 under £, In the table
we see that these maxferms are corresponding to the combinations 100,101 and 111, ie., the maxterms
are Xy + Xy + X3, X + X, + x} and x| + x} + x} (Remember that in a maxterm each variable is bein g
primed if its corresponding bit is 1 and unprimed if the corresponding bit is 0). We now take the product
of all these maxterms. This results the conjunctive normal form of the given Boolean function

J(xy, %5, %3). Thus the conjunctive normal form of the given Boolean function is :
F Oy 2, x3) = (3 + 2 + x5 J (3 + x5 + 33 ) (5] + x5 4+ x5 ),
=My M; M.
=11(4,5,7).
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Ex.jansform the Boolean expression x; + x, into three variable disjunctive normal -
Jorm. ' '
Sel. T E (3, X9, X)) =X T Xy
‘
=x, (3, + %5 )+ % (% +x1)
=X, Xy Xy Xy X Xy hX] Xy
=X Xy +X X5+ X Xy
= %y (5 + x5+ % (35 + 55) + ) 2 (s + x3)
=X; Xy X3+ 2y Xy X3 H X X5 Xy
Xy Xy X5+ X] Xy Xg + X Xp X3
=% Xy X5+ X] Xy X3+ X X X3
dxp X5 X3+ X Xy X3 H Xy Xy X3
= my ot my g tms gty
=%(2,3,4,5,6,7).
Ex.5.. Transform the Boolean expression x| X, into threel variable conjunctive norma

| form.
Sol. E(xy, Xy, X3) =X X
= I:Jc1 +{x, x5 )] [icz + {(n x )]
-—-(JCI +x2)(.x1 +x'2)(x2 +x])(x2 + x{)
= (g + 2 ) (3 +2 ) (o + %)
= (0 + X + %3 203 ) (3 + X5 + X3 X)) + 3, +x; %3)
= () + 0 + 33 ) (3 + X + 25 ) (% + ) +x3)
(x4 5 + x5 W] + % + 33 ) (5] 0 +x5
_ =[1(0,1,2,3,4,5).
Ex.6. Transform the following Boolean expressions into disjunctive normal form :
(i) E (xq, X, Xq) = X1 Xy T X5 X3 X7 X3
(i) E (x5 X5 X3) = X1 X5 Xy H X1 Xy X3
(Gi) E (g, %o X3) = (3 + 22 ) (3 +2 (3] +3)
(IV) E (xl, xZ, x3) = I:(x; +x'2)(x2+ x:;):lr -+ x2 x3
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Sol. (i) E(xq, X3, X3) = X) Xy 25 Xy 4+ X Xy
' : ' AN
=20 Xy X3+ Xy Xy Xy + Xy Xy Xy +X] Xy Xy X[ Xy X3+ Xy X

T X Xy Xy b Xy Xy X Xy K H Xy Xy Xy

=%(3,5,6,7)
(@) : E (xy, Xy, X3)=x +x, xé + Xy Xy X3

=x (x2+x§)(x3 +x3)+ X, X (%3 +x5)+x Xy X
=(x, x, +x, x5 ) (% + X5 )+ 3 X w0y + X X, X + X5 X, X3

=x] x2 x3 +x1 x2 x§-+x1 XE JC3
+X) Xy X5+ Xy X3+ X% X, X5

(sinice x + x r-_i)
=X X Xy R Xy Xy X3+ Xy X Xy + Xy %) X
=% X3 % +.x1 X)Xy + X Xy X5+, %, X3
=m4+m5+m6+m7 |
=24,56,7)

(i) E (1, % x3) = (26 + x5 ) (3 + 5 ) (] +13)
=00 +x %) (5 +x,)
= (% +0)(x{ +x;)
=X X + X%,

TX X3

=% 5(n+x)
=X X Xy + %) X5 x
= gt s

=X (5, 7).
(iv) E (xs %3 x3) =[ (2] 4+ ) + (3, + %} )]’ +2, X,

=(xi+35) (% +%) +x, x,

= (xlxz)(x§x3)+x2x3 _
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=X Xy X X3+ Xy Xy
=0+x,%,

— ! ;
= xp %3 (% + ) ;
=X Xy X3+ X Xy X3 _

’
=xl x2 x3 +x1 x2 .x3

= m3 + m3
=%(3,7)
Ex/1. Transform the following Boolean functions into conjunctive normal form :
D E @, xy,xy) =x (0t X5) (%) + x5 +X3)
(i) E (xq, X9, X3) = (xy+ X5} (Xy  %3) ey +x3)
(HI) E (xl, .xz, x3) = xl x2 + xi x3
(iV) E (xl, xz, x3) = (x{ xz)f (xl + x3)
Sol. ()  E(x), %5, %) =% (xl+x2)(x1+x2+3%)
= (0 + Xy X5+ %3 x5 ) (X +x; + x5 x3 ) (% + X, +x3)
=(x, +Xxy X5 +x3)(x1 +X, X5 + x_;,) >

(xl+x2+x3)(x,+x2+jr§)(5éi+x2+x3) |

=(xl+x2+x3)(xl+x§+x3)(x‘+x2+x3') o |
(o + 0 + 35 Howy + % + 23 ) (% + %y +x5) 5
=(x +3x, + 23 ) (% + 2, +x3) (3% + 2+ x5 )(x +x§fx§,)_ -
| (o xx=x) :
= My M, My M, |
(i E (x), x5, %3) = (¥ T x) (% + x3) (x + %3)
m(.xl +x2 '+'x3 x:;)(xZ '+‘x3 +x1 x{).(xl +.x3 +x2 xi)
= (.xl +x2 "|"‘x3)(x1 +x2 +»;)(xl.+x2 +x3)
(x{+x2+x3)(x1 +x2 +X3)(xl+x5+x3)
(v xx=x) f
=11(0,1,2,3, 4).
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(iii) E (x), X9, X3) =2 Xy + 5] X3
| é(x1+xf %3)(x, +x] x;)
= (xl +x;)(x] +x3)(x{ +x2)(X2 +.X'3)

=1-(x +x; +x, x&)(x{+x2 + X, 34:5,)(x2 + X3+ % X))

€ = (3 + 3+ ) (3 + x5 + x5 }(x] + %, +x3) |
(3 +3y + 35 ) (o 35+ 23 ) (5] 3 4 3,
= (g + 2y + 33 ) (o0 + 35 05 J(a] 420 + 33 ) (5] 4, + 5) |
= My M, My My
=11(0, 2, 4, 5).
(iv) E (%), %3, %3) =(x] x2)r(x1+x3) :

=0+ x) (g +73)
='(x'l+x§+xg X3 ) (% + X3+ 2, x5 )
=(x] +x§+x3)(x]+x5+x§)(xl+x2 +x3)(xl+x§+x3)

= (% +x, + 23 ) (3 4 x5+ 33 ) () + %5 + )

=My My M,
=11(0, 2, 3).
Ex.8. Simplify the three variable Boolean expression %, (1, 3, 5, 7), using the Boolean
algebra. | |
Sol. 2.(1,3,5,7) = x5 X3+ ] Xy X3+ X X5 X342, Xy X

=X %3 (X + 2 )+ 3y 23 () + )
=X X+ X X
=3 (] +)
_ = X3 _
Ex.9. Simplify the three variable Boolean expression 2. (0, 1, 4, 5) using the Boolean
algebra.

Sol. C2(0,1,4,5) = x; X xy X x5 Xy o+ X X+ 3y X Xy
= x) %5 (x5 + X3 )+ % x5 (x5 +x3)
=X X+ X% oo : (ox+x=1)
= (] +x,) %)

=X,
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Ex.10. Simplify the three variable Boolean expression 11 (1, 2, 4, 7) using the Boolean
algebra.
Sol. T1(1,2,4,7) =3 +xy + x5 }(x + x5 + %3 ) (3] + 3y + x5 ) (%] + ) + %5
= [x{ + (2, + x5 ) (% +x3):||:x{ +(x; +x3) (3 +x_§,):r
=[x] + X X5+ Xy Xy X X3+ Xy xg]
X+ xy X+ Xy X3+ XY X3+ %]
=[x+ %, %+ 35 x5 |[x] +x, %5+ x3] |
=X, X| +X) Xy X5 X Xy Xy K] Xy X3+ Xy Xy X3 X)
+Xy X5 Xy X3+ X| Xy X3+ Xy X5 X3 X3 X5 Xy X3 X)
= X; Xp X5 X Xy X3+ X| Xy X5+ X; X X3
- Ex.11. Simplify the three variable Boolean expression [1 (2, 4, 6) using the Boolean
algebra. ' |
Sol. 0 T1¢2. 4, 7)“—"(x,+x5+x3)(xf+x2+x3)-(x;+x§+x3)
= (o x5 + 33 )((x] + 33 )+ 3 ) (] + 25 )+ 3 )
=(x+x) +x3)[:(x{+x3)+x2 x&]
= (x4 ) (5 4 x)
=(x,+ ) %] + x5 | (by distributive property)
I-_-xl X1+ X X5 + X3

=X] X5 +X3.

11.6 Minimization of Boolean expressions

- In the earlier unit 10, we studied the basic laws of Boolean algebras and related theorems, that
are used for the manipulations of logical expressions. In the next unit 12 we shall see that the logical :
expressions can be realized by using the logic gates. To implement a logical expression using logic gates,
it is required that the expression be in more simplified manner. Therefore the simplification of the logical
expressions is important as it saves the hardware required to design any system. In this section we shall
use the basic laws, rules and the theorems of Boolean algebra for the simplification of Boolean
expressions (i.e. the logical expressions).

Ex.12. Minimize the Boolean expressions : ‘
(0 x %, +x+(x xz)f
() (3 + % (3 + x5 ) (] + x,)
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(0) xp Xy X3+ X0 Xy X3+ X X, X}

() 3 (3 + 2 ) (3 + %, + 33

() % 2%y +3 (3 + 23 )+ x, (30 + x3)

Sob. ) x; %) +x{ +(x, xz)' =X X+ X+ X[ +x)
= X{ Xy +X] +X)
= (3 +2) (5 +x,)+ %
=1-(x+3 )+ x
=X+ Xy + X5

=x"+1
=1.

(ii) (% +x2)(x,+x§)(x]’+x2) =(x +x, %) (x+x,)
=X (xf+x2)- |
=X X +X X,

=X X

: (iil‘) xl x2 x3 +x1 xé x3 +_x1 x2 x:; =(x1 x2 XS +xl xé xc,‘-)+(xl x2 X3 +xl'x2 xé) i

Cext+tx=x)

| =y X3 (%) +x5) +x x(x+x5)

=x1 x3 '1+x1 xz 1
=x (x2+x3)
(iv) x; (%, +x2)(x1+x2+x3) =x (3 +x, +x3)
' = X).

% (x2 +.(x2 +x_3))+ X,

M) % x+x (x2+x3)+x2(x2+x3)
=1 (% +x3)+ %
=X Xy + Xy Xy Xy
=Xyt X Xy kX Xy
=% txx |

Self-learning exercise-2

1. Amaxterm isthe ............. of » literals.
2. The product of » literals is called a ............. .

3. There can be formed ........... minterms generated by n variab.les.

(by absdrption_ laW)_
{by absorption Jaw)
(by absorption law)

(by absorption law)

4. The sum of all the 2" minterms generated by » variables is always .............
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5. The product of all the 2” maxterms generated by # variables is .......cco.e...

6. If m; and m; are minterms and { # j, then m; ;= «..cc.....

7. The disjunctive normal form of the expression x,x, in three variables x,, X5, X3 iS ....... .

8. The conjunctive nofmal i’orm of the expression x; +x, in three variables x;, X, ¥3 1S ...... .
9, Fach individual term in the conjunctive normal form is called a ............. .

10. Each individual term in the disjunctive normal form is called a ............. .

11.7

Summary

normal form and the conjunctive normal form of the Boolean expression. We also learned about -

In this unit we studied two specified forms of the Boolean expressions that is the disjunctive

procedures of transforming the Boolean expressions into these forms.

11.8 Answers to self-learning exercises
Self-learning exercise—1
. 1. complement. 2. literals. _ - 3. fundamental product.
4, eélllivalent. ' S.yes.
Self-learning exercise-2
L. sm 2. minterm - 3.2
4. 1 5.0 6.0
T XXy Xy +xyay X'y B(xptxytxg)(xytayt x'3)
9. max_terin 10. minterm.
11.9

Exercises

. Define minterm and maxterm.
. Define the disjunctive normal form and the conjunctive normal form of the Boolean expression.
. _T_ransfonn the following Boolean expressions into digjunctive normal form : '

G xtx, X

(i) x)+x;+tx 3%

@) x3(x+x,)

() (x+3%,) +x X +x;

(V) (x1+x2+x3)(x1 x2+x1' xg)r-
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4

[Aﬁs P X xp x4 X X vy X X3+ X X5 X5+ %] x, X}
(@) x X, X3+, x, X} +X) Xy X3+ X x2 x5 +x Xy X3+ X[ Xy X}
({i) X x) X3+ x] Xy %, +x] X} X3
() 3 X5 x5 +x] x5 2, +x, x) X3+ X] Xy X3+ X5 X3+ X Xy X

() % %, 35+ %) x5 X+ 3, x, X3 ]

4. Transform the following Boolean expressions into conjunctive normal form :

@ O+ x) G +x3) + 3y 3y x
() X)Xy xy X+ X X3

(i) (3% %+ x3) (o x +X,) |
(v) .xl(xl +33) (3 +%5)
v (5 +x)(x+ x3) (%, + x3).
[Ans: @) (o + x, +x;){x, +2 5 ) (o + X} + x;)
(D) (3 + x4+ 23)(x, + x, + 35 ) + x5+ 3 ) (%, + X + x})
(#id) (% + x, +'x_:,)(x1 + X+ 0 J(xf + %y + 3 ) (3 + 0y + x5)
() (3 + %, -+ 33 ) (%, + x, +x )+ 2+ 53) (3 + x5 +x3)(x] + 3, + %)

) (% + x, + X3 ) (% + x, +23) (% + x5 + 23 () + 2y + x3))

5. Simplify the following three variable Boolean expressions. Using Boolean algebra :

6 X(1,3,4, 6)

) T(0,1,3,5)

() TI(0, 1,2, 3, 4, 6)

@) T1(0,2,4,5). -

[Aus: @) o x4 5,1 o Hoo
(E) x| ¥ +x{ x;+ x5 x, |
(@) (x+ x,) %,

() x; %, + X{ %3+ x5 %3]

204




UNIT 12 : Switching Circuits and Digital Logic Gates
Structure of the Unit "

12.0 Objeé’lives

"12.1  Introduction

12.2  Switching circuits

123 Inter connection of switches
12.3.1 Inparallel '
12.3.2 Inseries
12.3.3 In series-parallel
13.3.4 Bridge circuits

12.4 I}igi‘tal fogic gates

12.5  Thiree basic logic gates
12.5.1 OR-gate
12.5.2 AND-gate
12.5.3 NOT-gate (Inverier)

12.6 Combination of basic logic gates
12.6.1 NOR-gate
12.6.2 NAND-gate
12.6.3 Exclusive OR-gate (XOR-gate)
12.6.4 Exclusive NOR-gate (XNOR-gate)

12.7  Universal property of NOR and NAND-gates
12.7.1 NOT function using NAND-gate
12.7.2 NOT function using NOR-gate
12.7.3 OR function using NAND-gate
12.7.4 OR function using NOR-gate
12.7.5 AND function using NAND-gate
12.7.6 AND function using NOR-gate
12.7.7 NOR function using NAND-gate

'12.7.8 NAND function using NOR-gate

12.8 | Summary
12.9 Answers to self-leamning exercises

13.10 Exercises
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[12.0 Objectives

The purpose of writing this unit is to apply Boolean algebra to analyze electronic and electrical
circuits. This was developed by scientist Shannon while analyzing telephone switching circuits.

12.1 Imtroduction

In Boolean alggbra each variable has either of two values : true or false i.e., 1 or 0. Many logi-
cal problems can be solved by using this two-state algebra. After Shannon’s work, engineers realized
that Boolean algebra could be applied to computer electronics. In this unit you will learn about the switch-
ing circuits, various digital logic gates and implementation of the Boolean expressions in the form of these

logic gates. You will also learn, how these various logic gates are interrélated.

12.2  Switching ci.rcuits

Orie of the éxamples, where Boolean algebra can be applied, is the electronic circuit that in-
volves two possible states. I we consider a simple on-off electric switch in a most elementary electric
circuit, then it can be placed either in the off position or in the on position as shown below in the
fig. 12.1 ;

oft On

(a) ()
Fig. 12.1
One of the most elementary circuits is given below in fig. 12.2:
Switch (S)
{ \. -
_ v/ S | L
' oo
Battery (B) dP Lamp (L) 1 T1
(@ (b) Condition table
Fig. 12.2

The battery B, the switch S and:the indicating lamp L are connected in the simple most switching
circuit. When the switch S in the off posmon we say that the circuit is an open circuit and the lamp L
does not glow, but when the switch S is in on position, we say that there is a closed cireuit and the lamp
L is seen glowing as the current flows in the circuit.

The condition, when the switch S'is off, (i.e., the switch is open) and the lamp L is off (i.e. does

not glow), is indicated by the numeric value ‘0’ and the switch is designated as.S”. The condition when
206




the sWitch Sis on (i.e. is closed) and the lamp L is on (i.e. glowing tamp), is indicateci by the numeric
value ‘1’ and the switch is then designated as S. The condition table is the truth table, which lists all the
possible combinations. ' N |

There can be constructed two-state devices that permit not only the eleciric current but any thing
that can go through such as ‘water’, ‘information’ etc. Later on, we shall replace the word. ‘switch’ by

the word ‘gate’.

123 lntefconnecﬁon of switches

Two or more switches can be connected in two most basic ways so as to form new switching
circuits

12.3.1 In parallel : _ :

Consider the switching circuit shown in fig. 12.3, in which two switches §; and .S, are intercon-
nected in pafa]]el.-

81{ ) S| 5 L
A 0o 0] o0
32\ / 0 1 1
50 O IR
@ | 0)
X [y | xty
0 06| o0
o | 1 | 1
1 | o | 1
1 | 1 1
()
Fig. 12.3

When the switch §, is closed ('ancl.S2 is open), then the current flows through 5, and the lamp L
is on. When the switch S, is closed (and S is open), then the current flows through S, and again the
lamp L is on. With both the switches S, and S, closed, the current is equally divided, between both the
branches and permits the lamp to glow. But when both the switches are open, the circuit becomes an
open circuit and the lamp is off. _ '

Thus it can be said that two switches x and y are connected in parallel if the current does not
flow when both x and y are open and the cirent flows when any one or both the switches x and y are
closed. This shows that an “OR” function x +y is obtained, when the switches x and y are connected in

parallel.
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12.3.2 In series:

Consider the switching circuit shown in fig. 12.4, in which two switches §; and S, are intercon-

nected in series.
81 82
{0 [\ S| S ] L x |y [x+y
v/ v o | o] o. ol o] o
Ao 0 1 0 0 1 0
8() | or T 10 |0 1 1o [ o
] 1 1 1 1 1
(@) _ (h) ©

Fig. 12.4

When the switch S is closed (and S, is open) or the switch §; is open (and S, is closed) or
both S, and S, are open, then the circuit is open and the lamp is off. In only one case when both the
switches S, and S, are closed the circuit permits the current to flow in and the lamyp is on.

Thus when two switches x and y are connected in series, the current flows in series, the current
flows only when both x and y are closed and it does not flow if any of x and y or both are open. This
shows that an “AND” function x - y is obtained wheﬁ_the- switches x and y are connected in series.

12.3.3 In series-parallel : | |

The series connection and the parallel connection of the switches can further be interconnected

s0 as 1o form a new switching circuit called the “series-parallel circuit”. Such a circuit is shown in the

frliowing figure 12.5

81 . 82

{ 1 { 3

L S L
84 1
()

f

' Sy —{ Ot

B Ss

Fig. 12.5
12.3.4 Bridge-circuifs: '
There can v¢ formed switching circuits that are not series-parallel circuits. Such switching cir-
cuits are called the bridge-circuits. Following circuit is one of the simple cases of bridge-circuits.
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{%l%’}
[

Fig. 12.6

It can be seen that the number of switches involved in the bridge-circuit is always fess than that

cnil, The

of number of switches involved in the eqmvalcnt (corresponding) series- ~parallel switching viv

switching circuit, equivalent to the bridge-circuit shown in fig. 12.6 is shown below in fig. 12.7:

s S
1 ——
O— T
()
— o S—
) SS S? t
PR —{ -
V. F L ) }— L
Ss
B Sg
Fig. 12.7

Ex.1. Construct the condition table for the following switching circuit and also prepare

an equivalent simple circuit .

'-—-—-()——()——{)———
O

(O O

Fig. 12.8
Sol. The fmetlon (called the Boolean function) for the given switching circuit 3s :
f(x,y,2)=xyz+xy 'z +x" vz’

The condition table (or the truth table) is
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X y t | fop)=xyst+xyz+xy?
0 0| 0 0-0.0+0-1-0+1.0-1=0
0 0 1 0-0:140.1-1+1-0-0=0
0 1 0 | 0-1:040-0-0+1-1-1=1
0 1 1 0-1-14+0-0-1+1-1.0=0
1 0 0 1.0.0+1-1.0+0-0.-1=0
| 0 1 1-0:1+1-1-14+0-0.0=1
i i 0 1-1.0+1.0.04+0:1-1=9
1 1 1 11 1+1.0-1+0-1.0=1
The Boolean function can be simplified as
fx, 3y 2) =XVz+xy 7+ x yz2’
=x2(y+y)+x'yz’
=xz:-14+x"yz’
=xz+x"yz’

Hence the equivalent simpler circuit is :

| X z |

— O~ 3,

Fig. 12.9
Ex.2. Find the Boolean ﬁmcnon Jor the following sw;tckmg circuit and simplify it to con-

Struct an equivalent civcuit ;

x'L {y\_
J NS

{
al

y' x'
— LT O

Fig. 12.10
Sol. The Boolean function for the given switching cireuit is :
J 3 2) =x'y+20/+2)+(x'+ y)
=x"y+ z(x:’y’ W X7+ yz')
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-i——x’y+z(x’y’+0+x’z’+yz’)
C=x'y+x'yz+ 82z + yzz’
=x'y+x'y'z+0+0
=x'(y+)'z)

L =Xy YNy +2)
=x"-1-(y+2)
=x'(y+z).

Hence the equivalent circuit is : '

() - L

Fig. 12.11
Self-learning exercise-I

1. Ifthe switches are interconnected in series, then the current flows through the circuit when and
only when .... .

2. Out of five switches, connected in parallel, two switches are open. Does the cuirent flow through
the circuit ?

3. In the switching qircuit, shown in Fig. 12.7, all the switches except the switches .5 and S are
open. In order that the current flows in the circuit, which are the switches that should also be

closed ?

12.4 Digital logic gates

A switching network governs the flow of current through the circuit. The logic gates are basically
the electronic circuits that are used to implement the most elementary logical expressions. A digital elec-
tronic circuit with one or motre iﬁput signals but only one output signal is said to be a logic gate.

Since logic gate is a switching circuit, therefore the output of any logic gé,te can have one and
only one of the two possible states namely 1 or 0.
To understand fhe basic idea of logic gates, consider the switching circuit shown in Fig. 12.3(@).

We have four possible combinations of switches $; and .5, as shown below :
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Inputs Output
. Sy S
open (0) open (0) lamp off (0)
open (0) closed (1) lamp, on (1)
closed (1) open (0) lamp on (1) ,
closed (1) closed (1) lamp on (1) :

Here, when either of the switches §; and S, or both S .and S, are closed, the lamp glows. In
binary language, when.any one of the inputs or both the inputs are 1, the output is 1. When both switches
are open, the lamp is off, i.e., when both inputs are 0, the output is 0.

12.5 Three basic logic gates

‘There are three basic ldgic gates, the OR-gate, the AND-gate and the NOT-gate (or Invertér).
O’therl logic gates, the NAND-gate, the NOR-gate, the EX-OR gate and the EX-NOR are derived from
these three gates only. '

12.5.1. OR-gate :

The OR-gate performs logical additioni, more commonly known as the OR-function. The OR-
gate has two or more inputs and one output. The output of the OR-ga{te is 0 only when all the inputs are
at logic 0. If Iany one of the input is at logic 1, the output of the OR-gate is 1. The logic symbol for the
OR-gate is shown in Fig, 12.12. © | |

Inputs Output
X y Xty
0 0 0

X
0 1 1

fix, vi= :

y (X y)=x+y 1 0 1

1 i 1

Fig. 12.12
12.5.2. AND-gate : - |
The AND-gate petforms logical multiplication, more commonly known as the AND-function. It
has two or more inputs but one output. The output of thé AND-gate is 1 only when all the inputs in the
gate are at logic 1. If any one of the input is at lo.gic 0, the output of the AND-gate is 0. The logic
symbol for the AND-gate is shown in Fig. 12.13. |
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Inputs Ouiput

X y Xy
X 0 0 0
fix,y)=xy 0 1 0
y o 1 0 0
| 1 1 1
Fig. 12.13

12.5.3. NOT-gate (Inverter) :

The NOT;gaté or the inverter has only one input signal and one output signal which is just op-
posite of the input 51gna1 The -NOT—gate (invérter) performs a basic logic function called the “inversion™
or “cdmplementation”.. In terms of Bits, the NOT-gate changes a logic 1 to logic 0 and Jogic 0 to logic
1. Fig. 12.14 shows the logic symbol for the NOT-gate. The bubble 0] p]'_aced on the output indicates
the negation (inversion). The function performed by the NOT-gate is commonly known as the NOT-
function. ' '

Inputs | Quiput.

_ | X x
X —— fF(X)=x" 0 1
| . b 0

Fig. 12.14

12.6 Combination (ﬂ' basic logic gates

The combination of the basic logic gates, the OR-gaie, the AND gate and the NOT-gate, give
rise new digiial logic gates. We diéc_:uss these gates in the following text. '

12.6.1. NOR—gate

The NOR-gate has two or more inputs but only one output. The NOR is a contraction of the
words NOT and OR and implies an OR function with an mverted output. The output of the NOR-gate
is at logic 1 only when all the mput 51gnals are of logic 0. If any of the input 31gna1 is at logic 1, then the
outputof the NOR—gate is at logic 0. The NOR-gate is a “Universal” gate as it can be used to construct
an AND-gate, an OR-gate and an inverter or any combination of these functions. The logic symbol for a
two input NOR—gate is shown below in Fig. 12.15 '

Inputs QOutput

X . ) . _'-= " y (x+y): _
y::DD—f(x,y)_ (x+yy=xly ; : -
| | | 0 1 0
pumen I S B T A
X YV=x+y
y “Yly 1 i 0

Fig. 12.15
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12.6.2. NAND-gate :
The term NAND is the contraction of words NOT and AND. The NAND-gate implies an AND

-+ function with an inverted output. It is a universal gate as it can be used to construct an AND-gate, an

OR-gate, an inverter or any other combination of these. The output of the NAND-gate is at logic 0,
only when all the inputs are at logic 1. If any of the input is at logic 0, the output of the NAND-gate is at
logic 1. The logic function for a two-input NAND-gate is shown below in Fig. 2.16

: Inputs Output
| I
N ')__DO_. (X, ) = O
y— =xTy

Fig. 12.16
12.6.3. Exclusive-OR-~gate (XbR—gate)
The Excluswe-OR-gate or the XOR-gate is the combination of OR, AND and NOT-gates

X
Y

i—‘l—lock

y
0
1 1
0 1
1 0

It has two or more inputs but one output. A two-mput XOR-gate is symbolically shown in
- Fig. 12.17

FC N =xy'+x'y
=x@y

Fig. 12.17
The output of the XOR-gate is at logic 1, if any one but not all the inputs are at logic 1. Log1—

cally, the XOR-gate recognizes only words that have an odd number of inputs at logic 1, i.e. for odd
number of inputs of logic 1, the output of the XOR-gate is at logic 1. The XOR-gate does not recognize
the words that have even number of inputs at logic 1 or all the inputs at logic 0. The logic symbol for a
two-mput XOR-gate is shown in fig 12.18.

Inputs Output
X y xy +xy
: 0 0 0
X fx, y=xy'+x'y 0 ! 1
y =x®y 1 0 1
1 1 0

Fig. 12.18
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12.6.4. Exclusive NOR-gate (XNOR-gate) : : 1

The Exclusive NOR-gate is logically equivalent to inverted ]:xcluswe OR-gate 1r.e. an XOR-
gate followed by a NOT-gate. An XNOR-gate has two or more inputs but only one out put. The out
put of XNOR-gate is at logic 0 if any one, but not all the inputs are at logic 0. If recognizes only those
words that have an even number of 1 or words that have all 0. This means that for all inputs at logic 0 or
for even number of inputs at logic 1, the output of the XNOR-gate is at Jogic 1. The construction of
XNOR-gate fora ﬁm—iﬂpﬁt system can be represented as follows :

™
_

fx ¥

X =Xy + X'y
= Xey
y
Fig. 12. 19
The logical symbol for a two-input XNOR-gate is shown in fig 12. 20
lnputs | Output
_ o : x y | xyrxy
. 0 0 1
X fx, =xy+x'y' 0 I 0
y— : = Xey 1 0 0
: 1 1 1

 Fig. 12.20

12.7 Universal property of NOR and NAND-géltes :

Since any logic function can be generated using the NOR or NAND gate for this reason the
NOR gate and the NAND gate are called the universal gates,

12.7.1. NOT function using NAND-gate : o

The NOT function (Inverter) can be constructed, using NAND-gate by connecting all the inputs
together and creating a single common input as shown in the following figure : |

Inputs Oufput
_ : . ' _- X X xxy | -
- X _ x=0| 0 0 1 | fe=1
— P f{x)=(xxy 0 1 1 |
X . _ = X
% : _ _ 1 0 1
x =1 1 1 0 fx)=0
Fig. 12.21
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12.7.2. NOT function using NOR-gate :
The NOT function can be constructed using NORgate by connecting all the inputs together and’
.aking a single input as shown below in Fig, 12.22.

Inputs Output
} . : X X {x +xy |
S | . | x=0]| 0 0 1| fm)=1
...-_.:DD- F00 = (x+ X oty 0
X _ = x! 1 0 U I
X ' _ x=1! 1 1 0 f(xy=0 .
| Fig. 1222
12.7.3. OR function using NAND-gate :
The OR function can be constructed using only NAND gate as follows :
Cxty= (YO =YY -
_ , _ ' Xy |xtylxX+y | (xy)
: ' 00 0 1
‘ >° L | 0 /1 1 0 1
A P, RO

| . | - Fig.12.23
12.74. OR function using NOR-gate :
The OR function can be generated using the NOR-gate, just inverting the output of the NOR

gate as shown below :

x+y= [(x+y)']'

x - .
y%wﬂ'ﬂ%y

h]
X |y | xty | x+p)" | e+yy]”

— e | O
[l B ) ‘c;
jer e B e

I—‘H‘d.c

|  Fig. 12.24
12.7.5. AND function using NAND-gate : _ _
The AND function can be generated using and NAND gate by inverting the output of the NAND
gate. | |

xy =[(xyY]
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12.7.7. NOR function using NAND-gate :
The NOR function can be generated using only NAND~gates as follows :

(x+y)’-xy €204k

E>ﬂ L

”VDG*

12.7.8. NAND function using NOR-gate :
The NAND function can be constructed using only NOR-gate as follows :

() =4y =[5+ )]

X1y [y | Xy &Yy | (YY)

00 1 1 0 1

0| 1 0 0 1 0

110 0 0 1 0

1|1 0 0 - 1 0
Fig. 12.27

D:}__l>°'[(x"y’)']'={x+ W

X {>: |
y_m{(x YT “‘(XJ/)'
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x|yl ey | & | @xp)
| 0ojo| o 1 0
X _ | _ 01 1] 0 1 0
| >_[>>— [F (W = xy 170] 0 1 0
y | ' 11| 1 0 1
' Fig. 12.25
12.7.6. AND function using NOR—gate :
- The AND ﬁmctlon can'be gencrated using only NOR-gate as follows :
o =) () =@ +yY
[ [xr [x+y [e+yy
X 0{0] 0 1 0
|. %}- ry ' 0 11 0 I 0
| ' +y’) -(x}(y’)
Y >° t[ofo | 1 0
1Tl 0 1
Fig. 12.26




X1yl xpyy [ Xy @+yY | XYY
ol o[ 1 1 0 1 -
0] 1 1 1 0 ' 1
1] 0 1 1 0 1
P 0 0 1 0

Fig. 12.28

Ex.3. Implement the Boolean expression for XOR-gate using only NAND-gates.
Sol. _ B y) =x@y=xy/+xy |
=[eoy (]

which can'be generated by developing the logic circuit using only NAND-gates.

15 '—“Do_

Fig. 12.29

Ex.4. Ilmplemém the Boolean expres_sioﬁ Jor XNOR-géte using only _NOR-gates. _
Sol. E(y) =x0y=xy+x'y’
= (x4 yY (x4 ) |
ey .
The logic circuit for the e_lbove function using only NOR gatés is: E

X

Yy

Fig. 12.30

218




Ex.5. Show that the logic circuits (a) and (b) shown in Fig. 12.31 are equivalent :

(a) | | " (b)
Fig. 1231

Sol. The condition tables for the logic circuits shown in Fig, 12.31 are :
I L e I N A R 2 R 72
0| o0 0 1 00 1 I 1 !
01 1 0 01 1 0 0
1o 1 0 and | 1] 0 0 i 0
1,1 1 o 1] 1 0 0 0

‘which are identical. Hence the two circuits are equivalent.
Ex..ﬁ.l Use NAND gates only to draw a logic circuit Jor the Boolean éxprr_zssion
- | . E(x,y,2)=xy"z+yz’
Sol. Here the given Boolean expression can be written as
E(x,y,2)=xy'z+y2 =[(o'zy (Y]
Therefore the logic circuit using only NAND gates is |

X
pd : : _ - }
o ‘
Z . . )
Fig. 12.32
Ex.7. Construct the logic circuit using only NAND gates for the Boolean expression

E(x,y,2)=(x'+y)z+y +xz
Sel. Here the given expression is
| E(x, 3 2) = (J_c"-I-_y)z +y +xz
={xyYz+y +xz
=[((yz) pzy ]
The logic circuit using the NAND-gates is therefore
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B

Fig. 12.33
Ex.8. Draw the logic circuit for the Bbb!ean expression . .
 EGu)=GrRoraE),
using only NOR-gates. ' :
Sol. _ Exy2)=@+) 0+ @+

={(x+py +(y+z)’+(z+x) I
Therefore the loglc circuit using only NOR gates 1s :

T

~ Fig. 12.34

Ex.9. Draw alogic circuit for the Boolean expression

E(x,y,2)= Getyzy'+y
Sol. The logic cireuit for expression is :

X

gt

'Fig. 12,35
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Ex.10. Determine the condition table for the logic circuit in fig 12.36

I

Fig. 12.36
Sol. Here E(,y,2) = [(x+ y)’ ( y+z')':|
=(x+y)+(y+7)
[De-Morgan’s law and since (@} '= a
=x+ y—F z . -
The condition table for the given expression is ;
X J -z 4 x¥y+z .
0 0 |90 1 1
" 0 0 1 0 0
0 1 0 1 1
0 1. 1 0 1
1 0 | ¢ 1 1
1 o |- 1 0 1
1 | 1 0 1 1
1 1 1 0 1

Ex.11. Show that the Boolean expression E (x, y, z) x y z'can be implemented with one
two-input NOR gate and one two-input NAND gate.
Sol. Here E(x.y, zy=xyz,

= ((x y)' )r z'
= ((x y)’ + z)f

Therefore the logic circuit is :

Fig. 12.37
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Ex.12. Implement the éxpression E (5:, y, z, 1) = x y z t using only NAND gates.
Sol. Here E(x,pzt)y=xyzt

= ;(x yz I)T

[+ |

— ’

Al yent]

L

The logic circuit, therefore is :

‘ )O . l> Q |
e

Fig. 12.38

X
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Self-learning exercise-1

1. The NAND gate and the NOR gates are known as the ............ gates.

2. The Boolean expreséion for a two-input NOR gate is ......... S .

3. The Boolean expression for a two-input NAND gate 1S wovvreeccins -

4. The Boolean expression for a two-input XOR-gate 1S cvenversiorens -

5. The Boolean expression for a two-input XNOR-gate is ...«

6. Two ... and One ....ceeeve gates are needed to implement the Boolean expression
E® y2) =-xy+yz. |

. If one input of ﬂie OR gate is at logic 1, then the out-put of the gate is at logic .......... X

. =l

. Ifone in'put of the AND gate is at logic 0 then the output is at 1OGIC woeerviirirenes »

=l

. An AND gate output will always differ form an OR gate output if the input conditions are same-

true or false 7

12.8 Summary

~+ Inthe cumrent unit, we studied the switching circuits, the two-state devices and the logic gates.
Three basic logic gates the NOT-gate i.e. the Inverter, the NOR-gate and the AND-gate are the basic
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elements that make up a digital system. The universal gates i.e. the NOR gate and the NAND gate ate
used to construct the basic logic gates. Also the other combinations of logic gates narmely the XOR-gate
and XNOR-gate are of no less importance as they are the reduced digital logic circuits.

12.9 Answers to self-learning exercises

< oo Self-learning exercise-1.. - - e e

1. Althe switch’es are closed. . 2. Yes

3 S,or S3 and S, or S and S, or Sq.

Self-learning exercise-2

1. Universal gates 2. fen = (x+y) =2y

3. f063) =(x-y) =x'+¥ 4 Sy =x@y=xy+xy
5. f(x,)) =xQy=xy+x') | 6. ANﬁ,OR

E | o 8. 0

9. Talse |

12.10 Exercises

1. Why are NCI)R.gate and NAND gate known as the universal gates ? .
2. Develop the digital logic circuit for each of the following Boolean expressions, using OR, AND
and NOT-gates : | '
(@E@y2)=xytyz
BE@ 32 =x0"+2)
@F @ yz0=xyE+D
3. Using only the NAND gate, develop logic circuit for each of the Boolean exp_ressién :
(@E (2 )=+ 07+ 1)
BE(xyz0=xyz+1)

_ 4. Develop a digita! logic circuit for each of the following Boolean expression using only NOR-
gates : | | R ‘
(@E@XyzH=xyz+xt

B E(x y2)=x(y +2).

1O
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